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OUTLINE

• θ-dependence in QCD and axions

• θ-dependence from lattice QCD: main technical issues

• θ-dependence in full QCD at high temperatures



Within the standard model of particle physics, strong interactions are described by

Quantum Chromodynamics (QCD), the theory of quark and gluons:

LQCD =
∑

f

ψ̄fi
(

Dµ
ijγ

E
µ +mfδij

)

ψfj +
1

4
Ga
µνG

µν
a

HIGH ENERGIES =⇒ The coupling is small,

asymptotically vanishing. Perturbation theory

works well.

LOW ENERGIES =⇒ The coupling is large,

perturbation theory fails, QCD is non-perturbative.



QCD is characterized by various non-perturbative features:

confinement, chiral symmetry breaking, ...

Here we discuss those related to the classification of gauge configurations in non-trivial

homotopy classes, labelled by an integer winding number Q =
∫

d4x q(x)

q(x) =
g2

64π2
Ga

µν(x)G̃
a
µν(x) =

g2

64π2
ǫµνρσG

a
µν(x)G

a
ρσ(x)

GG ∝ ~Ea · ~Ea + ~Ba · ~Ba ; GG̃ ∝ ~Ea · ~Ba

Homotopy group: π3(SU(3)) = Z (actually, π3(SU(Nc)) = π3(SU(2)) ∀Nc)

GG̃ is renormalizable and a possibile coupling to it is a free parameter of QCD

Z(θ) =

∫

[DA][Dψ̄][Dψ] e−SQCD eiθQ

the theory at θ 6= 0 is well defined, but presents explicit breaking of CP symmetry



QCD at non-zero θ

The free energy density F (θ) = −T logZ/V is a periodic even function of θ

It is connected to the probability distribution P (Q) at θ = 0 via Taylor expansion:

F (θ)−F (0) =
1

2
F (2)θ2+

1

4!
F (4)θ4+ ... ; F (2n) =

d2nF

dθ2n

∣

∣

∣

∣

θ=0

= −(−1)n
〈Q2n〉c
V

A common parametrization is the following

F (θ, T )− F (0, T ) =
1

2
χ(T )θ2

[

1 + b2(T )θ
2 + b4(T )θ

4 + · · ·
]

χ =
1

V
〈Q2〉0 = F (2) b2 = −

〈Q4〉0 − 3〈Q2〉20
12〈Q2〉0

The probability distributionP (Q) of the different topological sectors is a non-perturbative

property of QCD



An axial U(1)A rotation of the fermion fields moves θ from the gluon to the quark

sector

ψf → eiαγ5ψf and ψ̄f → ψ̄fe
iαγ5

=⇒ θ → θ − 2α and mf → mfe
2iα

• should any quark be massless (this is not the case), θ could be rotated away and

θ-dependence would be trivial

• in the presence of light quarks (this is the case), θ-dependence can be reliably

studied within the framework of chiral perturbation theory (χPT)



Experimental bounds on the electric dipole of the moment set stringent limits to the

amount of CP-violation in strong interactions.

|θ| . 10−10

So: why do we bother with θ-dependence at all?

• θ-dependence←→ P (Q) at θ = 0 =⇒ it enters phenomenology anyway.

e.g., Witten-Veneziano mechanism: χYM = f 2
πm

2
η′/(2Nf )

• Strong CP-problem: why is θ = 0? mf = 0 is ruled out.

A possible mechanism (Peccei-Quinn) invokes the existence of a new scalar field

(axion) whose properties are largely fixed by θ-dependence

• Axions are popular dark matter candidates, so the issue is particularly important



The QCD axion

Main idea: add a new scalar field acquiring a VEV which breaks a U(1) symmetry

(Peccei-Quinn). Various high energy models exist, low energy effective lagrangian:

Leff = LQCD +
1

2
∂µa∂

µa+

(

θ +
a(x)

fa

)

g2

32π2
GG̃+ . . .

