Software Defect Prediction on Unlabelled Datasets with Machine Learning Techniques

<u>Elisabetta Ronchieri</u> INFN CNAF, Bologna, Italy

May 16, 2019

Background

Experimental Settings

Results

Discussion and Future Work

Background

Machine Learning (ML) may help in various SE tasks, such as software defects prediction and estimation and test code generation.

To accomplish these tasks, **data** have to be **collected** and **properly preprocessed** before the application of machine learning techniques. These activities are **essential to manage missing values** and **inconsistencies amongst data**. Datasets are composed of **instances** and **features** used to build learning models with Machine Learning techniques.

- ▶ *Instances*: modules, such as files, classes and functions;
- ► *Features:* software metrics.

In SE practice, datasets may lack information, such as defectiveness, mandatory for SL techniques.

Labelled dataset are related to software project whose features have been extracted over time, e.g. defect data are included.

New projects or projects with partial historical data may lack some features' data, e.g. defect data are not included.

► Their datasets are called unlabelled datasets.
Unlabelled datasets are the vast majority of software datasets.

► The extraction of the complete set of features (defectiveness included) implies effort and time.

Only in the last decade unlabelled datasets have been investigated for analysis and (defect) prediction.

Example of Labelled Dataset for Defect Prediction 6

	$Metric_1$	$Metric_2$	$Metric_3$	Metric	$Metric_M$]
$Instance_1$						
$Instance_2$						
$Instance_3$						
$Instance_{}$?	1
$Instance_N$?	1
$stance_{Unlabelle}$	d	?	instan	$ce_{Buggy-lab}$	belled	
$Metric_v$	palue		instan	$ce_{Clean-lab}$	elled	

Prediction models are **trained** with the **labelled instances** and **tested** with the **unlabelled instances**.

An instance can be e.g. a file, a class, a function.

Each cell contains a metric value.

in

Example of Unlabelled Dataset for Defect Prediction 7

	$Metric_1$	$Metric_2$	$Metric_3$	$Metric_{}$	$Metric_M$
$instance_1$?
$instance_2$?
$instance_3$?
$instance_{\cdots}$?
$instance_N$?

$instance_{Unlabelled}$?

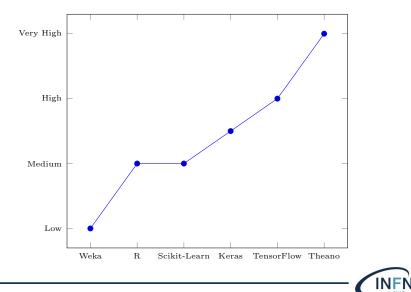
$Metric_{value}$	
------------------	--

To build a prediction model, different approaches are available.

Approach	Limitation		
Cross-project defect prediction	uses specific data from other projects		
Expert-based defect prediction	always requires human experts		
Threshold-based defect prediction	needs to decide metrics thresholds in		
	advance		
Clustering, LAbeling, Metric selection, Instance selection	claims to be independent on thresholds		
(CLAMI)			

- Machine learning techniques employed on unlabelled datasets entail a high number of permutations to perform prediction analysis.
- ▶ This involves resource and time consumption on average systems and platforms, such as laptops and desktops.
- Cloud computing service allows researches to overcome limitations of these systems by providing large-scale computing and storage.
- Cloud computing service, by enabling time execution reductions, has also given the chance to experiment more techniques, e.g. the python-based ones.

ML Framework: Learning Curve

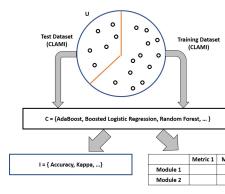


Experimental Settings

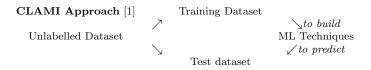
Experimental settings

. Input:

- U = set of unlabelled instances
- C = set of machine learning techniques
- . Process:
 - 1. Repeat 2-5 N times for each $u \in U$ to conduct M predictions
 - Randomly split dataset in training (67%) dataset (with labelled defective instances) and test (33%) dataset
 - 3. Construct classifier by applying $c \in C$ to training dataset
 - 4. Assess classifier
 - 5. Predict test dataset
- . Output:
 - Average P (P = set of performance indicators)
 - Test dataset prediction



Data Preprocessing & Feature Engineering



12

[1] J. Nam, S. Kim, CLAMI: Defect Prediction on Unlabeled Datasets, In Proc. 30th IEEE/ACM International Conference on Automated Software Engineering

