

Frequency dependent squeezing experiment at TAMA

N. Aritomi, Y. Zhao, E. Capocasa, Y.-C. Huang, C.-M. Wu, R.-K. Lee, H. Vahlbruch, H. Lück, Y. Guo, M. Tacca, Y. Aso, R. Takahashi, P. Prat, M. Barsuglia, E. Polini, M. Eisenmann, R. Flaminio, <u>M. Leonardi</u>

Supported by the JSPS Grant-in-Aid for Scientific Research (Grant code 15H02095 & 18H01235)

Talk summary

- Why we do what we do (Relevance of frequency dependent squeezing for GW detectors)
- 2. How we should do what we do (Theory, project layout and targets)
- 3. What we do in the lab in reality (Implementation details and intermediate results)
- 4. Results we do get

Quantum noise in GW detector

<u>The sensitivity of gravitational wave detectors will soon be</u> <u>limited for all frequencies by quantum noise</u>

To achieve broadband quantum noise reduction, injection of frequency dependent squeezed vacuum (which is phase squeezed at high frequency and amplitude squeezed at low frequency) is required

Frequency dependent squeezing production

To realize frequency dependent squeezing, we reflect frequency independent squeezing off a detuned Fabry-Perot cavity, called Filter Cavity

(H. J. Kimble et al, PRD 65, 022002 (2001))

Upper sideband and lower sideband experience different phase rotation → squeezing angle rotates around detuning frequency

Goal of the experiment

Achieve frequency dependent squeezing (squeeze angle rotation around 70 Hz) by reflecting 9dB of frequency independent squeezing off a 300 m long filter cavity

Squeezing degradation budget:

Parameter	Symbol	Value
Filter cavity losses	$\Lambda^2_{ m rt}$	80 ppm
Injection losses	$\Lambda^2_{ m inj}$	5~%
Readout losses	$\Lambda^2_{ m ro}$	5 %
Mode-mismatch squeezer-filter cavity	$\Lambda^2_{ m mmFC}$	2~%
Mode-mismatch squeezer-local oscillator	$\Lambda^2_{ m mmLO}$	5 %
Frequency independent phase noise (RMS)	$\delta\zeta$	$30 \mathrm{mrad}$
Filter cavity length noise (RMS)	$\delta L_{\rm fc}$	$0.3~\mathrm{pm}$
Injected squeezing	$\sigma_{ m dB}$	9 dB

E. Capocasa et al, PRD 93, 082004 (2016)

GRAvitational - wave Science&technology

Symposium - Padova (IT)

Experimental setup

300m long cavity (TAMA South arm):

- Finesse = 4400 @1064nm
- RTL = 80ppm
 - Initial Virgo class mirror
 - TAMA suspension (double pendulum)
- FIS source:
 - 9dB above 10Hz
 - Based on AEI design (GEO600 and AdV squeezer)

RTL characterization

Multicolor lock (IR and green) successfully implemented since last summer and RTL characterized

Measured RTL = 50-90ppm Measured finesse = 4425

FIS source layout

GRAvitational - wave Science&technology

Second Harmonic Generator (SHG)

GRAvitational - wave Science&technology Symposium - Padova (IT)

FIS source layout

GRAvitational - wave Science&technology Symposium - Padova (IT)

10

GRAvitational - wave Science&technology Symposium - Padova (IT)

FIS source control

The FIS source needs several control loops:

- 4 PDH (SHG, OPO, GRMC, IRMC)
- 1 DC control (MZ)
- 2 temperature control (SHG, OPO)
- 2 PLL (AUX1 and AUX2 to ML)
- 2 coherent control

And several other electronics:

- DDS (12 RF channels)
- Homodyne
- ...

Most of it is custom and it has been developed in collaboration with APC, AEI and UniPd/INFN PD groups

Squeezing time evolution

Symposium - Padova (IT)

13

Squeezing measurement

Typical squeezing spectrum:

- Not pure squeezed state (sqz ≠ asqz)
- Lots of lines at low freq

FIS degradation measurement

From squeezing and anti-squeezing measurements, losses and phase noise can be estimated:

losses are approx. 21% and phase noise is approx. 26mrad

Coherence measurement between squeezing and CC2

Non negligible coherence in some frequency region.

GRAvitational - wave Science&technology Symposium - Padova (IT)

Implementation of end mirror feedback

- We succeeded in feeding back the low frequency part of the filter cavity PZT correction to the end mirror of the FC
- This allowed to reduce the correction sent to the laser and consequently the PLL noise

FC automatic alignment

"dithering" control loop was implemented to have cavity axis follow the input beam direction (bandwidth of hundred mHz)

Currently implemented in pitch only.

Final design:

- implement also yaw
- implement the loop for centering the beam on the mirrors

CC2 behavior when going toward FC

excess noise due to relative motion between in-air bench and suspended optics

GRAvitational - wave Science&technology Symposium - Padova (IT)

Squeezing injection: first try

Squeezing measurement with unlocked FC:

- Takes into account the injection and detection losses
- Low frequency limited by phase noise

First ellipse rotation evidence

Preliminary measurement performed yesterday!

Modelling of the data ongoing...

FC operated with 50kHz of detuning to avoid low frequency noise

Summary

- 6dB of squeezing above 20Hz has been measured
- Characterization of losses and phase noise of FIS was performed
- First evidence of squeezing rotation from 300m long FC

Future plan

- Investigation of low frequency noises
- Improvement of CC loops
- Loss reduction required

Visitors and collaborators

Emil Schreiber GEO600/AEI

Shu-Rong Wu N Tsing Hua University Pa

Marco Vardaro Padova University

Matteo Barsuglia APC/CNRS

Eleonora Polini La Sapienza Roma

Matteo Tacca

Nikhef

Federico Paoletti INFN-Pisa

Ð

Marc Eisenmann LAPP/CNRS

Yuefan Guo Nikhef

Chien-Ming Wu Tsing Hua University

Pierre Prat APC/CNRS

Marco Banzan Padova University

Irene Fiori EGO

