

EPR experiment for a broad-band quantum noise reduction in gravitational wave detectors

Valeria Sequino (INFN sez. Genova)

on behalf of the EPR squeezing group

Quantum noise in the current GW detectors

vacuum fluctuations entering the dark port of an interferometer are responsable for quantum noise

Sensitivity improvement using Frequency Independent Squeezing

GEO600: 6 dB (see talk F.Bengamin's talk)

Advanced Virgo: 3.1 dB

(in collaboration with AEI)

Need for a Frequency Dependent Squeezing (FDS) in the next generation detectors

Sideband representation of quantum noise

Fabry-Perot cavity frequency dependent response

What does it happen if we inject a squeezed field in a cavity?

Why a detuned Filter Cavity?

Rotation induced by a Fabry-Perot cavity at a frequency Ω

$$\theta_{fc}(\Omega) = \arctan\left(\frac{2\gamma_{fc}\Delta\omega_{fc}}{\gamma_{fc}^2 - \Delta\omega_{fc}^2 + \Omega^2}\right)$$

Cavity parameters to take into account

- linewidth γ_{fc}
- detuning $\Delta \omega_{fc}$

Quantum noise sidebands experience different rotations

TUNED CONFIGURATION

DE-TUNED CONFIGURATION

A **detuned** Fabry-Perot cavity can rotate the squeezing angle in a frequency-dependent way

Filter Cavity state of the art 1

For a broadband QN reduction in GW detectors

The crossover frequency depends on ITF parameters

Filter Cavity parameters we need

$$\theta_{fc}(\Omega) = \arctan\left(\frac{\Omega_{SQL}}{\Omega}\right)^2$$

FREQUENCY DEPENDENT ROTATION case of a lossless cavity

$$\Omega_{SQL} = \left(\frac{t_{sr}}{1 + r_{sr}}\right) \frac{8}{c} \sqrt{\frac{P_{arm}\omega_0}{mT_{arm}}}$$

RPN→SHN

$$\Delta w_{fc} = \gamma_{fc} = \frac{\Omega_{SQL}}{\sqrt{2}}$$

ALREADY DEMONSTRATED

- **≥ 2005:** first demonstration in MHz region.
 - The cavity length was L=0.5 m (Chelkowski et al. Phys. Rev. A 71 (Jan, 2005) 013806)
- **2015:** first demonstration in kHz region.
 - The cavity length was L=2 m (Oelker et al. Phys. Rev. Lett. 116 (Jan, 2016) 041102)

Filter Cavity state of the art 2

Need to have a long cavity:

 $\gamma_{fc} = \frac{\pi c}{2L_{fc}F_{fc}} = \sqrt{\frac{2}{(2-\epsilon)\sqrt{1-\epsilon}}} \frac{\Omega_{SQL}}{\sqrt{2}}$

minimize the ratio between the round trip losses (RTL) and the cavity length

longer is the cavity less is the losses influence

→lower finesse

PLANNED

IN PROGRESS

➤ TAMA National Astronomical Observatory of Japan (NAOJ): plan for a FC 300m long and a rotation frequency 70 Hz. Plan to have FDS in 2020 (see M.Leonardi's talk)

- Advanced Virgo: design for FC implementation in progress, plan to use it in O4
- LIGO: plan to develop in LIGO a FC for a rotation angle at about 50Hz

Proposed alternative to Filter Cavity: Frequency Dependent Squeezing via EPR entanglement

ITF de-tuned for the idler

ITF like a Filter Cavity for Idler

Idler frequency-dependent squeezed

Measurement of an idler fixed quadrature

SIGNAL CONDITIONALLY
SQUEEZED IN A FREQUENCY
DEPENDENT WAY

Einstein-Podolsky-Rosen (EPR) entangled signal and idler beams

correlated sidebands

Implementation of EPR in Advanced Virgo

Loss sources

- Loss due to arm cavities (90 ppm per round trip, around~ 4%)
- Loss due to Signal Recycling Cavity (2000 ppm per RT)
- Input and Readout losses

Disadvantages wrt Filter Cavity

- > two squeezed beams: double losses
- > need for two Homodyne Detectors
- > extra OMC

Advantages wrt Filter Cavity

- Less expensive
- > Avoids the 1ppm/m round trip losses for the FC
- > Flexible vs Signal Recycling Cavity configuration

)

Table-top demonstrator

We propose a table-top demonstrator starting from a test facility for Frequency Independent Squeezing demonstration that we already developed at the EGO site.