To generate TRaining (TR) dataset:	To generate Test (T) dataset:
TR1 clustering instances	T selecting metrics
TR2 labelling instances in clus-	
ters	
TR3 selecting metrics	
TR4 selecting instances (not applica-	T dataset has the same set of metrics
ble for this case)	specified in the Training dataset
TR1,TR2 allow to label all instances	
TR3,TR4 allow to remove noisy met-	
rics and instances	

CLAMI: clustering and labelling instances

inst.	m_1	m_2	m_3	m_4	m_5	m_6
A	10	11	4	6	8	?
D	23	10	15	14	10	?
E	15	17	4	8	5	?
F	9	10	9	6	3	?
G	11	13	15	5	8	?
H	14	10	17	9	0	?
Ι	7	9	21	13	9	?

I = instance index, J = metric index

Example of cutoff threshold is $Median_j$ (cutoff threshold for each m_j)

	m_1	m_2	m_3	m_4	m_5
Median	11	10	15	8	8

Yellow $\operatorname{cell}_{i,j}$ = j-th metric value of i-th instance greater than Median_j

K = Number of metrics for each instance whose values are greater than the median for each metric

instances	K
A	K = 1
D	K = 3
E	K = 2
F	K = 0
G	K = 1
Н	K = 3
Ι	K = 3

Cluster_z = group of instances with K=z identified by different colours [2]

Clusters divided into 2 groups:

- 1. Clean for $K \in \{0,1,2\}$ (a bottom half)
- 2. Buggy for K=3 (a top half)

The instances that have larger value on all metrics are more likely to be defective. [2]

[2] M. D'Ambros, M. Lanza, R. Robbes, Evaluating defect prediction approaches: a benchmark and an extensive comparison, Empirical software Engineering, vol. 17, no. 4–5, pp. 531–577, 2012.

CLAMI: metric selection

Gray $\operatorname{cell}_{i,j}$ = Metric value that violates the defect-proneness tendency [2]:

- D is Buggy, but m₂ = 10 is not greater than Median₂
- E is Clean, but m₁ = 15 is greater than Median₁

 MVS_j = the ratio between the number of violation in the j-th metric and the number of metric values in the j-th metric

	m_1	m_2	m_3	m_4	m_5
MVS	$\frac{1}{7}$	$\frac{5}{7}$	$\frac{1}{7}$	$\frac{0}{7}$	$\frac{0}{7}$

Metrics with the minimum MVS are selected for the TR dataset.

inst.	m_4	m_5	m_0
A	6	8	C
D	14	10	B
E	8	5	C
F	6	3	C
G	5	8	C
H	9	0	B
Ι	13	9	B

inst.	m_1	m_2	m_3	m_4	m_5	m_6
A	10	11	4	6	8	C
D	23	10	15	14	10	В
E	15	17	4	8	5	C
F	9	10	9	6	3	C
G	11	13	15	5	8	C
H	14	10	17	9	0	В
Ι	7	9	21	13	9	B

	m_1	m_2	m_3	m_4	m_5
Median	11	10	15	8	8

Performance Criteria

Each measure can be defined on the basis of the confusion matrix below.

	Prediction Buggy Clean			
Actual ^{Buggy} value	True Positive (TP)	False Negative (FN)		
Clean	False Positive (FP)	True Negative (TN)		

Kappa statistic is a metric (whose value is $\in [0,1]$) that compares an Observed accuracy with an Expected Accuracy [3].

It determines how much better a classifier is performing over the performance of a classifier that simply guesses at random.

If **Kappa statistic** \in [0.81, 0.99], then the value indicates an almost perfect agreement.

Accuracy is the percentage of instances correctly classified as either buggy or non-buggy (i.e. clean). $\frac{TP+FP+TN}{TP+FP+TN+FN}$

[3] Landis, J.R.; Koch, G.G. (1977). The measurement of observer agreement for categorical data. Biometrics 33 (1): 159–174

Results

Testbed Description

The experimental Testbed was composed by 2 Machines. Physical Machine: Virtual Machine:

- $\label{eq:cpu:2xIntel} \begin{array}{l} \diamond \quad \mathrm{CPU:} \ 2\mathrm{xIntel}(\mathrm{R})\mathrm{E5\text{-}}2640\mathrm{v2} \\ @ 2.00\mathrm{GHz} \end{array}$
- ♦ Number of Cores: 32 (HT)
- $\diamond~$ GPU: 2 x NVIDIA TeslaK40m
- $\diamond~$ Memory: 128GB RAM.
- ◊ Operating System: CentOS Linux release 7.4.1708.
- $\diamond~$ Python: 2.7.5
- \diamond Jupyter-notebook: 5.7.8

