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Abstract

Our project  has  a  twofold  purpose:  firstly  it  aims at  a  better  understanding of  fundamental

properties  of  classical  and  quantum  dynamical  systems,  with  a  particular  prominence  on

unconventional transport and dynamical features (fractal spectra, weak chaos, infinite ergodic

theory, almost resonant quantum systems). Secondly it addresses features that characterize the

behavior  of  many  particle  systems,  with  a  methodology  that  takes  into  account  the  former

dynamical perspective: examples include normal and anomalous heat conduction in long chains,

equilibrium  and  non  equilibrium  aspects  of  systems  with  long  range  interactions  -  with  an

emphasis  on  self-gravitating  systems-,  coherent  transport  in  light  harvesting  systems,  and

statistical analysis of social and economic systems.
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Temi generali dell’iniziativa specifica

Metodi statistici in caos classico

Caos quantistico e applicazioni 

Trasporto anomalo deterministico e stocastico

Sistemi con interazioni a lungo raggio

Applicazioni a fenomeni economici e sociali



Trasporto stocastico normale: random walk



Trasporto deterministico normale: 
gas di Lorentz a orizzonte infinito



Trasporto deterministico anomalo: 
gas di Lorentz a orizzonte infinito



Trasporto stocastico anomalo: 
gas di Lorentz a orizzonte infinito



Normale contro Anomalo

h|xt � x0|qi ⇠ tq/2 h|xt � x0|qi ⇠ t�(q)
<latexit sha1_base64="GCdJzLJ1OkN1WifhJXl0q/yNrAw="></latexit><latexit sha1_base64="cJT3axeGMiyFIVvsERjB8fiGBP8="></latexit><latexit sha1_base64="cJT3axeGMiyFIVvsERjB8fiGBP8=">AAACUHicjVFNbxMxEJ1NC5TwlbZHLlYDUjkQvJH6dYsEB46t1LSVsunK68ymVr3eXXu2arTNT+TSW38HFw4gcJJGKggknmTN03szGvs5KbRyxPld0FhZffT4ydrT5rPnL16+aq1vnLi8shL7Mte5PUuEQ60M9kmRxrPCosgSjafJ5ceZf3qF1qncHNOkwGEmxkalSgryUtwaR1qYsUZ2w65jen8dc3ZzXrLILtTIqYzReV1+6E6jsqzEiC3Lf81FCZLYLt9N41abd7o7/GCfM97hc3iyw8OD3ZCF90q79yad4zBu3UajXFYZGpJaODcIeUHDWlhSUuO0GVUOCyEvxRgHnhqRoRvW80Cm7K1XRizNrT+G2Fx9OFGLzLlJlvjOTNCF+9ObiX/zBhWl+8NamaIiNHKxKK00o5zN0mUjZVGSnngipFX+rkxeCCsk+T9o+hCWL2X/JifdTsg74VHY7n2CBdbgNWzBNoSwBz34DIfQBwlf4Ct8hx/BbfAt+NkIFq3LCpvwGxrNX8N1tpY=</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="4vkVTK2SFFcveuzazzHn5X8pa/s="></latexit><latexit sha1_base64="vUFoUwEalKMY9LQvXHZp3U7QIdw="></latexit><latexit sha1_base64="QCW15pVMv3Z0VCe8rzNDg7Q0pt8="></latexit><latexit sha1_base64="5ZkyI6F2R9MmJXa64M7aS8Wk1Zc="></latexit><latexit sha1_base64="cJT3axeGMiyFIVvsERjB8fiGBP8="></latexit><latexit sha1_base64="cJT3axeGMiyFIVvsERjB8fiGBP8="></latexit><latexit sha1_base64="cJT3axeGMiyFIVvsERjB8fiGBP8="></latexit><latexit sha1_base64="cJT3axeGMiyFIVvsERjB8fiGBP8="></latexit><latexit sha1_base64="5ZkyI6F2R9MmJXa64M7aS8Wk1Zc="></latexit>

under the operational time defined by the process ti !44".
A CTRW is completely characterized by the quantity

!#r ,"$, the probability density function for moving a dis-
tance r during a time interval " in a single motion event; the
dependence upon r and " can be either decoupled !i.e.,
!#r ,"$=##r$!#"$" or coupled !e.g., !#r ,"$=##%r%"$!#"$".

The object we are interested in is the probability density
function P#x , t$ of being at x at time t; indeed it allows us to
obtain the full spectrum of transport moments, through the
formula

&x#t$q' = #i$qL−1( !q

!kq %P̂˜ #k,u $%k=0) , #31$

where L−1 is the inverse Laplace transform and P̂
˜

denotes the
Fourier-Laplace transform, k being the Fourier variable and u
the Laplace variable.

