
Software Defect Prediction on Unlabelled
Datasets with Machine Learning Techniques

Elisabetta Ronchieri

INFN CNAF, Bologna, Italy

May 16, 2019



Outline 2

Background

Experimental Settings

Results

Discussion and Future Work



Background

q



Machine Learning in Software Engineering (SE) 4

Machine Learning (ML) may help in various SE tasks, such as
software defects prediction and estimation and test code
generation.
To accomplish these tasks, data have to be collected and
properly preprocessed before the application of machine
learning techniques. These activities are essential to manage
missing values and inconsistencies amongst data.
Datasets are composed of instances and features used to
build learning models with Machine Learning techniques.

I Instances: modules, such as files, classes and functions;

I Features: software metrics.

In SE practice, datasets may lack information, such as
defectiveness, mandatory for SL techniques.



Labeled and Unlabelled Datasets 5

Labelled dataset are related to software project whose
features have been extracted over time, e.g. defect data are
included.
New projects or projects with partial historical data may lack
some features’ data, e.g. defect data are not included.

I Their datasets are called unlabelled datasets.

Unlabelled datasets are the vast majority of software
datasets.

I The extraction of the complete set of features
(defectiveness included) implies effort and time.

Only in the last decade unlabelled datasets have been
investigated for analysis and (defect) prediction.



Example of Labelled Dataset for Defect Prediction 6

Metric1 Metric2 Metric3 Metric... MetricM
Instance1

Instance2

Instance3

Instance... ?
InstanceN ?

instanceUnlabelled ?

Metricvalue

instanceBuggy−labelled

instanceClean−labelled

Prediction models are trained with the labelled instances and tested with the
unlabelled instances.

An instance can be e.g. a file, a class, a function.

Each cell contains a metric value.



Example of Unlabelled Dataset for Defect Prediction 7

Metric1 Metric2 Metric3 Metric... MetricM
instance1 ?
instance2 ?
instance3 ?
instance... ?
instanceN ?

instanceUnlabelled ?
Metricvalue

To build a prediction model, different approaches are available.

Approach Limitation
Cross-project defect prediction uses specific data from other projects
Expert-based defect prediction always requires human experts
Threshold-based defect prediction needs to decide metrics thresholds in

advance
Clustering, LAbeling, Metric
selection, Instance selection
(CLAMI)

claims to be independent on
thresholds



Why this study? 8

I Machine learning techniques employed on unlabelled
datasets entail a high number of permutations to perform
prediction analysis.

I This involves resource and time consumption on average
systems and platforms, such as laptops and desktops.

I Cloud computing service allows researches to overcome
limitations of these systems by providing large-scale
computing and storage.

I Cloud computing service, by enabling time execution
reductions, has also given the chance to experiment more
techniques, e.g. the python-based ones.



ML Framework: Learning Curve 9

Weka R Scikit-Learn Keras TensorFlow Theano

Low

Medium

High

Very High



Experimental Settings

q



Experimental settings 11

. Input:
I U = set of unlabelled instances

I C = set of machine learning

techniques

. Process:

1. Repeat 2-5 N times for each u ∈ U to
conduct M predictions

2. Randomly split dataset in training
(67%) dataset (with labelled defective
instances) and test (33%) dataset

3. Construct classifier by applying c ∈ C
to training dataset

4. Assess classifier

5. Predict test dataset

. Output:
I Average P (P = set of performance

indicators)

I Test dataset prediction



Data Preprocessing & Feature Engineering 12

CLAMI Approach [1] Training Dataset
↗ ↘to build

Unlabelled Dataset ML Techniques
↘ ↙to predict

Test dataset

[1] J. Nam, S. Kim, CLAMI: Defect Prediction on Unlabeled Datasets, In Proc. 30th
IEEE/ACM International Conference on Automated Software Engineering

To generate TRaining (TR) dataset: To generate Test (T) dataset:
TR1 clustering instances T selecting metrics
TR2 labelling instances in clus-
ters
TR3 selecting metrics
TR4 selecting instances (not applica-
ble for this case)

T dataset has the same set of metrics
specified in the Training dataset

TR1,TR2 allow to label all instances
TR3,TR4 allow to remove noisy met-
rics and instances



CLAMI: clustering and labelling instances 13

I = instance index, J = metric index

inst. m1 m2 m3 m4 m5 m6
A 10 11 4 6 8 ?
D 23 10 15 14 10 ?
E 15 17 4 8 5 ?
F 9 10 9 6 3 ?
G 11 13 15 5 8 ?
H 14 10 17 9 0 ?
I 7 9 21 13 9 ?

