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Factorization

Collinear factorization theorem

σ =
∑
qq

∫
dx1dx2fq(x1, µ

2)fq(x2, µ
2)σ̂qq(x1, x2, µ

2,Q2)

Basis of many QCD calculations BUT

• proton structure in longitudinal direction only

• for some observables also the transverse degrees

of freedom have to be taken into account

→ soft gluons need to be resummed

→Transverse Momentum Dependent (TMD) factorization theorems

low q⊥ (Collins-Soper-Sterman CSS) or High energy (k⊥-) factorization

For practical applications Monte Carlo approach needed: Parton Branching (PB) method:

σ =
∑
qq

∫
d2k⊥1d

2k⊥2

∫
dx1dx2Aq(x1, k⊥1, µ

2)Aq(x2, k⊥2, µ
2)σ̂qq(x1, x2, k⊥1, k⊥2, µ

2,Q2)

• applicable in a wide kinematic range, for multiple processes and observables

A
(
x, k⊥, µ

2
)

- TMD PDFs (TMDs)
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Ingredients of the PB method

Determination of the TMD:

• TMD (forward) evolution equation (solved with MC methods)

JHEP 1801 (2018) 070

• PDF fit procedure implemented within xFitter

Phys. Rev. D 99, 074008 (2019)

Application to measurements:

• recipe on how to use PB TMDs in the hard process generation (LO,

NLO) Phys.Rev.D 100 (2019) 7, 074027

• backward initial state PB Parton Shower (PS) implemented in Cascade

MC generator Eur.Phys.J.C 81 (2021) 5, 425

• procedure to merge different jet multiplicities developed

Phys. Lett. B 822 (2021) 136700
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PB and standard TMD approaches

we would like to resum higher order emissions to DY process:

dσ
dq⊥

∼
∫
dz1dz2dk⊥1dk⊥2H(Q2)δ(q⊥ − k⊥1 − k⊥2)F1(z1, k⊥1, scales)F2(z2, k⊥2, scales)

Starting structure the same for PB and CSS
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dσ

dq⊥
∼

∫
d
2
b exp(ib · q⊥)

∫
dz1dz2H(Q2)∫

dk⊥1 exp(−ib · k⊥1)F1(z1, k⊥1, scales)︸ ︷︷ ︸
F1(z1,b,scales)

dk⊥2 exp(−ib · k⊥1)F2(z2, k⊥2, scales)︸ ︷︷ ︸
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dσ

dq⊥
∼

∫
d
2
b exp(ib · q⊥)

∫
dz1dz2H(Q2)

F1(z1, b, scales)F2(z2, b, scales)+Y

F = f ⊗ C ⊗
√
S

dσ

dq⊥
∼
∫

dx1dx2dk⊥1dk⊥2σ̂(x1, x2, k⊥1, k⊥2, µ)

A1(x1, k⊥1, µ)A2(x2, k⊥2, µ)

where

Ãa

(
x, k⊥, µ

2
)

=

∆a

(
µ2, µ2

0

)
Ãa,0

(
x, k⊥, µ

2
0

)
+
∫
K ⊗ A(z, k′⊥, µ)

Both methods:

- describe the evolution of partons

- use Sudakov form factors

→ to be compared later in my talk
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Parton evolution in PB

Unitarity: evolution in terms of resolvable, real emission DGLAP splitting functions PR
ab and

non-resolvable/virtual contributions, included via Sudakov form factors ∆;

zM - soft gluon resolution scale, separates resolvable (z < zM ) and non-resolvable (z > zM ) branchings
JHEP 1801 (2018) 070

Ãa

(
x, k⊥, µ

2
)

= ∆a

(
µ

2
, µ

2
0

)
Ãa

(
x, k⊥, µ

2
0

)
+
∑
b

∫
dµ2

1

µ2
1

∫ 2π

0

dφ

2π
Θ
(
µ

2 − µ2
1

)
Θ
(
µ

2
1 − µ

2
0

)
× ∆a

(
µ

2
, µ

2
1

)∫ zM

x

dzPR
ab

(
z, µ2

1, αs ((1− z)2
µ

2
1)
)
Ãb

(
x

z
, |k + (1− z)µ1|, µ

2
0

)
∆b(µ2

1, µ
2
0) + ...

Sudakov form factor: probability of an evolution between µ0 and µ without any resolvable branching:

∆a

(
µ2, µ2

0

)
= exp

(
−
∑

b

∫ µ2

µ2
0

dµ′2

µ′2
∫ zM

0 dz zPR
ba(z, µ2, αs

(
(1− z)2µ′2

))
k of the propagating parton is a sum of intrinsic transverse momentum and all emitted transverse momenta

k = k0 −
∑

i qi → TMD from branchings!