Let us introduce $#x , t$, the probability density function
of passing through #x , t$, even without stopping at x, in a
single motion event,

$#x,t$ = P#%x%t$*
t

%

d"*
%x%

%

dr !#r,"$ . #32$

P#x , t$ is given by the sum of the probabilities of passing
through #x , t$, even without stopping at x, in one or more
motion events,

P#x,t$ = $#x,t$ + *
−%

%

dx!*
0

t

d"!#x!,"$$#x − x!,t − "$ + ¯ .

#33$

By performing the convolution integrals, the Fourier-Laplace
transform of this expression assumes the closed form

P̂
˜ #k,u $ =

$̃̂#k,u $

1 − !̂
˜ #k,u $

. #34$

A special realization of the CTRW is the so-called velocity
model !42": a particle moves at a constant velocity for a
given time, then stops and chooses a new direction and a
new time of sojourn at random according to given probabili-
ties.

Our case belongs to this class, with velocities being & 1,
and

##%r%"$ =
1
2

'#%r% − "$ and !#"$ + "−g, #35$

so that

!#r,"$ +
1
2

'#%r% − "$"−g and $#x,t$ +
1
2

'#%x% − t$t−g+1,

#36$

where g= 3(+1
(−1 , !#"$ being given by the waiting time distri-

bution !)#n$ of Eq. #26$.
By making use of the Tauberian theorems for the Laplace

transform !46" and by applying the CTRW formalism !45"
we derive, through Eqs. #31$ and #34$ the full spectrum of

transport moments. The obtained spectrum of moments
#more precisely, from the previous calculation it is possible
to obtain only the even moments, and then to infer that a
similar law drives also the behavior of the absolute value of
odd moments$ is

&%z#n$ − z#0$%q' , n*#q$, #37$

where the exponent *#q$ has a piecewise linear behavior

*#q$ = -q/2 if q + 2, ,

q − , if q - 2, ,
. , =

( + 3
( − 1

, #38$

in agreement with numerical results shown in Fig. 9. The
transition at q =2, in the momenta spectrum of Eq. #38$ is
general in systems manifesting anomalous diffusion !25".

As an outcome, we have that #anomalous$ transport prop-
erties fully agree with the power laws we deduced for the
waiting time distribution !Eq. #26$".

VI. NOISE EFFECTS

In order to better understand the link between correlation
decay and time statistics #and to verify, if not rigorously
prove, it$, we consider the effects of a small stochastic per-
turbation. The behavior, under the modified dynamics, of the
survival probability and of correlation decay may provide
further information about the interconnection between them.
At the same time, the dynamical effects of a superimposed
noise are interesting by themselves #see Refs. !16,37,47,48"$.

The general expectation is that small-scale stochasticity
blurs the behavior in the vicinity of the parabolic fixed point,
enhancing the chaotic character of the motion; one then ex-
pects a transition to an exponential decay of the survival
probability and correlation functions: this intuition is cor-
roborated by numerical experiments, reported in Fig. 10. We
perturb the system by introducing a stochastic noise, adding
at each iteration of the map a random vector of the type .
= #.1 ,.2$ with .i independent identically distributed #i.i.d$ in
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FIG. 9. #Color online$ Spectrum of the transport moments for
different values of the parameter (. Lines correspond to theoretical
predictions of Eq. #38$; symbols correspond to numerical simula-
tions: circles (=3, diamonds (=11 /3, squares (=5, and triangles
(=7.
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.. oltre il trasporto (parole chiave) ..

Universalità di Sparre Andersen

Problemi di primo passaggio

Statistiche dei tempi di residenza (Darling-Kac, Lamperti)

Statistiche dei records



Una complicazione supplementare..

Le tecniche standard (Montroll-Weiss, renewal, 
espansioni in orbite periodiche ..) non funzionano per 
mezzi eterogenei, o sistemi con persistenza
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Abstract

We introduce a new method for mesoscopic modeling of protein diffusion in an entire cell. This method is based on the
construction of a three-dimensional digital model cell from confocal microscopy data. The model cell is segmented into the
cytoplasm, nucleus, plasma membrane, and nuclear envelope, in which environment protein motion is modeled by fully
numerical mesoscopic methods. Finer cellular structures that cannot be resolved with the imaging technique, which
significantly affect protein motion, are accounted for in this method by assigning an effective, position-dependent porosity
to the cell. This porosity can also be determined by confocal microscopy using the equilibrium distribution of a non-binding
fluorescent protein. Distinction can now be made within this method between diffusion in the liquid phase of the cell
(cytosol/nucleosol) and the cytoplasm/nucleoplasm. Here we applied the method to analyze fluorescence recovery after
photobleach (FRAP) experiments in which the diffusion coefficient of a freely-diffusing model protein was determined for
two different cell lines, and to explain the clear difference typically observed between conventional FRAP results and those
of fluorescence correlation spectroscopy (FCS). A large difference was found in the FRAP experiments between diffusion in
the cytoplasm/nucleoplasm and in the cytosol/nucleosol, for all of which the diffusion coefficients were determined. The
cytosol results were found to be in very good agreement with those by FCS.

