Artificial Intelligence in Medicine (AIM) related activities

C.Voena A.Ciardiello,R.Faccini, S.Giagu, C.Mancini

List of Activities

 Magnetic Resonance Imaging based artificial intelligence model to assess response to therapy in locally advanced rectal cancer
Submitted to European Journal Radiology

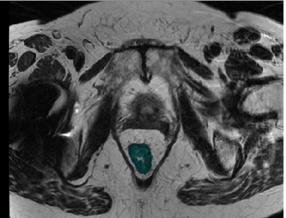
Neptune

- Enhancement of proton therapy using pF and pB reactions
- Our task: 19F MR imaging optimization

Filoblu => Andrea

- "Sentiment" analysis of messages between oncological patients treated at home (or caregivers) and doctors

Possible future activities

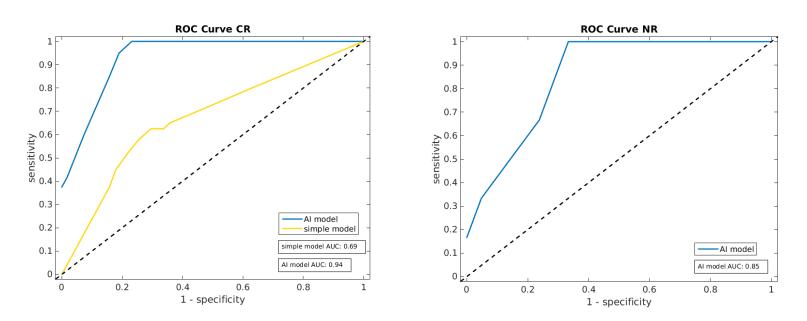

- We have been contacted by Ospedale Bambino Gesu' and IFO
- We are trying to understand if we can significantly improve the state of the art
- Main limits: small number of images, different scanners

MR-based artificial intelligence model to assess response to therapy in locally advanced rectal cancer

The Goal

- Goal: stratify automatically the response to Chemo-Radio-Therapy (CRT) before surgery using textural analysis of T2-weighted MRI images
 - Identify Complete Responders (CR) after CRT to (possibly) avoid surgery (e.g. wait and watch strategy)
 - Identify Non Responders (NR) during CRT to address them to a more effective strategy

Two different classifiers trained
=> CR classifier
=> NR classifier


Results

55 patients

Image pre-processing (filters, gray level intensity normalization)

Feature extraction (textural analysis of gray level intensities)

Classifiers: Random Forest in our case

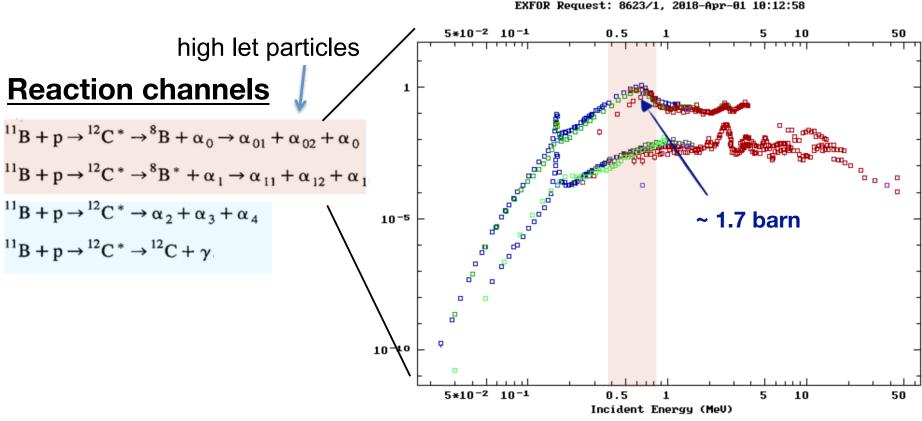
Perspectives

- Artificial intelligence analysis of medical images is a very promising and active field of research
- A possibile variant is the use of (deep) neural network directly on the images, skipping the feature extraction step
- Main limits:
 - the small number of images usually available
 - multi site images harmonization
- We are trying to understand if we can provide a significant contribution beyond the state of the art (e.g. transfer learning).

