

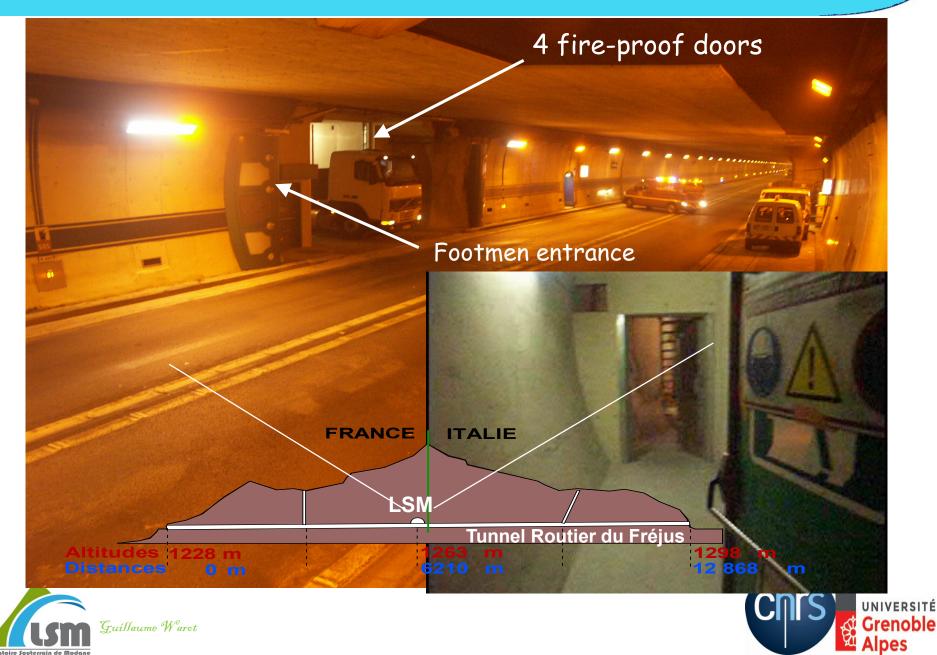
Evolution of underground biology in LSM

Laboratoire Souterrain de Modane 2nd Dulia-bio meeting November 4-5 2019

Laboratoire Souterrain de Modane

- Located in Modane, France
- Middle of Fréjus tunnel
- 12 permanents

- 1000 visitors days per year
- Wide range of interdisciplinary topics
- Astroparticles, nuclear physic, environment, electronics, radioactivity measurement, biology


Laboratoire Souterrain de Modane

- Merged with Laboratoire de Physique Subatomique & Cosmologie (LPSC-IN2P3) in Grenoble
 - 70 researchers, 90 Engineers & technicians
 - Covering fields in particle & nuclear physics, astroparticle and cosmology
- LSM now becomes a « national facility » as labelled by the CNRS
 - National facility for IN2P3 / CNRS
- LSM as a national experimental facility for :
 - Fundamental Physics
 - Neutrino property determination
 - Direct Dark matter search
 - Gamma spectrometry measurement
 - 14 detectors measuring continuously
 - Open to geosciences, materials, biology and medecine
 - Actually 1000 samples measured per year
 - PARTAGe project to automatize measurments
 - Increase significantly the scope of the LSM