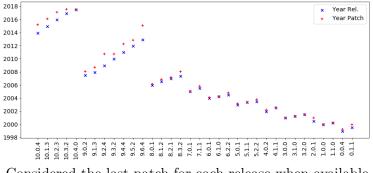
- $\diamond~$ CPU: 16 V CPU
- ♦ Disk: 40 GB
- $\diamond~$ Memory: 32 GB RAM
- ◊ Operating System: Ubuntu Linux release 18.04
- $\diamond~$ Python: 3.6.7
- ♦ R: 3.5.2
- \diamond Jupyter-notebook: 5.7.4

hosted on an hypervisor with the following characteristics:

- ♦ CPU: 2 x 12 AMD Opteron(TM) Processor 6238
- $\diamond~$ RAM: 80GB

Considered Geant4 Software Releases

Years over Geant4 software releases



Considered the last patch for each release when available.

The data belongs to the **Geant4** software.

So far collected data for 34 releases by using Imagix4D tool.

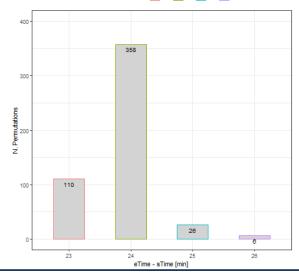
Summarized some information for the major release 10 at **class** level.

For each instance the name of class is reported.

Release	#Instances	Buggy (%)	#Metrics		
10.10	100		2.2		
$10.4.0 \\ 10.3.2$	$ 482 \\ 482 $?	66 66		
10.3.2 10.2.3	482 482	: ?	66		
10.2.3 10.1.3	482	: ?	66		
10.0.4	482	?	66		

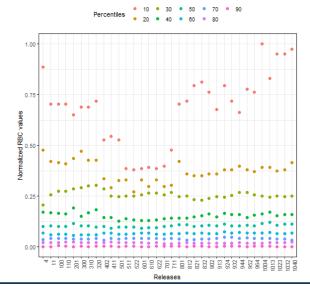
Preprocessing Time

Difference in minutes 23 24 25 28



N. Permutations: 500N. Releases: 34 N. Cutoff (i.e. percentile): 10 N. Days: 8 Total Preprocessing Time: 11928 [min] Average Time per permutation: 23.856 [min] eTime - sTime: time requested to build training and test sets per permutation Testbed: Virtual machine on cloud infrastructure

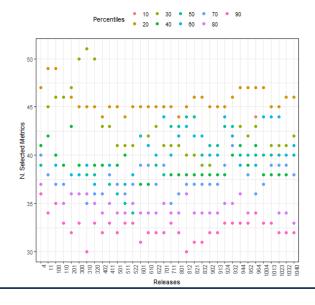
Normalized RBC per percentile



 $RBC = \frac{N.Buggies}{N.Clean}$

N. Releases: 34 N. Permutations: 500 N. Cutoff 9: percentile at 10, 20, ..., 90 Omitted percentile at 100 N. Training datasets per release: 4500 The greater RBC, the lower the percentile.

Selected metrics



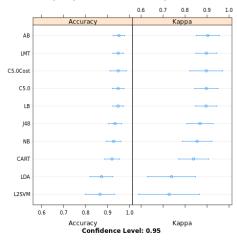
N. Selected Metrics: [45%,77%] Average Selected Metrics: 38 out of 66 N. Releases: 34 N. Cutoff 9: percentile at 10, 20, ..., 90 Omitted percentile at 100 Metrics, Catagoniau

Metrics Categories: size, complexity, maintainability, object orientation

Class information in the dataset.

The smaller the N. of Selected Metrics, the bigger the percentile.