Possible future collaboration

• IFO

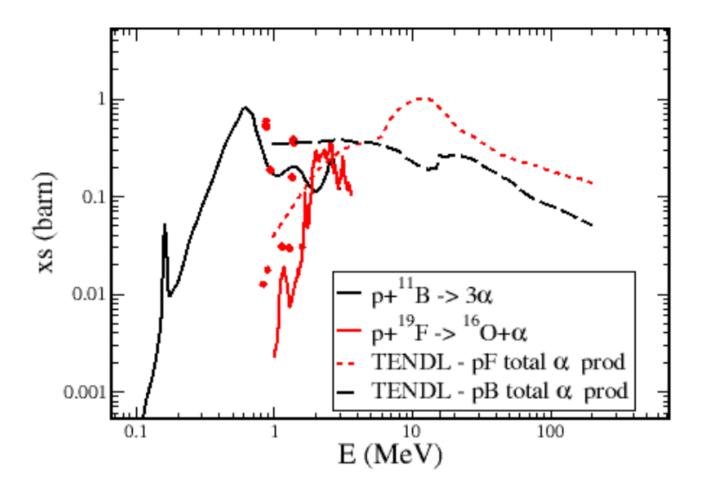
- Multi-B IVIM DWI magnetic resonance images in horopharyngeal cancer to assess HPV status
- 73 patients
- images "ready" i.e. already segmented and labelled


Ospedale Bambin Gesu'

- automatic segmentation of infant brain
- automatic loacalization of cortical dysplasia in infant brain

* Funded CSN5 call (2018)

The pB Nuclear Reaction



5-B-11(P,A)4-BE-8 EXFOR Request: 8623/1, 2018-Apr-01 10:12:58

- First experimental proof at CATANA (62 MeV proton beam)
- BSH on prostate cancer cell line DU145
- Observed increase of radiobiological effectiveness

The pF Nuclear Reaction

 $p + 19F \longrightarrow 16O + alpha (up to 13 MeV)$

WP2: Quantification & imaging

- Rome task: evaluate bio-distribution of fluorinated tracers in patients with MRI with 19F
- Absence of 19F intrinsic signal in living tissues allows in vivo visualization of exogenous fluorinated tracers
- 19F MRI is not currently used in clinical practice since it suffers from low Signal to Noise Ratio (SNR)
- Our strategy:
 - SNR optimization (new RF antenna, SDR technology, digital signal processing)

- Optimization of the image analysis

Analysis Tasks

• Currently 19F images are extremely coarse because of low SNR

Noise reduction

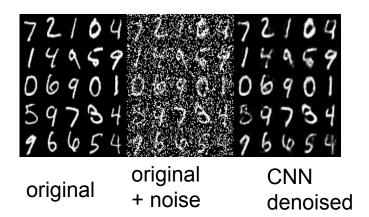
- Recent developments in deep learning neural network (DNN) based denoisers show promising results in noise reduction tasks

Registration with 1H images

- Together with 19F images 1H high resolution images can be taken
 - => Better estimate of the 19F noise from the correspondence with 1H image
- Need automatic registration methods => DNN methods

• Automated Segmentation of anatomical structure in 1H MRI

- Can help to study tissue-specific noise correlation
- Can also be done with DNN


Image Denoising

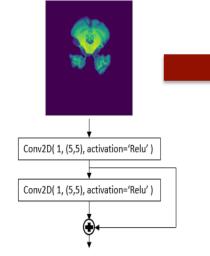
- Recent DeepNN architectures have been shown to outperform conventional denoiser algorithms (BM3D, NCSR, GMM)
- Two different approaches under study

