

Verso Upgrade

Novembre 2009

Schedule

- Interesting talk from Frank Zimmerman (don't shoot the messenger...)
- Not official, many uncertainties
 - Wait till Chamonix 2010 + a bit more for official LHC schedule
 - In the following I take Frank's plots at face value
- Main points for Upgrade schedule
 - LHC will start slower than previously hoped: only 200 fb-1 by end of 2016
 - Possibly move away from annual cycle to long runs, longish shutdowns
 - Linac4 is ahead of schedule but LHC will not be ready to benefit =>
 - Delay its use by one year to 2015 (but better commissioned Linac4)
 - Slower luminosity ==> IR quadrupoles should survive beyond at least end 2017 (good for at least 420 fb-1)
 - Anticipate delay to end 2017
 - Crab cavities favoured by all many risks, but could start tests in LHC ~end 2013, and install for use ~end 2017
 - Injector upgrades beyond Linac4 much later

Effect for us...

- Progression of estimates:
 - July 1st 2008 LHCC: Schedule shown many times
 - AUW Feb 2009: 1 year delay on phase 1; we also delayed phase-2 by 2 years
 - AUW Nov 2009: latest possibility sketched out

- IBL target insertion still end 2014
 - Linac4 shutdown, mitigate risk, it improves our performance
- Peak L before new ID installation reduces slightly from 3 to 2.5 x nominal, and not until 2016
 - Less inefficiencies in ID; less risk FCAL performance
 - Actually shows rising in 2019 to 4.5 x nominal:
 - Should clarify this (assumes Crab?)
 - Is challenging for ID and many other current detectors without major upgrade
- Without our Phase-II shutdown, would significantly exceed 730 fb-1 during 2020
 - Suggests we should install new ID, new LAr electronics, ... starting end 2019; latest 2020
 - This is 1 (maybe 2) year delay on current ATLAS Upgrade schedule (and 3+ years on LHCC Jul 2008 schedule)

Other important changes

No change on target of 3000 fb-1 high quality data recorded

- ...just takes longer to reach
- ...means radiation damage requirements do not change
 - cold HEC electronics...
- Peak luminosity: Full Crab Crossing scheme with luminosity levelling will have <~ 100 pile-up per BC (cf 23 for nominal luminosity)
- LPA 50 ns scheme remains backup; 200 pile-up/BC
 - We would like to clarify to what extent we should allow for this
- In any case, 400 (480 allowing for empty bunches) ev/BC seems off the agenda.
- So while the date for our phase-II slips a bit, the peak-L probably drops dramatically: 480 --> 100
 - Different ball-game: for new ID, muon chambers, boiling LAr...
- We need to absorb all this try to avoid under or over estimating the impact

Lol

- Consensus seems to be:
 - Keep the momentum up, have something ready by April
 - Decide then: what are the benefits of delaying 6 months (or more)
 - We will have Chamonix 2010 plan
 - We will know better the likeliehood of getting a good understanding of cavern background/muon safety factor
 - pp cross section, charge multiplicity at CM energy 7 or 9 TeV
- TP: Also need to discuss best timing. Physics input with full simulation, plus much more. When is it needed by for on-time major Upgrade of ATLAS?

IBL Layout

- Several layout under study: Converging on "reverse turbine" layout with 14 staves as baseline layout for engineering studies and TDR:
- Work on others continues at slower pace
- 14 staves layout parameters
 - a IR 32mm
 - OR (structure) 38.35mm
 - Sensor Radius 33.25mm
 - Sensor Tilt Angle 14 degrees
 - Nominal Internal Clearance ~1.47mm
- Proposed tolerances for the stave assembly
 - Geometry tolerance (+/- 0.1mm)
 - Assembly tolerance (+/- 0.15mm)
 - Total tolerance range ½ mm

IBL Simulation

- Went through full cycle for IBL simulation
 - Layout description, material map, track reconstruction
 - Used mixture of releases
 - Immediate plan to put all the job option files into a separate package and include in the upcoming releases
 - Development cycle should be shortened