• a is the Goldstone boson, with only derivative terms apart from a coupling to the

topological charge density.

• coupling to GG̃ involves the decay constant fa, supposed to be very large

• shifting 〈a〉 shifts θ by 〈a〉/fa. However θ-dependence of QCD breaks global shift

symmetry on θeff = θ + 〈a〉/fa, and the system selects 〈a〉 so that θeff = 0.

• Assuming fa very large, a is quasi-static and its effective couplings (mass, interaction

terms) are fixed by QCD θ-dependence. For instance

m2
a(T ) =

χ(T )

f 2
a

=
〈Q2〉T,θ=0

V f 2
a

knowing F (θ, T ) fixes axion parameters during the Universe evolution



Predictions about θ-dependence - I

Dilute Instanton Gas Approximation (DIGA) for high T (Gross, Pisarski, Yaffe 1981)

Classical solutions with non-trivial winding around the gauge group: instantons

characterized by various parameters: position, radiud ρ, . . .

Effective action known only perturbatively. The 1-loop one-instanton contribution is

exp

(

−
8π2

g2(ρ)

)

where g(ρ) is the running coupling at the instanton scale ρ.

• by asymptotic freedom, works well for small instantons, which are then exponentially

suppressed, implying the validity of a dilute instanton gas approximation (DIGA)

• however, perturbation theory breaks down for large instantons (1/ρ . ΛQCD),

which become dominant, overlap with each other, and break DIGA

Finite T acts as an infrared cut-off to the instanton radius making the 1-loop computation

more and more reliable



• instantons - antiinstantons treated as uncorrelated (non-interacting) objects

Poisson distribution with an average probability density p per unit volume

Zθ ≃
∑ 1

n+!n−
!
(V4p)

n++n−eiθ(n+−n−) = exp [2V4p cos θ]

F (θ, T )− F (0, T ) ≃ χ(T )(1− cos θ) =⇒ b2 = −1/12 ; b4 = 1/360 ; . . .

• Instantons of size ρ ≫ 1/T suppressed by thermal fluctuations, for high T

instantons of effective perturbative action 8π/g2(T ) dominate. Including also

leading order suppression due to light fermions and zero modes:

χ(T ) ∼ T 4
(m

T

)Nf

e−8π2/g2(T ) ∼ mNfT 4− 11
3
Nc−

1
3
Nf ∝ T−7.66 (forNf = 2)

Notice: perturbative limit implies diluteness, hence DIGA, however DIGA might be

good before reaching the asymptotic perturbative behavior



Predictions about θ-dependence - II

Chiral Perturbation Theory (χPT) for low T

At low T , perturbation theory breaks down, however, by U(1) axial rotations, θ can

be moved to the light quark masses. Then, χPT can be applied as usual.

Result for the ground state energy (Di Vecchia, Veneziano 1980)

E0(θ) = −m
2
πf

2
π

√

1−
4mumd

(mu +md)2
sin2 θ

2

χ =
z

(1 + z)2
m2
πf

2
π , b2 = −

1

12

1 + z3

(1 + z)3
, z =

mu

md

Explicitly

z = 0.48(3) χ1/4 = 75.5(5)MeV b2 = −0.029(2)

z = 1 χ1/4 = 77.8(4)MeV b2 = −0.022(1)

=⇒ ma ∼ 10−5

(

1012GeV

fa

)



Predictions about θ-dependence - III

Large-Nc for low T SU(Nc) gauge theories (Witten, 1980)

LQCD(θ) =
1
4
Ga
µνG

a
µν + θ g2

64π2 ǫµνρσG
a
µνG

a
ρσ

g2Nc = λ is kept fixed as Nc → ∞ =⇒ if any non-trivial dependence on θ exist

in the large-Nc limit, the dependence must be on θ̄ = θ/Nc.