Example of cutoff threshold is Medianj
(cutoff threshold for each mj)

m1 m2 m3 m4 m5
Median 11 10 15 8 8

Yellow celli,j = j-th metric value of i-th
instance greater than Medianj

K = Number of metrics for each instance
whose values are greater than the median
for each metric

instances K
A K = 1
D K = 3
E K = 2
F K = 0
G K = 1
H K = 3
I K = 3

Clusterz = group of instances with K=z
identified by different colours [2]

Clusters divided into 2 groups:

1. Clean for K ∈ {0,1,2} (a bottom
half)

2. Buggy for K=3 (a top half)

The instances that have larger value
on all metrics are more likely to be
defective. [2]

[2] M. D’Ambros, M. Lanza, R. Robbes, Evaluating defect prediction approaches: a benchmark
and an extensive comparison, Empirical software Engineering, vol. 17, no. 4–5, pp. 531–577,
2012.



CLAMI: metric selection 14

Gray celli,j = Metric value that violates
the defect-proneness tendency [2]:

I D is Buggy, but m2 = 10 is not
greater than Median2

I E is Clean, but m1 = 15 is greater
than Median1

inst. m1 m2 m3 m4 m5 m6
A 10 11 4 6 8 C
D 23 10 15 14 10 B
E 15 17 4 8 5 C
F 9 10 9 6 3 C
G 11 13 15 5 8 C
H 14 10 17 9 0 B
I 7 9 21 13 9 B

m1 m2 m3 m4 m5
Median 11 10 15 8 8

MVSj = the ratio between the number of
violation in the j-th metric and the
number of metric values in the j-th metric

m1 m2 m3 m4 m5

MV S 1
7

5
7

1
7

0
7

0
7

Metrics with the minimum MVS are
selected for the TR dataset.

inst. m4 m5 m6
A 6 8 C
D 14 10 B
E 8 5 C
F 6 3 C
G 5 8 C
H 9 0 B
I 13 9 B



Performance Criteria 15

Each measure can be defined on the basis of the confusion matrix below.

Actual
value

Prediction
Buggy Clean

Buggy
True
Positive
(TP)

False
Negative
(FN)

Clean
False
Positive
(FP)

True
Negative
(TN)

Kappa statistic is a metric (whose
value is ∈ [0,1]) that compares an Ob-
served accuracy with an Expected Ac-
curacy [3].

It determines how much better a classifier is
performing over the performance of a classi-
fier that simply guesses at random.

If Kappa statistic ∈ [0.81, 0.99], then the
value indicates an almost perfect agreement.

Accuracy is the percentage of in-
stances correctly classified as either
buggy or non-buggy (i.e. clean).

TP+TN
TP+FP+TN+FN

[3] Landis, J.R.; Koch, G.G. (1977). The measurement of observer agreement for categorical
data. Biometrics 33 (1): 159–174



Results

q



Testbed Description 17

The experimental Testbed was composed by 2 Machines.
Physical Machine:

� CPU: 2xIntel(R)E5-2640v2
@2.00GHz

� Number of Cores: 32 (HT)

� GPU: 2 x NVIDIA TeslaK40m

� Memory: 128GB RAM.

� Operating System: CentOS
Linux release 7.4.1708.

� Python: 2.7.5

� Jupyter-notebook: 5.7.8

Virtual Machine:

� CPU: 16 V CPU

� Disk: 40 GB

� Memory: 32 GB RAM

� Operating System: Ubuntu
Linux release 18.04

� Python: 3.6.7

� R: 3.5.2

� Jupyter-notebook: 5.7.4

hosted on an hypervisor with the
following characteristics:

� CPU: 2 x 12 AMD
Opteron(TM) Processor 6238

� RAM: 80GB



Considered Geant4 Software Releases 18

Years over Geant4 software releases

Considered the last patch for each release when available.



Unlabelled Datasets 19

The data belongs to
the Geant4 software.

So far collected data
for 34 releases by using
Imagix4D tool.

Summarized some in-
formation for the ma-
jor release 10 at class
level.

For each instance the
name of class is re-
ported.

Release #Instances Buggy (%) #Metrics

10.4.0 482 ? 66
10.3.2 482 ? 66
10.2.3 482 ? 66
10.1.3 482 ? 66
10.0.4 482 ? 66



Preprocessing Time 20

N. Permutations:
500
N. Releases: 34
N. Cutoff (i.e. per-
centile): 10
N. Days: 8
Total Preprocessing
Time: 11928 [min]
Average Time per per-
mutation: 23.856 [min]
eTime - sTime: time
requested to build
training and test sets
per permutation
Testbed: Virtual ma-
chine on cloud infras-
tructure



Normalized RBC per percentile 21

RBC = N.Buggies
N.Clean

N. Releases: 34
N. Permutations: 500
N. Cutoff 9: percentile
at 10, 20, ... , 90
Omitted percentile at
100
N. Training datasets
per release: 4500
The greater RBC,
the lower the per-
centile.



