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Motivation

First reason: CDWs have been observed recently in experiments.1,2

There exists a large class of materials, showing a behavior between
conventional metals and insulators. Some examples are:

strange metals (unconventional scalings)

bad metals (no Drude peak)

Their transport properties can not be easily explained by standard theories.
A proposed explanation is given in the context of CDW.

Main goal: to find an effective field theory capable to reproduce their
behavior.

1Kogar et al., Phys.Rev.Lett. 118, 2017
2Wang et al., Material Today Phys. 5, 2018



Strange/Bad metals

In the temperature/doping phase diagram, strange/bad metals are placed:

The mean free path of quasi-particles is so short that the Boltzman
equation underlying Drude theory is not consistent.

These metals are characterized by a large resistivity even in rather clean
materials with a long-lived momentum.



Drude-like peak

In many compounds:

Figure: Drude peak broadens and moves away from ω � 0 when the temperature
is increased.



Drude-like peak

Figure: Position and width of Drude peak shown for a large variety of compounds



Scaling behavior

When turning on an external magnetic field, strange metals are
characterized by an unconventional scaling behavior:

ρxx � T , tan θH � ρxy
ρxx

� T�2

In contrast with standard Fermi liquids where

ρxx � T 2

and in general resistivity and Hall angle should scale with opposite
exponents

ρxx � T n, tan θH � T�n



Proposed explanations

In the last years, some mechanisms have been proposed that are believed
to cause this behavior:

Mott-related pseudogap

polaron excitation

incipient localization

Since this behavior is similar among different classes of materials, it can be
useful to adopt a less microscopic approach.

Another possible explanation to these phenomena is believed to be the
creation of conducting Charge Density Wave (CDW).



Classical theory of CDW

Firstly proposed by Peierls in 1955, the resulting charge density, in
presence of electron-phonon interaction is3:

ρprq � ρ0 � ρ1 cosp2kF � r � ϕq

Figure: Distortion of the ionic lattice modulates the charge density and opens a
gap at the Fermi energy.

3Grüner, Rev.Mod.Phys. 60. 1988



Hydrodynamic result

In hydrodynamics a well-known result for the conductivity is4:

σpωq � σ0 � ρ2

χPP

Ω � iω

pΓ � iωqpΩ � iωq � ω2
0

that in large Ω limit gives the Drude-peak behavior:

σpωq � σ0 � ρ2

χPP

1

Γ � iω
� OpΩ�1q

Also the strange scaling of the Hall angle can be explained within this
context:

tan θH � B
ρ2

χPPΓ
f pΩ, Γ, σ0q

4Delacrtaz et al., SciPost Phys. 7, 2017



Why Holography?

Problem:
classical theories (weakly coupled) of CDW lead to insulating systems.
Even if the CDW is incommensurate w.r.t. the underlying lattice, the
impurities pin the CDW, making it an insulator.

Then why holography may help?

Some holographic models lead to conducting CDW.

Relatively easy to access the strong coupled regime.

Intermediate approach between existing field theory approaches
working only in certain limits.



Historical introduction

Main idea: connect a Conformal Field Theory to a Classical Theory of
Gravity in one more dimension.

The first example found by Maldacena in 1997 connecting type IIB
superstring on AdS5 � S5 and the N � 4 SYM in the large-N limit at
strong coupling.

Many other examples in different number of dimensions.

Generalizations to QCD and condensed matter systems.

Remark: string theory can be used as a bridge between quantum field
theory and gravity in order to prove the duality, but it is not necessary to
work with the duality.



The GKPW formula

The main ingredient to write the holographic dictionary is the GKPW
formula5:

ZCFT rthpxqus � ZAdS rthpxµ, rqus

It brings some consequences:

the boundary value of a bulk
field is the source of an operator
in the CFT

the first free term in the
boundary expansion of fields is
the VEV of the corresponding
operator

Figure: Boundary value of the
fields

5Hartnoll at al., arXiv:1612.07324[hep-th], 2016



The GKPW formula

the extra radial coordinate geometrizes the renormalization group

gauge symmetries in the bulk correspond to global symmetries in the
CFT

Figure: Relation between the renormalization group flow and the extra radial
coordinate in the bulk



Finite temperature

Field theory side:

compactify the temporal direction

the temperature is: T � 1{LT

Gravity side:

Black-hole solution: ds2 � L2

r2 p�f prqdt2 � 1
f prqdr

2 � d~x2q
the temperature is: T � |f 1prhq|

4π

Rule: a quantum field theory at finite temperature is dual to a black-hole
solution in the gravity side, and the black-hole temperature is exactly the
temperature of the field theory.



