Maastricht 3G Prototype: ET Pathfinder

Jessica Steinlechner for the ET Pathfinder Team Padua - 18.10.2019

The Maastricht Group: Who (and where) are we?

The Maastricht Group: Who (and where) are we?

Maastricht University

The Maastricht Group: Who (and where) are we?

Stefan Danilishin

Stefan Hild

Jessica

Steinlechner

Jacco de

Vries

+ 2 PhD students and a 3rd starting soon!

Gideon Koekoek

Sebastian Steinlechner

Jo van den Brand

Stefan Danilishin

Stefan Hild

Jessica

Steinlechner

Gideon Koekoek

Sebastian Steinlechner

+ 2 PhD students and a 3rd starting soon!

Jacco de

Vries

Jo van den Brand

Why do we need another prototype?

Prototype interferometers have been vital to develop GW detectors in the past decades: Garching 30m, Glasgow 10m, Caltech 40m, MIT, Gingin, Stanford, CLIO, AEI ...

Why do we need another prototype?

Class. Quantum Grav. 28 (2011) 094013

S Hild et al

Table 1. Summary of the most important parameters of the ET-D high- and low-frequency interferometers as shown in figure 5. SA = superattenuator, freq. dep. squeez. = squeezing with frequency-dependent angle.

Parameter	ET-D-HF	ET-D-LF
Arm length	10 km	10 km
Input power (after IMC)	500 W	3 W
Arm power	3 MW	18 kW
Temperature	290 K	10 K
Mirror material	Fused silica	Silicon
Mirror diameter/thickness	62 cm/30 cm	min 45 cm/TBD
Mirror masses	200 kg	211 kg
Laser wavelength	1064 nm	1550 nm
SR-phase	tuned (0.0)	detuned (0.6)
SR transmittance	10%	20%
Quantum-noise suppression	freq. dep. squeez.	freq. dep. squeez.
Filter cavities	1×10 km	$2 \times 10 \mathrm{km}$
Squeezing level	10 dB (effective)	10 dB (effective)
Beam shape	LG ₃₃	TEM ₀₀
Beam radius	7.25 cm	9 cm
Scatter loss per surface	37.5 ppm	37.5 ppm
Partial pressure for H ₂ O, H ₂ , N ₂	$10^{-8}, 5 \times 10^{-8}, 10^{-9}$ Pa	$10^{-8}, 5 \times 10^{-8}, 10^{-9}$ Pa
Seismic isolation	SA, 8 m tall	mod SA, 17 m tall
Seismic (for $f > 1$ Hz)	$5 \times 10^{-10} { m m}/f^2$	$5 \times 10^{-10} { m m}/f^2$
Gravity-gradient subtraction	none	none

Why do we need another prototype?

Class. Quantum Grav. 28 (2011) 094013

S Hild et al

Table 1. Summary of the most important parameters of the ET-D high- and low-frequency interferometers as shown in figure 5. SA = superattenuator, freq. dep. squeez. = squeezing with frequency-dependent angle.

Parameter	ET-D-HF	ET-D-LF
Arm length	10 km	10 km
Input power (after IMC)	500 W	3 W
Arm power	3 MW	18 kW
Temperature	290 K	10 K
Mirror material	Fused silica	Silicon
Mirror diameter/thickness	62 cm/30 cm	min 45 cm/TBD
Mirror masses	200 kg	211 kg
Laser wavelength	1064 nm	1550 nm
SR-phase	tuned (0.0)	detuned (0.6)
SR transmittance	10%	20%
Quantum-noise suppression	freq. dep. squeez.	freq. dep. squeez.
Filter cavities	1×10 km	$2 \times 10 \mathrm{km}$
Squeezing level	10 dB (effective)	10 dB (effective)
Beam shape	LG33	TEM ₀₀
Beam radius	7.25 cm	9 cm
Scatter loss per surface	37.5 ppm	37.5 ppm
Partial pressure for H ₂ O, H ₂ , N ₂	$10^{-8}, 5 \times 10^{-8}, 10^{-9}$ Pa	$10^{-8}, 5 \times 10^{-8}, 10^{-9}$ Pa
Seismic isolation	SA, 8 m tall	mod SA, 17 m tall
Seismic (for $f > 1$ Hz)	$5 \times 10^{-10} \mathrm{m}/f^2$	$5 \times 10^{-10} \mathrm{m}/f^2$
Gravity-gradient subtraction	none	none

- Aspects that are better tested at A+
 detectors or are not accessible to a
 prototype.
- Aspects could be tested in prototype but might be easier tested elsewhere
- Cryogenic, Silicon optics at 1550nm are key technologies that need testing at scale for ET

=> Main aim of Maastricht Prototype Interferometer

Main idea

• Starting of with a cryogenic payload volume of about 1x1x2m.

