EIC_NET meeting

Update Sez. di Genova

M. Battaglieri
A. Celentano
R. De Vita

3 Maggio 2019

Physics Case Study: heavy-quarks spectroscopy

- Thanks to the high luminosity and energy, EIC represents an attractive opportunity for hadron spectroscopy measurements in the heavy quarks sector.
- Unique topics @ EIC:
 - Heavy flavour in nuclear medium
 - Diffractive physics (difficult in LHCb due to limited kinematic coverage)
 - Reactions involving many neutrals in final state (thanks to the large calorimeter coverage)
 - XYZ spectroscopy in the bottom sector
- The official EIC physics white-paper does not include (for the moment) a spectroscopy part
- This is the right time to start this activity, to be able to provide feedback to ongoing detector design studies

Physics Case Study: heavy-quarks spectroscopy

A working group involving both theorist and experimentalists has been formed, with a kick-off meeting at ECT* in Dec. 2018. Current status:

- Few exclusive channels studied in the quasi-real photoproduction approximation
 - J/ψ, X(3872), Y
 - Back-of the envelope rate calculation and kinematic properties of final state particles
- Preliminary contacts with EIC software group to setup a detector simulation framework

A new group meeting will be hold during the EIC user group meeting in Paris.

Hardware activity: streaming readout

In 2018, a consortium (eRD23: JLAB, BNL, CUA, MIT, INFN) was formed to work on the development of a streaming TDAQ system for EIC detectors. A proposal submitted to the EIC R&D program was approved, with (limited) funds to support a (MC-based) case study for this new approach. Different workshops have been organized: next in Camogli (22-24 May 2019).

Workshop goals:

- Review the status of streaming-readout compatible technologies (including data transport and software)
- Discuss about validation strategies for this new approach
- Prepare the new proposal for 2019 R&D call
 - Consider a proto-EIC detector, at nominal luminosity, and compare the traditional approach with the triggerless case

A second workshop will be organized at BNL in fall 2019

battaglieri@ge.infn.it

23 to May 25 in Carnogli, Italy, to discuss topics related to the implementation of this novel DAQ scheme for the forthcoming US Electron-lon collider experiment. This is the fourth workshop following previous events held at MIT in 2017 (Trigger/Streaming readout) and in 2018 (Streaming Readout II) and at Christopher Newport University (IN) / Jefferson Laboratory in 2018 (Streaming Readout III)

Participation to the workshop is by invitation only.

Hardware activity: streaming readout

A key aspect of the consortium activity is the streaming readout approach validation.

In April 2019, we characterized a matrix of $PbWO_4$ crystals with cosmic rays, comparing performances obtained from a full streaming readout system with those - for the same detector - from a triggered setup.

- Triggered system: CAEN v1730 digitizers + JLab trigger boards
- Streaming readout-system: Wave-Brd digitizer board (INFN-RM e INFN-GE) + Tridas software (INFN-BO)

Preliminary results demonstrated the high performances of the system: these will be discussed at the streaming readout workshop.

Next steps:

 Characterization of a small PbWO₄ calorimeter with e⁻ beam at DESY (detector design, construction and commissioning by MIT)

A dedicated Post-Doc will be hired to work on this activity through "Ministero degli Esteri - progetti di Grande Rilevanza" funds

Hardware activity: lead-glasses

Electromagnetic calorimeter have a key role in any EIC detector design.

- Small angles: leading option is a PbWO4-based homogeneous calorimeter
- Larger angles: glass-ceramic scintillators may provide an attractive and cost-effective option.

- Measure the main parameters of a large number of samples (light yield, rad. length, timing)
- Test different readout options

Stato finanziario: missioni

Assegnato	5k
Speso	4.5k
Residuo	0.5k
Spese previste	5k (+3k)

Spese effettuate:

 2 missioni USA x 2 persone (EIC R&D meeting, streaming readout tests a JLab)

Spese previste:

•	EIC R&D meeting @ BNL:	1.5k
•	EIC user meeting (2 persone):	2.0k
•	Streaming readout workshop @ BNL:	1.5k
•	Streaming readout test-beam @DESY:	3.0k
	(sub-judice to beam-time approval	
	and detector readiness):	