SIDIS Dihadron Beam Spin Asymmetries at CLAS12

- Flavor Dependence from Proton and Deuteron Targets -

Christopher Dilks May 2022

Research supported by the

THE REPORT OF THE REPORT OF

Office of Science

Dihadron Kinematics

Beam Spin Asymmetry \rightarrow e(x) Constraints

$$A_{LU} = \frac{d\sigma_+ - d\sigma_-}{d\sigma_+ + d\sigma_-} = A_{LU}^{\sin\phi_R} \sin\phi_R + A_{LU}^{\sin\phi_h} \sin\phi_h + \dots$$

 $A_{LU}^{\sin\phi_R} \propto e(x) \cdot H_1^{\triangleleft}$

7

e(x) collinear twist-3 PDF

 H_1^{\triangleleft} dihadron fragmentation function (DiFF)

Twist-3 Collinear PDFs

- Twist-3 TMDs are expressible in terms of multi-parton correlators
- Fundamental to understanding TMDs in general
- Physical interpretation through *x-moments*

e(x) accessible in Beam Spin Asymmetry A_{LU}

- Physical interpretation via moments:
 - Pion-nucleon σ term: $m_{q} \rightarrow m_{N}$
 - "Boer-Mulders Force": Transverse force exerted by color field on q↑ after scattering, in an unpolarized nucleon

Phys.Rev.D 88 (2013) 114502

Target Spin Asymmetry A_{UL}

A proposed measurement for Run Group C

Dihadron A_{LU} Measurements – Proton Target

New e(x) Extraction – Proton Flavor Combination

Different targets \rightarrow **flavor dependence**

2 equations and 2 unknowns: decouple flavor dependence of $e(x) \rightarrow e^{uv}(x)$ and $e^{dv}(x)$

e(x) Model Predictions

- Several model predictions available
- Some differences, but mind the scale:
 - Bag: 0.4 GeV
 - Spectator: 0.5 GeV
 - χQSM: 0.6 GeV

 \bullet e^u(x) and e^d(x) significant for x<0.5

Light-Front Constituent Quark Model

JHEP 01 (2015) 103

Solid: LFCQM model Dot-Dashed: spectator model Dashed: bag model

 Relatively larger magnitude partly due to mass effects

Factorization

Structure Function $\propto {\rm PDF} \otimes {\rm DiFF}$

Dihadron Fragmentation Functions (DiFFs)

(notation): $G_1 = G_1^{\perp}$ $H_1 = \left\{ H_1^{\perp}, H_1^{\triangleleft} \right\}$

<u>Twist 3</u>

 \tilde{H} \tilde{E}

small ? see, for example,

PoS DIS2014 (2014) 231

Phys.Rev.D 99 (2019) 5, 054003

arXiv: 1405.7659 [hep-ph]

Twist 2 $A_{LU}^{\text{twist 2}} \propto f_1 G_1$ $G_1 = 6 + \frac{h_1}{h_2} - 6 + \frac{h_1}{h_2}$

Twist 3
$$A_{LU}^{\text{twist 3}} \propto eH_1$$

 $H_1 = \bigoplus_{h2}^{h1} - \bigoplus_{h2}^{h1}$

Partial Wave Expansion

- DiFFs expand on a basis of spherical harmonics
- Angular momentum eigenvalues | &, m >
- Explore dihadron fragmentation depending on relative angular momentum

$$H_1^{\perp} = \sum_{\ell=0}^{\ell_{\max}} \sum_{m=-\ell}^{\ell} P_{\ell,m}(\cos\vartheta) e^{im(\phi_{R_{\perp}} - \phi_p)} H_1^{\perp|\ell,m\rangle}$$

Partial Waves

$$e = 0$$

ss $|0,0\rangle$
 $U U$
 $m = 0$

Twist 3

Longitudinally Polarized Electron Beam

- Energy = 10.2–10.6 GeV
- Polarization = 86-89%
- **Fixed Targets:**
 - **Proton** (liquid hydrogen)
 - **Deuteron** (liquid deuterium)

General Cuts

- ♦ Q² > 1 GeV²
- ♦ W > 2 GeV
- ♦ y < 0.8</p>
- 5° < θ < 35° (applied to e^{-}, π^{\pm})

Pion and Dihadron Cuts

$$x_F(\pi^{\pm}) > 0$$
 $p(\pi^{\pm}) > 1.25 \text{ GeV}$
 $z_{pair} < 0.95$
 $M_{miss} > 1.5 \text{ GeV}$

Additional Cuts

- PID Refinement
- Vertex
- Fiducial volume

Data Sets

CLAS12 Fall 2018 – Spring 2020
 Includes Both Torus Polarities

* distributions normalized by dihadron yield

$$G_1^{\perp |\ell,m\rangle} = \mathbf{O}_{h2}^{h1} - \mathbf{O}_{h2}^{h1}$$

Sign Change near M

Sign change near ρ mass

$$|\pi^{+}\pi^{-}X\rangle = e^{i\delta_{0}}|(\pi\pi)_{\ell=0}X\rangle + e^{i\delta_{1}}|(\pi\pi)_{\ell=1}X\rangle + \dots$$

Sign change near ρ mass

z Bins

Twist-2 F_{LU}/F_{UU} Amplitudes, $M_h < 0.63$ GeV COSS

z Bins

Twist-2 F_{LU}/F_{UU} Amplitudes, $M_h > 0.63$ GeV CC

C. Dilks

ואצר

<u>Twist 3</u>

 $F_{LU} \sim e \otimes H_1^{\perp |\ell, m\rangle}$

Presenting F_{LU} / F_{UU} (= A_{LU} / depolarization)

x Bins

Twist-3 F_{LU}/F_{UU} Amplitudes

x Bins

Twist-3 F_{LU}/F_{UU} Amplitudes

x Bins

M_h Bins

Twist-3 F_{LU}/F_{UU} Amplitudes

Target differences enhanced at higher M_h

SIDIS dihadron spin asymmetries are sensitive to:

- Dihadron fragmentation function G_1^{\perp} and H_1
- Twist-3 parton distribution functions e(x) and $h_{L}(x)$
- Different targets \rightarrow flavor dependence of e(x) and h₁(x)
- Future: Different channels \rightarrow channel dependence of DiFFs

Partial waves expansions provide:

- Dependence on dihadron polarizations
- Refined access to G_1^{\perp}
- Better understanding of $H_1^{<}$
- Hints at nonzero H_1^{\perp}

Stay tuned for data with a longitudinally polarized target!