F (θ, T )− F (0, T ) = N2
c F̄ (θ̄, T )

F̄ (θ̄, T ) =
1

2
χ̄θ̄2

[

1 + b̄2θ̄
2 + b̄4θ̄

4 + · · ·
]

Matching powers of θ̄ and θ we obtain

χ ∼ N0
c ; b2 ∼ N−2

c ; b2n ∼ N−2n
c

P (Q) is Gaussian in the large Nc limit. Periodicity in θ enforces a multibranched

structure with phase transitions at θ = (2k + 1)π.

θ)

0 π 2π θ3π−π

F(



Relation between axion phenomenology and χ(T )

Main source of axion relics: misalignment. Field not at the minimum after PQ symmetry

breaking. Further evolution (zero mode approximation, H = Hubble constant):

ä(t) + 3H(t)ȧ(t) +m2
a(T )a(t) = 0 ; m2

a = χ(T )/f 2
a

T ≫ ΛQCD 2nd term dominates =⇒ a(t) ∼ const

ma & H oscillations start =⇒ adiabatic invariant

Na = maA
2R3 ∼ number of axions (∼ cold DM)

A = oscill. amplitude; R = Universe radius
t

UNIVERSE

m(T)

H

A larger χ(T ) implies larger ma and moves the oscillation time earlier (higher T ,

smaller Universe radius R)

Requiring a fixed Na (Ωaxion ∼ ΩDM )

χ(T ) grows =⇒ oscill. time anticipated =⇒ less axions =⇒ require larger fa to maintain Na

On the other hand, larger fa means smaller ma today



θ-dependence from Lattice QCD simulations

The temperature at which DIGA sets in is not known a priori. Lattice QCD computations

are the best way to obtain predictions reliable in the non-perturbative regime

(n’)U (n)µ
n n+µ ψ

Gauge fields are 3 × 3 unitary complex

matrixes living on lattice links (link

variables)

Uµ(n) ≃ P exp

(

ig

∫ n+µ

n

Aµdxµ

)

Fermion fields live on lattice sites

Pure Gauge Term:
∫

d4xGa
µνG

µν
a ⇒ SG = sum of traces of path-order loop products of link variables

Fermion Action Discretization (in brief):
∫

d4xψ̄fi
(

Dµ
ijγ

E
µ +mfδij

)

ψfj ⇒ SF = ψ̄nM [U ]n,mψm (M≡ fermion matrix)



The thermal QCD partition function is rewritten in terms of an Euclidean path integral

Z(V, T ) = Tr
(

e−
HQCD

T

)

⇒

∫

DUDψDψ̄e−(SG[U ]+ψ̄M [U ]ψ) =

∫

DUe−SG[U ] detM [U ]

1
T T =

1

τ
=

1

Nta(β,m)

τ is the extension of the compactified time

g0 → 0 (β →∞) =⇒ a→ 0

Dynamical fermion contributions are encoded in the fermion determinant detM [U ]

As long asDUe−SG detM [U ] is positive, it can be interpreted as a probability distribution

DUP [U ] over gauge link configurations.

The path integral is then sampled by Monte-Carlo methods



Numerical Problems in Lattice QCD simulations

main technical issues that one has to face

• topological charge renormalizes, naive lattice discretizations are non-integer valued.

Various methods devised leading to consistent results

– field theoretic compute renormalization constants and subtract

– fermionic definitions use the index theorem to deduce Q from fermionic zero modes

– smoothing methods use various techniques to smooth gauge fields and recover integer Q

• Sign problem at θ 6= 0 =⇒ Taylor expansion from cumulants at θ = 0

• Freezing of topological modes in the continuum (known algorithms become non-ergodic)

• Approach to the continuum limit quite rough in presence of dynamical fermions

• On a finite volume, one may have 〈Q2〉 = χV ≪ 1 at very high T

Need to correctly sample very rare events at high T



Pure gauge results: T = 0 (Yang-Mills vacuum)