IBL implementation in 15.4.0 release

Pixel disks and beam pipe are removed to show IBL

H. Pernegger / CERN

10/11/2009

IBL simulation

- Run simulation, digitization, tracking
 - Generated single muons with pt=1,100 GeV/c
- Looked at resolution
- Digitization & radiation damage
 - In addition to planar pixel sensors considering different sensor technologies
 - 3d pixel sensors
 - Diamond
- Radiation damage to the existing pixel layers
- Next steps
 - Work started on more realistic IBL layout
 - Actual chip/sensor dimensions
 - Radiation damage in Layer 0 and beyond
- Run through a physics process
 - Evaluate performance

10/11/2009

IBL Sensor & Module

- Bring the 3 detector technologies together for 2010 IBL module qualification program (Sep. 9 meeting)
 - Proposal is to construct 40 IBL qualification modules with each sensor technology to test FEI4 and sensor (lab, testbeam, irradiation)
- Agreed to define "best" sensor layout for each technology by Dec.
 - Each Sensor group proposes their best sensor layout for IBL by Dec.

Sensors

Planar sensors

- Sensor parameters (previous slide) considered ok for planar sensors (annealed) up to 5 x 10^{15} neq/cm^2
- Currently look at different layouts for IBL (final 2-chip module)
 - "conservative" n-in-n with $\sim 500 \mu m$ guard ring area
 - More "advanced" n-in-n with slim edge (~100µm) or thin (~150µm) sensors (n-in-n and n-in-p)
- FEI4-compatible sensors in production at different vendors (CIS, Micron)

• 3D sensors

- Prefer full 3D active edge sensors for IBL (as single chip modules) (2E on $50x250\mu m$)
- 2010 prototyping runs of full 3D active edge at Sintef/Stanford, CNM, FBK
- Additional double sided 3D with slim edge at CNM and FBK
- Study "charge multiplication" at higher voltages (~250V)

Diamonds

- Have assembled 3 full size (16chip FEI3) modules and study in testbeam
- Plan to prototype 11 FEI4-single chip and 3 FEI4-double modules next year
 - Sensors for that available and/or on order
- Present vendor DDL and investigate new vendor "II-VI" (US)

H. Pernegger / CERN

FEI4 - Module qualification program

- Plan to construct qualification modules with each technology during 2010
 - Goal is to qualify the prototype modules in lab, beamtests and irradiations to IBL specs and gain production experience (yields,...)
 - Orignal plan is ~40 modules/technology with sensors provided by sensor RD groups from recent submissions
 - This program is of common interest to sensor RD groups and IBL
 - Cost of those modules is substantial (i.e. also bump bonding) and need to be shared in a reasonable way between communities.
- Common sensor "foot print"
 - To unify (and simplify) module construction and bump bonding, we have to make sure we have a common foot print of sensors (at least with technology)

Submission: Feb 2010

- Receive wafers: early May
- Send wafer and sensor to bump-bonding: mid June
 - need sensors by beg. June
- Receive first qualification modules mid Aug. 2010
- Proceed in parallel with lab tests, testbeam and irradiation.

IBL Stave

- Lots of progress on stave prototyping
- Stave thermal performance
 - Constructed first staves with heaters to measure thermal figure of merit
 - Constructed thermal measurement container
 - Very detailed FEA simulation of thermal gradients and stave deformations
- Pipe : CF & Ti
 - Constructed samples of pipe+heater to measure coolant to pipe heat transfer coefficient with C3F8 and CO2
 - Started with tests on Ti pipe welding and made first CF-Ti transitions
 - Starting off on pipe irradiation to qualify CF pipe against micro-cracks
- Module loading :
 - Made first iteration on concept and tools for module loading
 - Need work to develop concept

2010 Stave qualification program

Defined draft stave qualification program for 2010

- Cooling pipe: qualification of CF and Ti pipe
 - Micro-cracks
 - Welds
- Connections: pipe-pipe transitions and connectors at PP
- Stave CF and foam: measurement of thermal figure of merit and deformation under cooling
- Flex circuit: design and prototypes of flex circuit (Kapton Cu/Al?)
 - Layout, X0 and connectivity to mini-flex on FEI4
 - Connectors on EoS