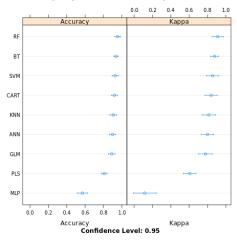
Comparing Metrics of Predictions



Techniques per release 1040 and percentile 50

N. Release: 10.4.0 N. Percentile: 50 N. Classification Techniques: 10 Accuracy Processing Time per technique: 36 [sec] Cross validation: 10 Best ML Technique: Ada Boost Kappa statistic: almost perfect agreement Testbed: Virtual machine on cloud infrastructure

Comparing Metrics of Predictions



Techniques per release 1040 and percentile 50

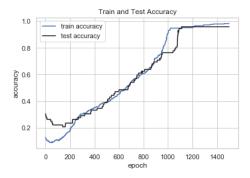
N. Release: 10.4.0 N. Percentile: 50 N. Classification & Regression Techniques: 9 Accuracy Processing Time per technique: 36 [sec] Cross validation: 10 **Best ML Technique:** Random Forest Kappa statistic: almost perfect agreement Testbed: Virtual machine on cloud infrastructure

Release	10	20	30	40	50	60	70	80	90	
10.0.4	AB	AB	C5.0 Cost	C5.0 Cost	AB	\mathbf{LB}	AB	LMT	AB	
10.1.3	LMT	AB	LB	LB	$^{\rm LB}$	J48	C5.0	LMT	\mathbf{LB}	
10.2.3	C5.0 Cost	C5.0 Cost	LB	AB	C5.0 Cost	LB	Cost LB	$^{\rm LB}$	\mathbf{LB}	Class.
10.3.2	AB	AB	LB	C5.0 Cost	LB	C5.0 Cost	LMT	AB	\mathbf{LB}	
10.4.0	AB	LMT	LB	LB	AB	AB	LB	\mathbf{LB}	LB	
10.0.4 10.1.3 10.2.3	RF RF PLS	RF RF RF	RF RF RF	BT RF RF	BT RF RF	RF RF RF	RF RF RF	BT RF RF	RF BT RF	Class. &
$10.3.2 \\ 10.4.0$	$_{\mathbf{RF}}^{\mathrm{PLS}}$	RF RF	RF RF	RF RF	RF RF	RF RF	RF RF	RF MLP	SVM SVM	Regr.

AB (Ada Boost), LB (Boosted Logistic Regression) for class. techs.; RF (Random Forest) for class. & regr. techs.

Friedman test to rank the ML techniques.

About TensorFlow



N. Release: 10.4 N. Percentile: 50 N. Classification Techniques: 10 Accuracy Processing Time: 3 [sec] Cross validation: 10 Technique: Logistic Regression Testbed: physical machine with GPU Processing Time performance improved by 10 compared to the other machine.

Discussion and Future Work

AdaBoost, Logistic Regression and Random Forest techniques have achieved the best average accuracy.

The effectiveness of this procedure to detect likely defective instances depends on existing software documentation and datasets, such as release notes and software metrics.

- ▶ So far it is possible to detect pieces of software that require particular attention.
- Learning techniques are complementary to existing SE tools and methodology to address SE tasks.

The CLAMI approach enables developers to build a prediction model on unlabelled datasets in an automated manner.

- Once obtained a labelled dataset, one can employ all the other supervised and semi-supervised techniques to detect defective instances.
- ▶ However, noise in data can make difference in the results.

What are the pros and cons of using the R or python-based framework?

- It depends on data, problem to be solved, hardware available, data preparation time.
- ► According to our experience:

- Assessment of modules predicted as defective (in collaboration with the Geant4 team)
- ▶ Investigating Transfer Defect Learning approach in the clustering phase
- Investigating other statistical tests to detect the best ML techniques
- Exploration of other software datasets with the same features to apply cross project approach
- ▶ Adding other tests on GPU-equipped resources
- ▶ Making available software written by using the various framework (python, R and java code)

Be curious! Have fun!

Co-authors:

Acknowledgements:

Marco Canaparo Davide Salomoni Doina Cristina Duma UQ for dataset

Contact:

elisabetta.ronchieri@cnaf.infn.it

E. Ronchieri, M. Canaparo, D. Salomini, "Software Defect Prediction on Unlabelled Dataset with Machine Learning Techniques," submitted at IEEE NSS MIC 2019

E. Ronchieri, M. Canaparo, D. Salomoni, "Machine Learning Techniques for Software Analysis of Unlabelled Program Modules," under pub Proc. of ISGC 2019

E. Ronchieri, M. Canaparo, D. C. Duma, A. Costantini, "Data mining techniques for software quality prediction: a comparative study," under pub Proc. of IEEE NSS MIC 2018

M. Canaparo, E. Ronchieri, "Data mining techniques for software quality prediction in open source software: an initial assessment," under pub Proc. of CHEP 2018