Denoising-AutoEncoders (DAE)

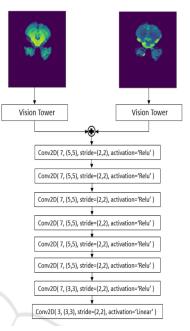
- extension of the basic autoencoder (more hidden nodes than input/output nodes)
- In order to avoid the risk that the algorithm learns the identity function in this configuration: randomly corrupt the input (i.e. introducing noise)

Convolutional-NN (CNN):

Image+Noise

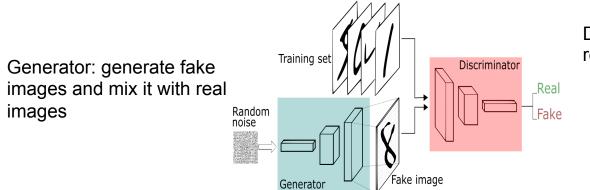

DAE PNSR = 25 dB

CBM3D PNSR = 24 dB


1H/19F Co-registration and Segmentation

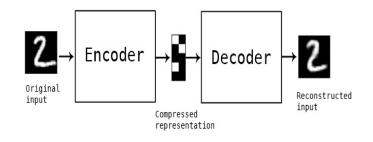
- Several studies have leveraged deep learning techniques to improve medical image registration
- DL algorithms typically adopt convolutional neural networks (CNNs) to learn informative image features and a mapping between the learned image features and spatial transformations that register images in a training dataset
 - predict spatial relationship between image pixel/voxels from a pair of images based on their image patches. The learned prediction model can then be applied to images pixel/voxel-wisely to achieve an overall image registration

vision tower: extract features from the input images

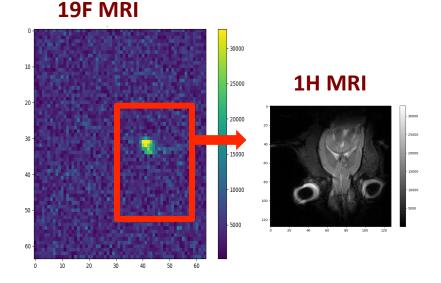


regress the transformation between a given reference and template image features extracted by the two vision towers

1H/19F Images Data-Augmentation


- Could be necessary to artificially increase the number of images
- Generative Adversarial Network (GANs)
 - class of artificial intelligence algorithms used in unsupervised machine learning, implemented by a system of two neural networks contesting with each other in a zero-sum game framework. They are able to generate images that look at least authentic to human observer

Discriminator: try to recognise real from fake images


• Variational Auto Encoder (VAEs)

 are DNN algorithms that learn a compressed representation of the image in a vector space called latent space of the image. Once this is achieved we can sample the latent space representation to produce realistic synthetic images

Preliminary analysis (Serena's thesis)

- 1H and 19F MR in-vivo images from S. Capuani (2007)
- Rats with implanted brain tumor
- 19F-BPA fructose complex administrated (300 mg(Kg⁻¹ b.w.))
- Imaging with a 7T scanner at different times after injection (t=0):
 - 1H T2-w images: t = 30min, 5h10min
 - 19F T2-w images: t = 2.5h, 4h, 5h
- Analysis performed
 - Study of the noise distribution
 - Resolution in 19F images
 - Signal to Noise Ratio
 - Correlation of noise in 19F-1H images (not found so far)

Current and future activities

- The 19F coil for Silvia's 9T scan will arrive in June
- In the meanwhile:
 - optimization of denoising NN on standard MRI in conditions similar to 19F MRI with low SNR samples concentration (glycerol-d8)
- In vitro test
 - optimization of 19F imaging, starting from Serena's thesis, on phantoms with different 19F concentrations
- Ex vivo-test (WP2)
 - optimization of 19F imaging on pancreas from rats with implanted tumor
 - Tracers: FBPA and 3FDG