Holographic dictionary

Boundary:

Partition function

Source/vev of operators

Two point functions

Global symmetries

Renormalization group
flow

Finite temperature

Gravity:

Partition function

Leading/subleading
boundary values of fields

Ratio SL/L boundary
values

Gauge symmetries

Evolution in the radial
direction

Black-hole solution



Holographic model

We start by considering the following Einstein-Maxwell-Dilanton action
plus an axion term6:

S �
»
d3�1x

?�g

�
R � V pφq � 1

2
pBφq2 � Z pφq

4
F 2 � 1

2
Y pφq

¸
i�1,2

pBψi q2




The real couplings V ,Z and Y near the boundary (r Ñ 0) behave like:

VUV � �6 � 1

2
mφ2 � ..., ZUV � 1 � z1φ� ..., YUV � y2φ

2 � ...

in order to guarantee an asymptotically AdS4 space-time and the
spontaneous breaking of translations.

6Amoretti et al., Phys.Rev.Lett. 120, 2018



Background ansatz

The full background ansatz is:

ds2 � �Dprqdt2 � Bprqdr2 � C prqd~x2, A � aprqdt, ψi � kxi

By using the eom, these functions are constrained to be (near the
boundary):

Dprq � 1

r2
p1 � d3r

3 � ...q, Bprq � 1

r2
, C prq � 1

r2
p1 � d3

2
r3 � ...q

aprq � µ� ρr � ...

The axion is linear in k in order to reproduce the CDW behavior and break
translations.



Spontaneous Symmetry Breaking

The real scalar has the following boundary expansion:

φprq � φpsqr
3�∆ � φpvqr

∆ � ...., r Ñ 0

We set:
∆ � 2

m2 � ∆p∆ � 3q � �2
Scaling dimension of the scalar operator.
Squared mass of the scalar field.

Translations are spontaneously broken if we set:

φpsq � 0

Keeping φpsq � 0 would lead to explicit breaking of the symmetry.



Renormalized on-shell action

The on-shell action is divergent, so it must be renormalized by subtracting
appropriate counter-terms.:

Sc.t. �
»
r�ε

d3x
?�γ�2K � 4 � 1

2
φ2 � Rrγs � 1

2
Y pφq

¸
i�1,2

pψi � kxi q2
�

Using the EOM, we can fix the boundary expansions of the fields and
finally write the renormalized Euclidean on-shell action:

Iren � βVp2q

�
3d3

2
� k2IY p0q




Where IY p0q is a surviving bulk term:

IY prq �
» r

rh

dr 1
a
Bpr 1qDpr 1qY pφq



Thermodynamics

Assuming the existence of a regular horizon, we get:

s � 4πC prhq, T � 1

4π

d
�B 1prqD 1prq

B2prq

1�����
r�rh

while the pressure is given by:

p � � Iren
βVp2q

� �3d3

2
� k2IY p0q

In order to evaluate the one-point-functions we expand the fields at linear
order in fluctuations:

gµν � gb
µνprq � hµνpxMq, Aµ � Ab

µpxMq � δAµpxMq,

φ � φbprq � δφpxMq, ψi � ψb
i prq � δψI pxMq.



One-point-function and Ward Identities

Then the renormalized action reads:

S
p1q
ren �

»
d3x

�
3

2
d3h

p0q
tt � 3

4
d3h

p0q
xx � 3

4
d3h

p0q
yy � ρδA

p0q
t � φpvqδφpsq

�

From where we can extract:

xT tty � ε � �3d3, xT xxy � xT yy y � �3

2
d3 � p � k2IY p0q

xJty � ρ, xOφy � φpvq

The Ward Identities are satisfied

xTµ
µ y � 0, BµxTµνy � 0, BµxJµy � 0

as it should be in case of SSB.



DC transport coefficients

Transport coefficients are defined by the relation:�
~J
~JQ

�
�
�
σ αT
αT κ̄T

��
~E

�~∇T {T

�

For simplicity we consider in details the electric conductivity, that in case
of spontaneous symmetry breaking reads:

σpωq � i

ω
GR
JJpω, q � 0q ÝÝÝÑ

ωÑ0
σ0 � χ2

JP

χPP

i

ω

Where σ0 is the incoherent conductivity (i.e. the momentum-independent
component of σ) while the imaginary pole is due to a δpωq contribution.



Incoherent conductivity

We have introduced the static susceptibilities:

χPP � δxT txy
δv x

� �9

2
d3, χJP � δxJxy

δv x
� ρ

The incoherent conductivity is defined by the formula:

σ0 � 1

χ2
PP

lim
ωÑ0

GR
JincJinc

pω, q � 0q

Jinc is the incoherent current orthogonal to momentum P:

Jinc � χPPJ � χJPP, s.t. xJincPy � 0



How to proceed

As usual in holography we will follow this recipe:

Find some proper conserved quantity.

Check that they asymptote the right physical quantities at the
boundary.

Evaluate them at the horizon imposing regularity of the fields.

The last point requires that in the Eddington-Finklestein coordinates:

v � t � 1

4πT
logprh � rq � Oprh � rq

the fields must be regular at the horizon, since r � rh is just an apparent
singularity, and not a true space-time singularity.