Location and access

History of LSM

Digging

Proton decay

- 2.10⁻⁶ n/cm2.S
- 4 µ/m2.d
- 3500m3
- 400m2

Prototypes -----> Experiments

- 15Bq/m3 Rn in air
- Radonless air 125m3/h 15mBq/m3

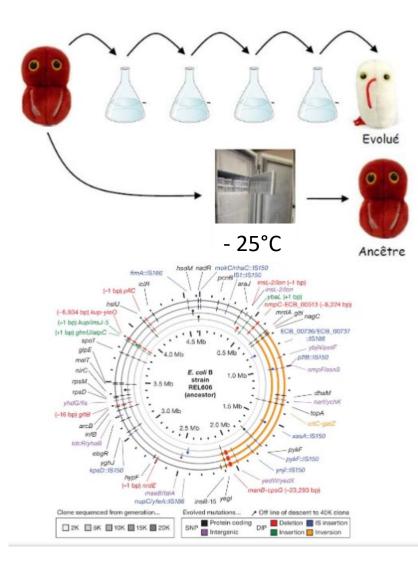
Evolution of biology

- First test in 2011
- Culture of E.coli in underground condition

Guillaume Warot

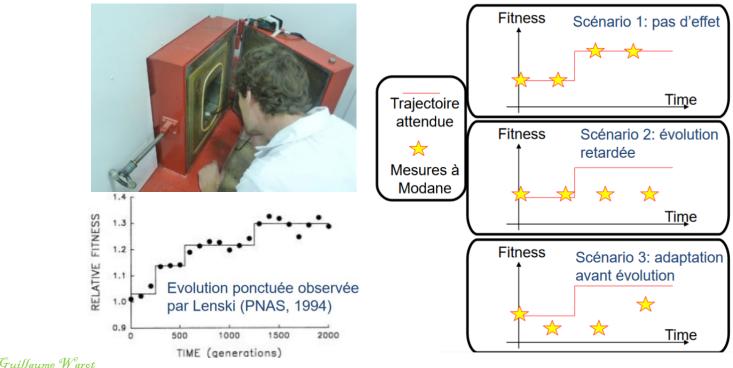
Biology at LSM

- Biology laboratory created in 2014
- Cleaner condition with PSV, incbator and more space for experiments
- Shielded fridge are running to allow save of culture during experiment


Biology at LSM

- 2017 a clean room class 1000 was built
- CO flushed incubator are now available
- Radonless air inlet for additionnal radiopurity
- Ongoing debate on the dryness of such clean room

Evolution in vitro


- Comparison of E.Coli evolution between surface and underground
- Fitness tests against ancestor
- Most studied bacteria, easy to cultivate, cryosaved every 100 generation
- Comparison with R.Lenski et al depuis 1988

Evolution in vitro

- Radioactivity induces DNA modification
- driving force for evolution
- Suppression of IR leads to a measurable difference

Evolution in vitro

- 800 generations were produced and stored
- So far no statistical deviation from Lensky
- Simulation were run to model the number of mutation under GEANT4-DNA
- Lampe et al Radioprotection 2015

• Lampe Dulia-bio 2015

Source	Measurement Method	LPC Clermont (nGy/day)	Modane (nGy/day)	Modane (shielded) (nGy/day)
γ background	Dosimeter measurement (rate varied by 10%)	2400	480	15
Muon flux	From theory	460	0	0
Potassium-40 (γ)	Simulations based on concentration	0.4	0.4	0.4
Potassium-40 (β)	Simulations based on concentration	74.4	74.4	74.4
Carbon-14 (β)	Simulations based on concentration	0.02	0.02	0.02
Total		2935	555	90

Muscle stem cells

- Culture of muscle stem cells
- Comparison between sea level and inside the lab
- Hard time to compare even with the material
- First 10% more cells at sea level, second run 20%more in the lab

RaCS experiment LSM-Pasteur

- DNA is exposed to agression (chemical, biological, radioactivity...) but constantly repaired
- Stemcells have a wide potential of application
- By 2050 66% of diseases are expected to be tackled by stem cells application.
- 5516 clinical trials ongoing on 2016
- Harvest and cryostored for further application
- Cryostorage stops DNA reparation and chemical biological agression
- Radiations remain
- L. J. Fernyhough, VA Buchan, LT McArthur and BD Hock ; Relative recovery of haematopoietic stem cell products after cryogenic storage of up to 19 years ; Bone Marrow Transplantation (2013) 48,32–35

RaCS experiment

- Measurement of radiation impact
- Preparation of 4 cryostats with different exposures
- Measure of DNA DSB through foci counting
- Measurement of gene activities
- Engraftment potential measures

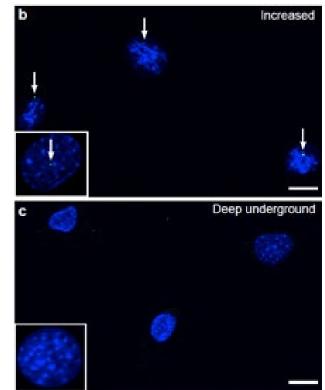
RaCS experiment

- Comparison to yearly dose
- integration of radon at the level cell is ambiguous but it will just scale the result

Condition	Depth (meter of water equivalent)	Cosmic ray dose (mSv/year)	Total dose (mSv/year)	Neutron flux (neutron/cm².s)
Reference I	10	0,04	0.52 - 1.77 (calculated)	3.10 ⁻³
Altitude II	0	1.17	1,65 – 2,91 (calculated)	10 ⁻²
Increased III	0	1.17	76.65 (measured)	10 ⁻²
Deep underground IV	4800	< 2.7 10 ⁻⁶	<2.7 10 ⁻⁶ (calculated)	3.10 ⁻⁶