Citation: Kühn T, Ihalainen TO, Hyväluoma J, Dross N, Willman SF, et al. (2011) Protein Diffusion in Mammalian Cell Cytoplasm. PLoS ONE 6(8): e22962.
doi:10.1371/journal.pone.0022962

Editor: Sudha Agarwal, Ohio State University, United States of America

Received April 6, 2011; Accepted July 3, 2011; Published August 19, 2011
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Introduction

Living cells are multifunctional organisms that exhibit remark-
able dynamic phenomena including, e.g., cell motility, and
vesicular, cytoplasmic and nuclear transport. The cytoplasm
consists of a viscous liquid phase (the cytosol) and a non-liquid
phase that will be called here the solid phase. The protein
concentration in the cytoplasm has been estimated to be 100 mg/
ml [1], and its total macromolecular concentration (proteins,
lipids, nucleic acids, and sugars) can be as high as 400 mg/ml [2].
The cytoplasm can thus be described as a ‘molecularly crowded’
environment, where macromolecules can occupy 20–30% of its
volume [3]. Its solid phase is composed of a dense network of
cytoskeletal filaments and membrane structures such as, e.g., the
endoplasmic reticulum (ER), Golgi apparatus, and mitochondria
[4,5]. Macromolecular diffusion in the cytoplasm can be severely
restricted in such an environment [6]. The same applies to the
nucleus [7–9] that is also composed of a liquid phase, the
nucleosol, and a solid phase comprising, e.g., chromatin and
proteinaceous nuclear bodies.

Diffusive motion of macromolecules and their binding-dissoci-
ation reactions with cellular organelles is a crucial component of
cell function, which still need to be clarified. Laser scanning
confocal microscopy (LSCM) has become very popular as it allows

three-dimensional observation in living cells. LSCM can also be
used to perform photo-manipulation experiments such as
quantitative fluorescence recovery after photobleaching (FRAP).
In FRAP, a region of the cell is exposed to high-intensity laser
light, causing the fluorophores within that region to irreversibly
lose their ability to fluoresce. Recovery of fluorescence in that
region yields information about molecular diffusion and binding in
the cell [10,11].

Since the invention of FRAP, several analytical models have been
developed to quantify the recovery of fluorescence and thereby
diffusion and binding dynamics [12–17]. As the internal structure
and conditions of the cell are difficult to include in such modeling,
several assumptions are made of the system. These assumptions
often include infinite, homogeneous fluorophore pools, fast
bleaching compared to the time scales of the involved transport
processes, and specific shapes of the bleach profiles, conditions that
may be difficult to fulfill in FRAP experiments. Models have been
suggested that account for diffusion during the bleach phase
[15,17], allow for arbitrary bleach profiles [16,18,19], or inhomo-
geneous distribution of fluorophores inside the cell [20] or of
binding sites in the nucleus [21]. Recently the structure of ER [22]
has been included when studying protein diffusion in the ER lumen.
In these models, however, the constraints imposed by cellular
structures have only been partly included.
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Lr(r,t)

Lt
~+: D(r)+r(r,t)ð Þ, ð5 Þ

where r(r,t) is the concentration of diffusing particles and D(r)
their possibly locally varying diffusion coefficient. Note that Eq. 5
only accounts for Brownian diffusion processes, in the case of
anomalous diffusion, a fractional version of this equation may be
used [30]. In Eq. 5 the term

D(r)+r(r,t):J ð6 Þ

is the local diffusive flux of particles. In the present realization we
introduce the impermeable solid component in the cytoplasm and
nucleoplasm such that an additional flux term, JE, is added to the
flux. This term takes care of removal of particles from the non-
accessible regions. The construction of this flux is discussed below.
The total flux of diffusing particles is now given by J~JDzJE,
and Eq. 5 can be expressed in the form

Lr

Lt
z+:JE~+: D+rð Þ, ð7 Þ

which is an advection-diffusion equation, where the (local)
advective component is given by the additional flux.