Test of the EPR induced rotation angle by injecting the two entangled beams in a cavity instead of the interferometer

A recent demonstration has been performed by the Quantum Optics group of Prof. Schnabel at Institute for Laser Physics and University of Hamburg, Germany, using a simplified setup. (Jan Gniesmer PhD Thesis)

Table-top demonstrator

We propose a table-top demonstrator starting from a test facility for FIS demonstration that we already developed at the EGO site.

Our demonstrator will be tested on SIPS experiment that is a RPN sensitive system. We expect to see noise reduction below 2 kHz. (see next talk by S.Di Pace's)

Starting point

- The **optical design** has been completed
- We will start from a frequency independent squeezing experiment that we realized in the past years and that now

we are using to test new control techniques (see M.Bawaj talk)

(M.Vardaro, PhD thesis)

-6 dB of SQZ15 dB of anti-SQZCentral freq: 1 MHz

Changes w.r.t. to the present setup

TWO FAST OPPLS (Δ ~ 2GHz)

AOMs

Extra MC

ETALON TO SEPARATE THE TWO BEAMS

TWO HDs

TEST CAVITY

Conclusions

- **Present GW detectors:** Frequency Independent Squeezing has been already implemented for high frequency sensitivity improvement achieved for the present observative run (O3)
- Future detectors: Frequency Dependent Squeezing is needed in order to achieve broadband quantum noise reduction. Two solutions presented:
 - ❖ Filter cavity: planned for the next observative run (O4)
 - **EPR:** experiment under construction (post O4, future detectors)

Thank you for your attention

Signal and Idler quadrature are EPR entangled

$$\hat{a}_1(\Omega) = \frac{\hat{a}(\omega_0 + \Omega) + \hat{a}^{\dagger}(\omega_0 - \Omega)}{\sqrt{2}}$$
$$\hat{a}_2(\Omega) = \frac{\hat{a}(\omega_0 + \Omega) - \hat{a}^{\dagger}(\omega_0 - \Omega)}{\sqrt{2}i}$$

$$\hat{b}_1(\Omega) = \frac{\hat{b}(\omega_0 + \Delta + \Omega) + \hat{b}^{\dagger}(\omega_0 + \Delta - \Omega)}{\sqrt{2}}$$

$$\hat{b}_2(\Omega) = \frac{\hat{b}(\omega_0 + \Delta + \Omega) - \hat{b}^{\dagger}(\omega_0 + \Delta - \Omega)}{\sqrt{2}i}$$

Amplitude and phase quadrature for signal and idler

$$S_{(\hat{a}_1 \pm \hat{b}_1)/\sqrt{2}} = e^{\pm 2r}$$

$$S_{(\hat{a}_2 \pm \hat{b}_2)/\sqrt{2}} = e^{\mp 2r}$$

$$S_{(\hat{a}_2 + \hat{b}_2)/\sqrt{2}} = e^{\mp 2r}$$

We will have squeezing-antisqueezing for combination of signal and idler quadratures

$$\hat{b}_1 - \hat{a}_1$$

$$\hat{b}_2 + \hat{a}_2$$

These quadrature $b_1 - \hat{a}_1$ These quadrature combinations will be $\hat{b}_2 + \hat{a}_2$ both squeezed

Measuring the idler quadrature

$$\hat{b}_{\theta} = \hat{b}_1 \cos \theta + \hat{b}_2 \sin \theta$$

we can **squeeze** the signal with a squeezing angle
$$heta$$

$$\hat{a}_{-\theta} = \hat{a}_1 \cos \theta - \hat{a}_2 \sin \theta$$

$$\hat{b}_{\theta_{itf}} = \hat{b}_1 \cos \theta_{itf} + \hat{b}_2 \sin \theta_{itf}$$

$$\hat{a}_{-\theta_{itf}} = \hat{a}_1 \cos \theta_{itf} - \hat{a}_2 \sin \theta_{itf}$$

Sensitivity detector improvement

$$K(\Omega) \equiv \arctan \left[\left(\frac{\Omega_{SQL}}{\Omega} \right)^2 \frac{\gamma_{itf}^2}{\Omega^2 + \gamma_{itf}^2} \right]$$

Optomechanical coupling between vacuum fluctuations and test masses

Contains SHN, RPN and output signal

To achieve the best sensitivity

$$\left(\hat{A}_2\right)_{opt} = \hat{A}_2 - g_{opt}\hat{B}_2$$

Wiener filter gain

$$g_{opt} = e^{i(2\beta - \alpha)} \sqrt{1 + K^2(\Omega)} \tanh(2r)$$

FREQUENCY DEPENDENT SQUEEZED VARIANCE

$$S_{\hat{A}_2\hat{A}_2}^{cond} = \frac{1 + K^2(\Omega)}{\cosh(2r)}$$