Selected metrics 22

N. Selected Met-
rics: [45%,77%]
Average Selected
Metrics: 38 out of 66
N. Releases: 34
N. Cutoff 9: percentile
at 10, 20, ... , 90
Omitted percentile at
100
Metrics Categories:
size, complexity, main-
tainability, object ori-
entation
Class information in
the dataset.
The smaller the N.
of Selected Metrics,
the bigger the per-
centile.



Comparing Metrics of Predictions 23

N. Release: 10.4.0
N. Percentile: 50
N. Classification
Techniques: 10
Accuracy Processing
Time per technique:
36 [sec]
Cross validation: 10
Best ML Technique:
Ada Boost
Kappa statistic: al-
most perfect agreement
Testbed: Virtual ma-
chine on cloud infras-
tructure



Comparing Metrics of Predictions 24

N. Release: 10.4.0
N. Percentile: 50
N. Classification &
Regression Tech-
niques: 9
Accuracy Processing
Time per technique:
36 [sec]
Cross validation: 10
Best ML Technique:
Random Forest
Kappa statistic: al-
most perfect agreement
Testbed: Virtual ma-
chine on cloud infras-
tructure



Best Techniques 25

Release 10 20 30 40 50 60 70 80 90

10.0.4 AB AB C5.0
Cost

C5.0
Cost

AB LB AB LMT AB

10.1.3 LMT AB LB LB LB J48 C5.0
Cost

LMT LB

10.2.3 C5.0
Cost

C5.0
Cost

LB AB C5.0
Cost

LB LB LB LB Class.

10.3.2 AB AB LB C5.0
Cost

LB C5.0
Cost

LMT AB LB

10.4.0 AB LMT LB LB AB AB LB LB LB

10.0.4 RF RF RF BT BT RF RF BT RF
10.1.3 RF RF RF RF RF RF RF RF BT
10.2.3 PLS RF RF RF RF RF RF RF RF Class. &

Regr.
10.3.2 PLS RF RF RF RF RF RF RF SVM
10.4.0 RF RF RF RF RF RF RF MLP SVM

AB (Ada Boost), LB (Boosted Logistic Regression) for class. techs.; RF (Random Forest) for
class. & regr. techs.
Friedman test to rank the ML techniques.



About TensorFlow 26

N. Release: 10.4
N. Percentile: 50
N. Classification
Techniques: 10
Accuracy Processing
Time: 3 [sec]
Cross validation: 10
Technique: Logistic
Regression
Testbed: physical
machine with GPU
Processing Time
performance im-
proved by 10 com-
pared to the other
machine.



Discussion and Future Work

q



Discussion 28

AdaBoost, Logistic Regression and Random Forest techniques have achieved the
best average accuracy.

The effectiveness of this procedure to detect likely defective instances depends on
existing software documentation and datasets, such as release notes and software
metrics.

I So far it is possible to detect pieces of software that require particular
attention.

I Learning techniques are complementary to existing SE tools and
methodology to address SE tasks.

The CLAMI approach enables developers to build a prediction model on
unlabelled datasets in an automated manner.

I Once obtained a labelled dataset, one can employ all the other supervised
and semi-supervised techniques to detect defective instances.

I However, noise in data can make difference in the results.



Discussion 29

What are the pros and cons of using the R or python-based framework?

I It depends on data, problem to be solved, hardware available, data
preparation time.

I According to our experience:

Weka
R, Scikit-

Learn

python-

based

framework



Future Works 30

I Assessment of modules predicted as defective (in
collaboration with the Geant4 team)

I Investigating Transfer Defect Learning approach in the
clustering phase

I Investigating other statistical tests to detect the best ML
techniques

I Exploration of other software datasets with the same
features to apply cross project approach

I Adding other tests on GPU-equipped resources

I Making available software written by using the various
framework (python, R and java code)



Thanks & Questions 31

Be curious! Have fun!

Co-authors: Marco Canaparo
Davide Salomoni

Acknowledgements: Doina Cristina Duma
UQ for dataset

Contact: elisabetta.ronchieri@cnaf.infn.it



References 32

E. Ronchieri, M. Canaparo, D. Salomini, ”Software Defect
Prediction on Unlabelled Dataset with Machine Learning
Techniques,” submitted at IEEE NSS MIC 2019

E. Ronchieri, M. Canaparo, D. Salomoni, ”Machine
Learning Techniques for Software Analysis of Unlabelled
Program Modules,” under pub Proc. of ISGC 2019

E. Ronchieri, M. Canaparo, D. C. Duma, A. Costantini,
”Data mining techniques for software quality prediction: a
comparative study,” under pub Proc. of IEEE NSS MIC
2018

M. Canaparo, E. Ronchieri, ”Data mining techniques for
software quality prediction in open source software: an
initial assessment,” under pub Proc. of CHEP 2018


	Outline
	Background
	Experimental Settings
	Results
	Discussion and Future Work