In the case of complicated boundary conditions it is, for a
numerical realization of Eq. 5, more convenient to start at a
somewhat more microscopic level. We thus consider instead the
Boltzmann equation [37]. Suitably chosen discrete versions of the
Boltzmann equation, in which space, time and velocity are all
discrete [37], allow very effective numerical implementations. In
the single relaxation time (t) approximation a discrete Boltzmann
equation for the distribution function fi(r,t) of particles at point
(r,t) moving with velocity vi in the (lattice) direction i, called the
lattice-Boltzmann (LB) equation, is given by

fi(rzvidt,tzdt){fi(r,t)~
dt

t
f eq
i (r,t){fi(r,t)
! "

: ð8 Þ

Here the left-hand side describes the streaming of particles during
a time step dt, and the right-hand side models the relaxation of

their distribution function towards its local equilibrium, f eq
i , on a

time scale set by the relaxation time. We have now a three
dimensional space and choose a simple cubic lattice with nearest
neighbor links only (particles can only move to these nearest
neighbors during one time step, which is enough in the case of the
diffusion equation [38]). We also allow the particles not to move,
and have therefore seven possible velocities (the so-called D3Q7
model [37]) for the particles: i~0, . . . ,6 . In this case of an
advection-diffusion equation the equilibrium distribution function
is given by

f eq
i ~wi r(r,t)z

vi
:JE(r,t)

c2
s

# $
, ð9 Þ

in which cs is a free numerical parameter (in units of velocity) that
determines the proportion of the rest particles, dx is the lattice
spacing and wi’s are the D3Q7 weight factors for different discrete

velocities: w0~1{3 c2
s

(dt)2

(dx)2
for the rest particles and

wi~
1

2
c2

s

(dt)2

(dx)2
for the other discrete velocities. The second term

in Eq. 9 accounts for removing of particles away from the non-
accessible regions. The concentration of particles is given by
r(r,t)~

P
i fi(r,t), and it satisfies (in the continuum limit) Eq. 7

when [38] the diffusion coefficient is given by

D~c2
s

t

dt
{

1

2

# $
dt: ð10Þ

This diffusion coefficient can be tuned either by changing the
relaxation time t, parameter cs, or time step dt. For numerical

convenience we fix parameters cs (such that c2
s ~

2

7

(dx)2

(dt)2
) and the

relaxation time t, and change the diffusion coefficient by tuning
the time step.

When applied to modeling a FRAP experiment, the particle
density r(r,t) is interpreted as the fluorophore concentration
(fluorescence intensity) C(r,t). The additional flux will cancel the
diffusive flux into the non-accessible regions filled by membranes,
which arises from the concentration gradients in the fluorophore

Figure 3. 2D cross-section of a digital model cell. The different regions of the cell are displayed in different colors (cytoplasm in cyan, nucleus in
yellow, and nuclear envelope in red). The color intensity at each pixel refers to the effective porosity (volume fraction available for protein motion) at
that point in the cell. Scale bar 10 mm.
doi:10.1371/journal.pone.0022962.g003
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Un esempio (ingannevolmente) semplice

CENTRALLY BIASED DISCRETE RANDOM
WALK

By J. GIUJS (Rehovoth, Israel)
[Beoeived 28 February 1956]

1. Introduction
W B denote by m the general lattice point (m1,mt,...,md) in a d-dimen-
sional lattioe and by E< the unit vector parallel to the positive direction
of the tth axis. We now consider a random walk starting at the origin
and such that the only steps permitted are of the type m -*• m ± E f , with
respective probabilities i^(m), Q((m)(t = 1,2 d). A recurrent point is
denned as one through which the walk will, with probability 1, pass an
infinite number of times. The main purpose of this paper is to prove
Theorem 3 below. However, the proof will require two preliminary
results whioh it will be convenient to state separately as Theorems 1 and 2.

THKOBBM 1. In a discrete random walk on a one-dimensional lattice let
denote the probability ofa step from lattice point i to j . Suppose further

= Po,-1 = h (1-1)

* ( 1 . s )

u = 0 when \i-j\ 9& 1, (1.4)
where |e| < 1.

Let ihe walker start from the origin, let /?r denote the probability that he
uriU return to it, not necessarily for the first time, after r steps, and write
po= 1. Then, for \z\ < 1,

r-0
where F is the elementary hypergeometric function.

THBOBBM 2. Let {«n} denote an infinite sequence of non-negative real
numbers such that, as n tends to infinity,

u.~-y u-, (1.6)
r-0

where A is constant. Then, given 6 > 0, we can find K = 2T(A, 6) such that

In*-*-* <un< Kn*-*+* (1.7)
for all sufficiently large n.
Quart. J. Matb. Oxford (3), 7 (19S6), 144-52.
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Abstract. We consider transport properties for a non-homogeneous persistent 
random walk, that may be viewed as a mean-field version of the Lévy–Lorentz 
gas, namely a 1D model characterized by a fat polynomial tail of the distribution 
of scatterers’ distance, with parameter α. By varying the value of α we have 
a transition from normal transport to superdiffusion, which we characterize by 
appropriate continuum limits.
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Passaggio al continuo, equazioni di Fokker Planck con 
correnti o diffusione non omogenea

Generalizzazione di argomenti alla Darling-Kac