Topological susceptibility well known, with increasing refinement, since many years,

and compatible with the Witten-Veneziano mechanism for mη′ , χ
1/4 ∼ 180 MeV
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Determination of b2 more difficult. Most recent

determination for SU(3) (Bonati, MD, Scapellato,

1512.01544) obtained by introducing an external

imaginary θ source to improve signal/noise.
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(Bonati, MD, Rossi, Vicari, 1607.06360)



Pure gauge results: Finite T , across and above Tc

Topological activity stays almost unchanged till Tc and then χ drops suddenly. Well

known since many years
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The perturbative power law behavior predicted for

χ at high T has been verified

χ(T ) ∝ 1/T b, where b = 7.1(4)(2) (perturbative

prediction b = 7)
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DIGA values for higher cumulants reached quite

soon, already for T & 1.1 Tc.

Small deviations compatible with repulsive

instanton-instanton interactions



Pure gauge topology well under control, both at zero and finite T , since a few years

WHY ARE FERMIONS MUCH MORE DIFFICULT?

Z(V, T ) = Tr
(

e−
HQCD

T

)

⇒

∫

DUe−SG[U ] detM [U ]

M ∼ Dµ γu +mq

Dynamical fermions are notoriously difficult, but for topology the situation is worse.

The continuum Dirac operator Dµ γµ has exact zero modes for Q 6= 0, with well

defined chirality

Bccause of the vanishing fermion determinant, that suppresses non-zero topological

sectors and make θ-dependence vanish as mq → 0.

If the lattice discretization ofM is far from continuum and has poor chiral properties,

detM will fail its task and let many more Q 6= 0 configurations in than it should.



Full QCD results

I will show some results obtained for Nf = 2 + 1 QCD with physical quark masses

C. Bonati et al., JHEP 1603 (2016) 155 [arXiv:1512.06746]

stout improved staggered fermions, a tree-level Symanzik gauge action
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The approach to the continuum limit is

quite slow and lattice spacing well below

0.1 fm are needed

continuum limit compatible with ChPT

(73(9)MeV against 77.8(4)MeV)

slow convergence to the continuum is strictly related to the slow approach to the

correct chiral properties of fermion fields



On the other hand, the need for quite small lattice spacings, in order to correctly

extrapolate to the continuum limit, brings us close to a completely frozen topology
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Finite T results from the same paper
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Cut-off effects seemed strongly reduced after

taking the ratio χ(T )/χ(T = 0), giving us

the false illusion of a smooth continuum

extrapolation

Observed drop of the chiral susceptibility much smoother than perturbative estimate:

χ(T ) ∝ 1/T b with b = 2.90(65) (DIGA prediction: b = 7.66÷ 8)



A slow decaying of χ means an earlier oscillation time during the Universe evolution

(i.e. higher T )

=⇒ larger fa to account for dark matter =⇒ smaller value of ma today

An unknown variable is the initial misalignment θ0. Moreover, if PQ symmetry breaks

before inflation the initial value is constant, otherwise an average over the initial value

has to be performed.

Order of magnitude prediction for present axion mass: ma ∼ 10 µeV



The relatively slow drop of χ with T , compare to DIGA, has not been confirmed by

later lattice studies, obtaining results more in line with DIGA predictions

P. Petreczky, H. P. Schadler and S. Sharma, arXiv:1606.03145

S. Borsanyi et al., arXiv:1606.07494

Y. Taniguchi, K. Kanaya, H. Suzuki and T. Umeda, arXiv:1611.02411

F. Burger et al, arXiv:1705.01847
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Discussion: Improved results reported in S. Borsanyi et al., arXiv:1606.07494 are

based on two main strategies/assumptions:

• In order to account for discretization artifacts of the fermion determinant, gauge

configurations with non-zero Q are reweighted a posteriori by a factor

mf

mf + iλ

for each unit of Q, where λ is one of the first Q eigenvalues that should be zero.

that induces non-local modifications of the simulated theory which is difficult to

predict
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• To avoid sampling problems (freezing and rare events), the determination of 〈Q2〉

is based on simulations at fixed topological sector Q = 0 and Q = 1 and on the

determination of the temperature dependence of Z1/Z0, then assuming that

〈Q2〉 ≃
Z1

Z0

the assumption is certainly true when 〈Q2〉 ≪ 1, however on large enough

volumes 〈Q2〉 = χV will not be small. Assuming one can infer the large volume

limit from simulations where χV ≪ 1 requires to assume DIGA a priori, i.e. a gas

of non-interacting instantons

The only way to directly check DIGA is to compare ZQ/Z0 for larger values of Q.