Ã = xA, x = zx1
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Angular Ordering & Sudakov form factor

PB implements angular ordering (AO) condition Nucl.Phys.B 949 (2019) 114795 similar to

Catani-Marchesini-Webber Nucl. Phys. B349, 635 (1991)

• angles of emitted partons increase from the hadron side towards hard scattering

• relation between µ and q⊥, scale of αs , zM

PB Sudakov form factor for AO:

∆a(Q2) = exp

(
−
∫ Q2

q2
0

dq2
⊥

q2
⊥

(∫ zM=1− q⊥
Q

0

dz

(
ka(αs (q⊥))

1

1− z

)
− d(αs (q⊥))

))

notice:
∫ 1− q⊥

Q
0 dz

(
1

1−z

)
= 1

2 ln

(
Q2

q2
⊥

)
CSS Sudakov form factor:

√
S = exp

(
−

1

2

∫ Q2

c0/b
2

dµ2

µ2

[
Ai

(
αs (µ2)

)
ln

(
Q2

µ2

)
+ Bi

(
αs (µ2)

)])

AO crucial for soft gluon resummation

We can compare: ka ⇐⇒ A and d ⇐⇒ B, order by order in αs

• LL (A1), NLL (A2, B1) coefficients in Sudakov the same in PB and CSS
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NNLL:

B2:

difference between CSS and PB from renormalization group:

renormalization group equation: ∂ ln H
∂ lnµ2 = γ(αs )

solution: H
(
αs (M2)

)
= exp

(∫ M2

c0/b
2

dµ′2

µ′2
γ
(
αs (µ′2)

))
H
(
αs (

c0
b2 )
)

This changes coefficient B in the Sudakov Nucl.Phys. B596 (2001) 299-312

B(αs )→ B(αs )− β(αs )
H(αs )

∂H
∂αs

At O(α2
s ): B2(αs )→ B2(αs ) + πβ0H

1

A3:

double logarithmic part in PB: cusp anomalous dimension K is used at LO and NLO:

Pii = 1
1−z Ki + ... (part of the DGLAP splitting function)

Resummation:

To go to higher orders: effective soft gluon coupling JHEP 01 (2019) 083, Eur.Phys.J.C 79 (2019) 8, 685:

αeff
s = αs

(
1 +

∑
n

(αs
2π

)n A(n)
)

A and K are equal up to O(α2
s )

• CSS: A3 is included by using αeff
s for n = 2

• PB: work in progress to implement effective soft gluon coupling for A3
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Drell-Yan from fixed-target up to LHC energies

Eur.Phys.J.C 80 (2020) 7, 598

• Low and middle p⊥ spectrum well described

• At higher p⊥ from Z+ jets important → see later

• Good description of DY from experiments in

different kinematic ranges: NuSea, R209, Phenix,

Tevatron and LHC

Madgraph MCatNLO ME matched with PB TMD in 2

steps (bottom plots):

subtracted collinear NLO ME generated by MCatNLO

using iTMD

ME supplemented with k⊥ by CASCADE using TMD

corresponding to the iTMD used in MCatNLO.

Literature ”low q⊥ crisis” Phys. Rev. D 100, 014018 (2019): perturbative fixed order calculations in collinear

factorization not able to describe DY pT spectra at fixed target experiments for pT/mDY ∼ 1 → we confirm

this:

• at larger masses and LHC energies the contribution from soft gluons in the region of p⊥/mDY ∼ 1 is

small and the spectrum driven by hard real emission.

• at low DY mass and low
√
s even in the region of p⊥/mDY ∼ 1 the contribution of soft gluon emissions

essential
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TMD effects at high p⊥

It is commonly known that TMD effects play a role at scales O(few GeV)

Can TMDs also play a role at higher scales?

PB TMD: at µ ∼ O(1 GeV) TMD is a gaussian with

ΛQCD < σ < O(1 GeV). Effect of the evolution: k⊥ accumulated

in each step → TMD broadening
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hys.Lett.B 822 (2021) 136700

What is the contribution to the emission of an extra jet

of p⊥ < µ from the k⊥-broadening of the TMD?

Rj (x , k⊥, µ
2) =

∫∞
k2
⊥

dk′2⊥Ãj (x,k
′
⊥,µ

2)∫
dk′2⊥Ãj (x,k

′
⊥,µ

2)

at LHC the contribution from high k⊥ tail to jet emission

comparable to perturbative emissions via hard ME!
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New development: TMDs and MLM Multi-Jet Merging

Recall: At high p⊥ large corrections from higher orders

TMD merging procedure developed (at LO) hys.Lett.B 822 (2021) 136700

extension of MLM method NPB 632 (2002) 343–362 to the TMD case
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• The merged prediction provides good description of the data in the whole DY p⊥ spectrum

• jet multiplicity in Z+ jets production well described, also for multiplicities larger than the maximum nb

of jets in MEs
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PB TMD in azimuthal correlations

PB method can be also applied to exclusive observables like azimuthal correlations in dijets and Z+jets
arXiv:2204.01528

• probe of colour/spin correlations:

different flavour composition in initial state, different FSR → potential interference between initial and

final state different→ Comparing these two processes one can look for the hints of factorization breaking

dijet data well described by PB TMD + MCatNLO, small deviation in ∆Φ = π - to be studied further

Still missing: data for Z+jets at high p⊥
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Summary & Conclusions

• Parton Branching: a MC method to obtain QCD collider predictions based on TMDs

• PB: TMD evolution equation to obtain TMDs; TMDs can be used in TMD MC generators to obtain

predictions

• Some aspects of comparison of PB and standard TMD approach discussed:

the role of AO in PB to include the A resummation coefficients

• Examples of the PB method applications: DY at different
√
s, mDY , DY+jets, azimuthal correlations in

Z+jest and multijets

Thank you!
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