# Dissipation in a Tantala film from 10K to 150K from thermal noise measurements

R. Pedurand<sup>1,2</sup>, G. Hansali<sup>1</sup>, V. Dolique<sup>1,2</sup>, A. Fontana<sup>2</sup>, L. Merini<sup>1</sup>, D. Hofman<sup>1</sup>, B. Sassolas<sup>1</sup>, C. Michel<sup>1</sup>, L. Pinard<sup>1</sup>, J. Teillon<sup>1</sup>, M. Granata<sup>1</sup>, J. Degallaix<sup>1</sup>, G. Cagnoli<sup>1,3</sup>, <u>L. Bellon<sup>2</sup></u>



#### Motivation







### • Sample: Tantala coated cantilever



• Cryogenic differential interferometer





t. 2019

•Thermal noise measurement

Measurement of internal damping



## Sample : Si cantilever, Ta<sub>2</sub>O<sub>5</sub> coating, annealed









## Sample : Si cantilever, Ta<sub>2</sub>O<sub>5</sub> coating, annealed









## Sample : Si cantilever, Ta<sub>2</sub>O<sub>5</sub> coating, annealed





 $=\frac{2\pi}{2\delta}$  $\varphi$ 

**C. Schonenberger and S. F. Alvarado**, Review of Scientific Instruments **60**, 3131–3134, 1989.

## Quadrature Phase Differential Interferometer



Photodiodes A

$$C_A = \cos(\varphi)$$

Photodiodes B

$$C_B = \sin(\varphi)$$



 $\frac{2\pi}{2\delta}$ 

P. Paolino, F. Aguilar, L. Bellon, Review of Scientific Instruments 84, 095001, 2013.

## Quadrature Phase Differential Interferometer



P. Paolino, F. Aguilar, L. Bellon, Review of Scientific Instruments 84, 095001, 2013.

## Quadrature Phase Differential Interferometer









Cryo-QPDI

#### Pulse tube Cryostat



Minimum temperature **6K** 

Heating rate (strong inertia) IK/7min

Vacuum

T=90K



T=90K



T=90K



T=90K



T=90K, flexion mode 2



#### T=90K, flexion mode 2



Fluctuation-Dissipation Theorem

$$S_{\delta}(\omega) = \frac{2k_B T}{\pi \omega k} \frac{\phi}{(1 - \omega^2 / \omega_0^2)^2 + \phi^2} = -\frac{2k_B T}{\pi \omega} \operatorname{Im} \left[ \frac{\delta(\omega)}{F(\omega)} \right]$$

#### T=90K, flexion mode 2



$$S_{\delta}(\omega) = \frac{2k_B T}{\pi \omega k} \frac{\phi}{(1 - \omega^2 / \omega_0^2)^2 + \phi^2} \longrightarrow \phi, \omega_0, k \text{ (thus } m)$$

















#### Fits of resonances



### Fits of resonances



## Resonance frequency fn



## Resonance frequency $f_n$











Internal damping  $\phi$ 



## Internal damping $\phi$



## Bonus: ring downs

















### • Sample: Tantala coated cantilever



• Cryogenic differential interferometer





t. 2019

•Thermal noise measurement

Measurement of internal damping



### Internal damping of Ta<sub>2</sub>O<sub>5</sub>, more to come !