Main idea

Starting of with a cryogenic payload volume of about 1x1x2m. •

Maastricht University

4x

Total arm length: ≈20m Cavity length: 9.34m (due to heat shields in front of ITMs and behind ETMs) Maastricht University

U

Test Masses

System designed to test silicon mirrors (100kg or more) at 10K in the long run.

For scale this 45cm by 22.5cm (~82kg).

Problem: Could we buy silicon mirrors of such dimensions and with the right properties right now? – probably not yet ...

Zero crossings of CTE at ~120K and ~20K

→ two interesting
 options for operating
 temperatures due to low
 TE noise

https://trc.nist.gov/cryogenics/materials/Silicon/Silicon.htm

Optical absorption low at wavelengths above ~1500nm

→ cSi bulk absorption
 low at 1550nm and
 2000nm

[Keeves et al., J. Appl. Phys.]

Optical absorption low at wavelengths above ~1500nm

cSi bulk absorption tested at 1550nm and around 2000nm → no strong reason for one or the other wavelength

<u>Coatings</u> are a possible motivation for 2µm: absorption of aSi (and e.g. SiN) lower than at 1550nm (see P. Murrays talk)

https://trc.nist.gov/cryogenics/materials/Silicon/Silicon.htm

[Keeves et al., J. Appl. Phys.]

Test Masses

Initial phase (Phase 1): **2 small mirrors** in each cryostat Small mirrors = 15cm diameter, 3kg

→ We can operate 2 independent interferometers with a total of 8 cryogenic test masses.

Two Interferometers

10K ifo

Option 1: arrange these 2 interferometers as 2 'L'

Option 2: use each arm of the vacuum system for one interferometer

 \rightarrow operate the two arms (and hence interferometers) at <u>different temperatures</u>: one at 120K and one at 10K.

 \rightarrow allows to run the two interferometers at <u>different wavelength</u>:

one at 1550nm and one around 2um

Potentially allows to explore test the full matrix of temperatures and wavelengths currently discussed.

For example:

operate one ifo as in ET-D-LF config (10K, 1550nm, low power) and one in Voyager/CE config (120K, 2um, high power).

120K ifo

Science Goals

- Low phase noise interferometry with cryogenic silicon mirrors of up to ~100kg
- Providing a flexible testbed to explore the full matrix of cryogenic temperatures and laser wavelength
- Investigating the interplay of thermal noise, quantum noise and control noises in the sub 10Hz region
- Various tests of cryogenic plants (liquids vs cryo-coolers; stable control of mirror temperature; contamination handling of mirror surfaces; low power actuators etc.)
- Loads of other interesting topics (Thermal compensation; adaptive modematching; Parametric Instabilities; etc.)

Science Goals

- Low phase noise interferometry with cryogenic silicon mirrors of up to \sim 100kg •
- Providing a flexible testbed to explore the full matrix of cryogenic temperatures and laser wavelength
- Investigating the interplay of thermal noise, quantum noise and control noises in the • sub 10Hz region
- Various tests of cryogenic plants temperature; contaminatio

Parametric Instabilities; etc)

What would you like seen being test or investigated in this prototype? --- Please let us know! Loads of other interesting topics (Therman compense we modematching;

Maastricht University

 \bullet

Partners and Funding

- 1. Nikhef
- 2. Maastricht University
- 3. Eindhoven University of Technology
- 4. University of Leuven
- 5. Ghent University
- 6. University of Antwerp
- 7. University of Hasselt
- 8. University of Liège
- 9. Vrije Universiteit Brussel
- 10. Université catholique de Louvain
- 11. Fraunhofer Institute for Laser Technology (ILT)
- 12. RWTH Aachen University
- 13. University of Twente
- 14. Flemish Institute for Technological Research (VITO), Mol
- **15.** Netherlands Organisation for Applied Scientific Research (TNO), Delft

Also input from Glasgow, AEI, Perugia ...

Location: Maastricht

€14.5m capital investment (Interreg, institutions, governments, provinces)

Committed manpower of 100+ man years (scientists and engineers) over the next 5 years

Collaboration with relevant local and national industry partners