		Flavor		
	Item description	Pipe Material	Pipes diameter (and number)	Samples Number
2.1		1.1 (CF)	Φ=4mm OD N=2	1
2.2		1.2 (Ti)	$\Phi_{=4mm OD}$ N=1	2 of (4)
2.3		1.1 (CF)	Φ=4mm OD N=1	4 [on hold]
2.4		1.4 (Ti)	Φ=3mm OD N=1	2
2.5	Stave	1.3 (CF)	Φ=3mm OD N=1	2
2.6		1.3 (CF)	Φ=3mm OD N=2	2
2.7		1.6 (Ti)	Φ=2mm OD N=1	2
2.8		1.6 (Ti)	Φ=2mm OD N=2	2 [on hold]
2.9		1.7 (CF)	●=2mm OD N:	2 [on hold]
2.01	Di atawa	1.3 (CF)	Φ=3mm OD N=2	2
2.02	BI-stave	1.6 (Ti)	$\Phi_{=2mm OD}$ N=2	2
2.9	Pipe + foam+heaters	1.1 (CF)	$\Phi_{=4mm OD}$	1 of (2)
2.10	Pipe + foam+heaters	1.2 (Ti)	Φ=4mm OD	1
2.11	Pipe + foam+heaters	1.3 (CF)	Φ =3mm OD	1
2.12	Bare Pipe	1.4 (Ti)	$\Phi_{=3mm OD}$	1
2.13	Bare pipe	1.6 (Ti)	Φ =2mm OD	2
3.01	Chart days	1.3 (CF)	Φ=3mm OD N=1	8
3.02	Snort stave	1.4 (Ti)	Φ=3mm ID N=1	8
3.03		1.6 (Ti)	$\Phi_{=2mm ID}$ N=1	8

• Plan to review in December of the Stave Prototyping program in 2010

					X/X	0 [%]		Grav sag	ThermalDef
	Omega [um]	Foam [g/cm ³]	Pipe [Mat + ID]	Coolant	Structure +Coolant	TOTAL	Γ [°C.cm²/W]	[μm]	[μm]
Option 1	150	0.5	CF 2.5ID	C ₃ F ₈	0.48	0.88	17.25	97	63
Option 2	150	0.25	CF 2.5ID	CO ₂	0.36	0.78	18.56	75	50
Option 3	300	0.25	Ti 3ID	C ₃ F ₈	0.66	1.1	2.79	44	58
Option 4	300	0.25	Ti 2ID	CO2	0.57	0.99	3.22	-	-

Component	X/X0
Stave (incl. FE+sens ~340μm)	Range 0.8 to 1.1 %
Flex (under evaluation)	Range 0.1 to 0.3 %
IST	0.3%
Total	~1.2% (lightest) to 1.7% (heaviest)
	10/11/2009

H. Pernegger / CERN

AUW

Flex circuit

- One of highest priorities now is to define concept for flex circuit and connection to modules
 - Drives layout to some extend (envelops)
 - Need to achieve and optimal layout for stave mechanics AND flex circuit
- Proposed baseline is to have multilayer bus with tabs to connect to modules
 - Prototype in production
 - Single layer approach is still developed further in case its needed
 - Connection to FEI4/miniflex not yet clear (several options)

DIELECTRIC CONDUCTOR TOP DIELECTRIC CONDUCTOR ΗV DIELECTRIC

H. Pernegger / CERN

heo.084 heo.084 heo.084

IBL timeline

- Overall
 - Still same installation date (end 2014)
 - Phase 1 upgrade keeps moving backwards ...
 - Decision was made by ATLAS management that IBL is decoupled from phase 1 upgrade
 - We assume an 8 months shutdown for IBL installation
 - Start opening to finish closing, time with access to pixel package $\sim < \frac{1}{2}$ that time.
- 2010 Schedule for modules largely driven by FEI4 availability:
 - Expect submission ~ Feb 2010
 - First modules available during mid/end summer next year
 - Will request irradiation and testbeam time as late as possible for module qualification
 - Proceed in parallel with stave prototyping, integration and off-detector work