Boundary conditions and conserved quantities

Since we are interested in DC coefficients, we turn on the following linear
in time perturbations:

δaxpr , tq � axprq � p1prqt, δhtxpr , tq � htxprq � p2prqt,

δhrxpr , tq � hrxprq, δψi prq � χi prq
The conserved quantities can be found by considering

?�gZ pφqF rx , Gµνpkµq

which lead to the electric and heat current at the boundary respectively.



Result

Evaluating these quantities at the horizon, and dividing by the source:

σ0 � Zhpk2IY � sT q2

pk2IY � µρ� sT q2
� 4πρ2k2I 2

Y

sYhpk2IY � µρ� sT q2

A few comments:

Free energy is minimized for k � 0 (no symmetry breaking at all)

Recover known solution in k Ñ 0 limit

Stable solution with k � 0 is given by high-derivatives models



Scaling behavior

In order to study the temperature dependence of the conductivity, we
assume the following behavior for the scalar couplings:

VIR � V0e
�δφ, YIR � Y0e

νφ, ZIR � Z0e
γφ

We are also assuming hyperscaling violation, then the metric reads:

ds2 � ξθ
�
�f pξqdt

2

ξ2z
� L2dξ2

ξ2f pξq �
d~x2

ξ2

�
, f pξq � 1 �

� ξ
ξh

	2�z�θ

Setting φ � κ logpξq and A � A0ξ
ζ�zdt, the thermodynamics quantities

scale as:
T � ξ�z

h , S � T
2�θ
z



Consistency relations

In order for the theory to be consistent, we should require some
constraints:

Null Energy Condition:

p2 � θqp2z � 2 � θq ¥ 0, pz � 1qp2 � z � θq ¥ 0

Positivity of specifc heat:

2 � θ

z
¥ 0

Marginal or irrelevant deformation sourced by ψi :

�2 � κν

z
¥ 0

Marginal or irrelevant deformation sourced by At :

�ζ � 2 � θ

z
¥ 0



Temperature dependence

We can now look at the incoherent conductivity, which factorizing the bulk
integral becomes:

σ0 � k4I 2
Y

pk2IY � µρq2

�
Zh � 4πρ2

sYhk2

	

The prefactor is dominated by the UV behavior and it approaches a
constant, so all the temperature dependence is encoded in the IR
expansion of the fields, leading to:

σ0 � k4I 2
Y

pk2IY � µρq2
T

2z�θ�2∆̃
z

Working with the parameters θ and z , we see that within the consistency
relations, there is room enough to get conducting behavior dσ0{dT   0



Adding a Magnetic Field

Almost all experiments with bad (or strange) metals are performed with an
external magnetic field.
It is important to study the effects of this new field on the transport
coefficients.

In order to add an external magnetic field, we slightly modify the ansatz
for the gauge field:

A � Aprqdt � Bydx

Generating a constant magnetic field orthogonal to the two spatial
dimensions.



Magnetization currents

The main effect of adding an external magnetic field is to generate an
extra-term to the action

S � SB�0 �
»
r�ε

d3xBMp0q, with Mprq �
» r

rh

dr 1
B
a
Bpr 1qDpr 1qZ pφq

C pr 1q
proportional to the magnetization density.

Also the currents are modified, e.g.:

J xprq � Jxprq, J y prq � Jy prq � ξMprq

such that the new currents are radially conserved

BrJ xprq � 0, BrJ y prq � 0



Transport coefficients

With the introduction of the magnetic field, transport coefficients become
matrices, e.g.:

σ Ñ σ̂ �
�
σxx σxy
σyx σyy

�

where in case of isotropic systems:

σxx � σyy , σyx � �σxy
The same holds for the others coefficients, so we will have to evaluate 6
coefficients (instead of 3).



Results

Incoherent conductivities:
The complete expressions of the conductivities are:

σ0,xx � ρ2

ρ2 � B2Z 2
h

pIY k2 � sT q2Zh

χ2
PP

� 4πI 2
Y k

2

sYhχ
2
PP

σ0,xy � Bρ

pρ2 � B2Z 2
h qχ2

PP

�
M2ρ2 � Z 2

h

�pIY k2 � sT q2 � B2M2
�	

It is interesting noting that in the B Ñ 0 limit σ0,xx recovers the previous
result, while σ0,xy vanishes

σ0,xx |B�0 � σ0, σ0,xy |B�0 � 0

as it should be.



Conclusion

To resume:

There exists a class of holographic models which can be used as
Effective Field Theories to describe conducting CDW

We showed how to implement SSB and evaluated some transport
coefficients in this scenario

Conducting behavior is allowed

We added an external magnetic field and discussed about some
consequences

Outlook:

Evaluate other coefficients with B � 0

Study the scaling behavior in a magnetic field

Check the DC limit of transport coefficients with the numerics



Tanks for the attention!
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