Independent checks to assess the impact of such assumptions are surely due



Defeating the rare event problem by a multicanonical approach

C. Bonati, MD, G. Martinelli, F. Negro, F. Sanfilippo and A. Todaro, arXiv:1807.07954

The idea is to modify the probability distribution, by adding a Q dependent potential

to the action and then reweight

〈Q2〉 =

∫

DUe−SQCD Q2

∫

DUe−SQCD
=

∫

DUe−SQCD−V (Q)Q2eV (Q)

∫

DUe−SQCD
=
〈Q2eV (Q)〉V
〈eV (Q)〉V

If V (Q) is chosen so as to enhance high Q configurations, the rare events will be

sampled more frequently and then correctly reweighted. The improvement in the

statistical error can be impressive.

A similar strategy is adopted in metadynamics, where V (Q) is made dynamical

(Laio, Martinelli, Sanfilippo, arXiv:1508.07270)



This strategy, applied to the case of the path integral on a circle, works impressively:

we have been able to determine 〈Q2〉 over 40 order of magnitudes
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Similar strategies have been proposed in the pure gauge case

(P. T. Jahn, G. D. Moore and D. Robaina, arXiv:1806.01162)



We have applied this strategy with the same discretization as before

Nf = 2 + 1 QCD, stout improved staggered fermions, a tree-level Symanzik gauge action, physical

quark masses

Main technical issues of the numerical implementation:

• the charge Qmc entering the bias potential must be simple enough to permit

integration of MD equations with reasonable overhead, have a good overlap with

the true topological background Q

best choice: field theoretic definition after 10-20 steps of stout smearing (30-60%

overhead)

• Reweighting is usually plagued by bad overlap between target and the actual

distribution.

This can happen (and can be avoided) also in our case
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323 × 8 lattice, a = 0.0572 fm, T ≃ 430 MeV
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Modified probability distribution of Qmc from

the “good” run

reweighted result a4χ = (6.1± 1.1)× 10−8

standard method a4χ = (4.1± 1.6)× 10−8

taking into account computational overhead (60%), the

gain is around 2.5
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As the lattice spacing decreases χ drops

down and the gain increases

483 × 16 lattice, a = 0.0286, T = 430 MeV

In this case 〈Q2〉 = 2.1(7) × 10−4 and the

estimated gain is O(103).
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however we estimate Z2/Z0 as well: it

scales according to DIGA
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Despite the good results obtained at finite lattice spacing, the continuum extrapolation

is rough

χ
1/4
cont = (3± 3± 2) MeV

Lattice artifacts of our Dirac operator are still too large

Result in agreement with Borsanyi et al.



CONCLUSIONS

• Obtaining results for the θ-dependence of full QCD at T ≫ Tc is a hard task

• Using a multicanonical approach, we managed to confirm results obtained under

reasonable assumptions in S. Borsanyi et al., arXiv:1606.07494.

• However, we are still plagued by large lattice artifacts and a rough continuum

extrapolation, leading to large final uncertainties. Any alternative to the eigenvalue

reweighting adopted in S. Borsanyi et al.?

– go to smaller lattice spacings (need good strategies to defeat topological freezing,

e.g., metadynamics)

– adopt a different Dirac operator for MC sampling (e.g., overlap, but computationally

expensive ...)

– adopt a different definition of Q, e.g. that based on spectral projectors as in

C. Alexandrou, arXiv:1709.06596, which seems to have strongly reduced lattice

artifacts for full QCD simulations