Implications for the muon detector

- x10 cavern background
 - Deterioration of tracking performance
 - (in some corners, depends on the actual bkg condition)
- x10 physics rate
 - L1 trigger rate exceeds the limit
- and many other problems
 - radiation damages, data band-width, etc.
 - longer L1 latency

The goal is to prepare an upgraded detector with the performance similar to the 10³⁴ detector (or even to improve)

Cavern background

Estimated cavern bkg rate : L=10³⁴ x 10

Be beam pipe helps to reduce cavern bkg

+ optimization of shielding may help further

MDTs in the high rate region

Present MDT: 30mm diameter

Large reduction of single hit eff.

max drift time = 700 ns

Increase of bkg occupancy

→ Need faster tracker in the hot region : small wheel (+ more ?)

BG rates in the Hall: do wee need new MDT?

Phase-1 upgrade

Limited upgrade – to prepare in a relatively short time

- CSC (tracking at the smallest R in the endcap) may suffer.
 - The idea is to add layers of fast trackers to help the CSC.
 - TGC with fine strip readout
 - Micromegas
 - Thin tube MDT

are under consideration.

- A part of MDT can reach the occupancy and band width limitation
- L1 trigger : as it is, but send more info to CTP ?

Phase-2

- Small wheel will be OUT anyway (MDT at least)
 → new small wheel with new detector
- BKG level has to be below acceptable level worst case would require ~ total replacement of MDT (+RPC) Impractical
- MDT R/O bandwidth has to be taken care (Barrel, BW)
- L1 muon issue drives the upgrade scenario.
 Improve the L1 rate by the muon system level ?
 → YES (studying feasibility assuming YES)

Requirement on the detector and electronics is closely coupled to the L1 upgrade

Detector R&D

to secure detector options for upgrade

- Micromegas
- TGC with fine strip
- Small tube MDT
- MDT readout
- μ-PIC (mpgd)
- plasma panel
- new gas for MDT (linear and faster)
- RPC frontend (to allow operation at low HV)

Summary

- Muon system needs upgrades to maintain its performance at the high luminosity LHC.
- A large fraction of the detectors is expected to be operational at high lumi.
- Upgrade scenario critically depends on the actual bkg
- L1 muon will be driving the phase-2 upgrade scenario
- Long L1 latency → many front-end elec. need replacement (some are difficult to access : e.g. MDT mezzanine
- R&D are on-going. There are several viable options.
- Installation can be very complicated (space, time): need careful study.

Organisation of the AIDA call

Coordination group has been endorsed by RECFA meeting at EPS conference in Krakow, discussed at CERN council (Sep) :

Preparation Team				
SLHC L.Serin (IN2P3) C. Shepherd (RAL)	Linear Collider T.Behnke (DESY) (+ K. Buesser (DESY))			
Neutrino Facilities P.Soler (U.Glasgow)	B-Physics F.Forti (INFN)			
Admin and Integration M.Capeans (PH-DT), K.Ross (PH-AGS) S. Stavrev (DG-EU), H.Taureg (PH-DT) K. Kahle (DG-EU), C. Brandt (DG-EU)				
"Advisers" and WP authors				

 \rightarrow Proposal is expected to cover R&D and Infrastructure needs for new detectors at sLHC, LC/CLIC + neutrino/flavour physics projects. \rightarrow Need to have the proposal correctly balanced between sLHC and LC/CLIC \rightarrow Information is going trough the National Contact for each country (23) and through the experiments \rightarrow Important that every actor is participating to the call but do not forget 10 M € for > 100 Institutes

Preparation group work started since end August only...

Cover detector design from first R&D ideas (simulation, choice of material, beam test + analysis) up to detector construction (needs of tight links with Industry) while pushing some technologies which are at the state of the art (3D semiconductor and electronics...)

WP3 – networking – microelettronica e connessione 3D ai sensori

Gruppi di VPIX e di ATLAS – convener Valerio Re Gruppi PV-GE-MI-PD/TN-LE-PI

WP8 – realizzazione infrastrutture per GIF++

Gruppi di ATLAS e CMS- BO-Rm2- (LNF-BA)