RaCS experiment

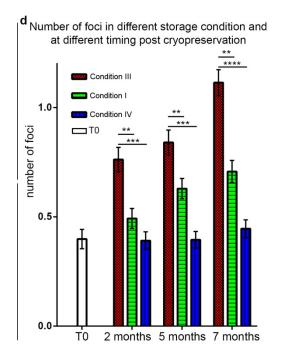



Guillaume Warot

Irradiated tubes

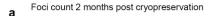
RaCS results

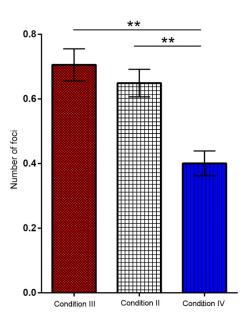
- Radioactivity impact is measured by Double Strand Break
- Cell are thawed in LSM and projected on glassplate
- Measurment of foci on microscope

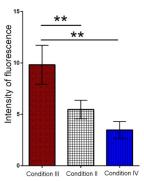


Racs result

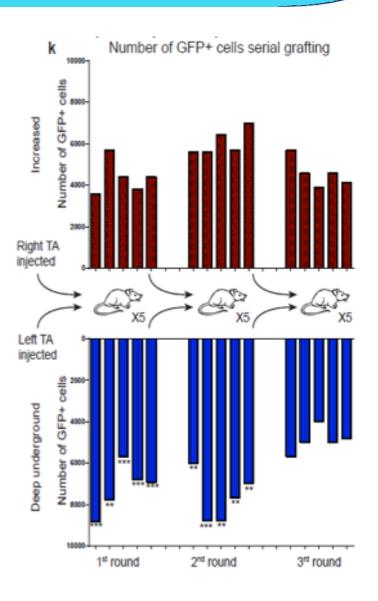
- Counting of foci
- First comparison between samples
- Ordered by dosis
- Also ordered by time
- In LSM condition the number doesnt stasticaly evolve






RaCS results

- Cosmic rays alone produce foci as radioactivity enhanced
- Radioactivity produce an increase of ROS
- Importance on the nature of particule
- Difficult to work with integral dosis

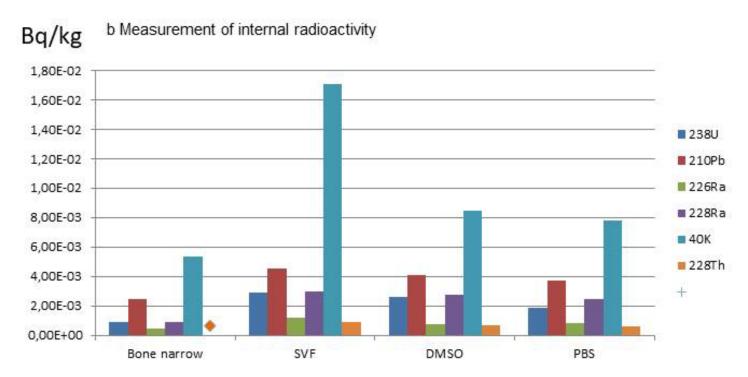

 ${\bf c}^{\rm ROS}$ levels post cryopreservation

RaCS result

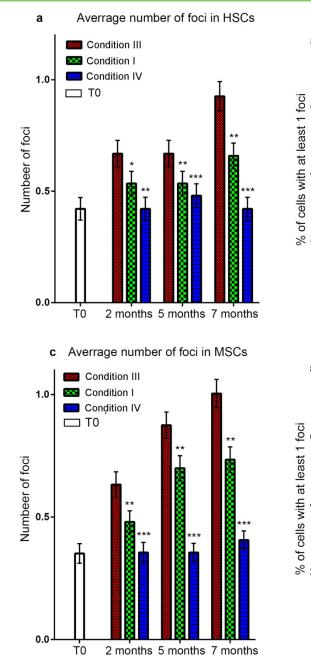
- Shielded cells are more potent
- Compared with 7 months storage

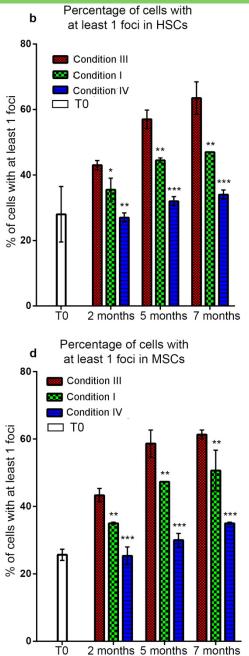
Stem cell storage

- LSM-pasteur institute collaboration
- Funded by interdisciplanary mission from CNRS
- Allowed to test a stem cell storage shielded from natural radioactivity and terrestrial cosmic rays
- Patented cryostat
- Publication in progress



Conclusion


- Underground labs are designed for large scale fundamental physics
- Unique environment find always a use sometimes unforeseen at digging
- Leaves room for interdisciplinary program at moderate cost
- Biology underground needs biologists undeground



• Measurement gives mainly limits

Extended data Figure 1