Cosmogenic Backgrounds and Mitigation of Radioactive Backgrounds

Ian Lawson

Second DULIA-bio Workshop LNGS, Assergi, Italy November 4-5, 2019

Effect of Overburden (Why go underground)

Deep underground facilities provide significant rock overburden and commensurate reduction in cosmic ray flux, and cosmic ray-spallation induced products (neutrons)

Muons can be veto'd in anti-coincidence shield; secondary products may be an issue

Cosmogenics may require underground material production or purification

•May also contribute to backgrounds (e.g. ¹¹C)

Muon flux depends on •Overburden •overburden profile •seasonal effects

With all of these backgrounds present, there are several methods to measure them and these will be described.

Techniques to Measure These Backgrounds (Primarily U/Th decay chains and K)

Measurement Method	Background Detected	Sensitivity (for U/Th)
•Ge spectrometry	γ emitting nuclides	10-100 µBq/kg
 Rn emanation assay 	²²⁶ Ra, ²²⁸ Th	0.1-10 µBq/kg
 Neutron activation 	primordial parents	0.01 µBq/kg
 Liquid scintillation counting 	α,β emitting nuclides	1 mBq/kg
 Mass spectrometry (ICP-MS; AMS) 	primordial parents	1-100 µBq/kg
•Graphite furnace AAS	primordial parents	1-1000 µBq/kg
 Röntgen Excitation Analysis 	primordial parents	10 mBq/kg
•α spectrometry	²¹⁰ Po, α emitting nuclides	1 mBq/kg

To reach these sensitivities, samples may have to count for several months

Uranium Decay Chain

Uranium – Radium A = 4n + 2 Gamma Intensities						63.29 4.84 92.38 2.81 92.80 2.77 112.81 0.28	Th 234 24.10 d	49.55 0.064	U 238 4.468x10 ⁹ a				
										1001.03 0.837 766.38 0.294	Pa 234 [*] 1.17 m ^{6.7 h}	2.269 98.2%	
	351.932 37.6 295.224 19.3 241.997 7.43 53.2275 1.2 785.96 1.07	Pb 214 26.8(9) m	α none β none	Po 218 3.10(1) m 9.980% 0.020%	511 0.076	Rn 222 3.8235(3) d	1 86.211 3.59	Ra 226 1600(1) a	67.672 0.378	Th 230 7.538x10 ⁴ a	53.20 0.123	U 234 7.455x10 ⁵ a	
799 99 298 79 1316 21 1210 17 1070 12 1110 6.9 2010 6.9	Tl 210 1.30(3) m	B 609:312 46.1 B 1764.494 15.4 B 1120.287 15.4 B 1238.110 5.79 B 2204.21 5.08 B 768.356 4.94 B 1377.669 4.00 B 334.061 3.03	α none Bi 214 19.9(4) m 0.276% 99.724%	none	At 218 1.5 s								
	46.539 4.25	Pb 210 22.3(2) a	799.7 0.0104	Po 214 164.3(20) us									
		none	Bi 210 5.013 d										
		Pb 206 stable	803.10 0.00121	Po 210 138.376 d									

Thorium Decay Chain

Thorium A = 4n Gamma Intensities				13.52 1.600 16.2 0.72 12.75 0.304 15.5 0.16	Ra 228 5.75 a	63.823 0.264 204.68 0.021	Th 232 1.405x10 ¹⁰ a					
								$\begin{array}{c} 911.204 \hspace{0.1cm} 25.8 \\ 968.971 \hspace{0.1cm} 15.8 \\ 338.320 \hspace{0.1cm} 11.27 \\ 964.766 \hspace{0.1cm} 4.99 \\ 463.004 \hspace{0.1cm} 4.40 \\ 794.947 \hspace{0.1cm} 4.25 \\ 209.253 \hspace{0.1cm} 3.89 \end{array}$	Ac 228 6.15 h			
	238.632 43.3 300.087 3.28 115.183 0.592	Pb 212 10.64(1) h	804.9 0.0019	Po 216 145(2) ms	◀ 549.76 0.114	Rn 220 55.6(1) s	▲ 240.986 4.10	Ra 224 3.66(4) d	84.373 1.220 215.983 0.254 31.613 0.131 166.410 0.104	Th 228 1.9116(16) a		
2614.533 99.0 583.191 84.5 510.77 22.6 860.564 12.42 277.351 6.31 763.13 1.81	Tl 208 3.053(4) m	$\frac{\alpha}{39.858}$ 1.091	Bi 212 60.55(6) m 35.94% 64.06%	β 727.330 6.58 1620.50 1.49 785.37 1.102								
		Pb 208 stable	4	Po 212 299(2) ns								

Other Interesting Isotopes

Usually Present:

•¹³⁸La and ¹⁷⁶Lu Observed in rare earth samples such as Nd or Gd.

Ge Spectrometry SNOLAB PGT HPGe Counter

November 5, 2019

Unshielded and Shielded Spectra (PGT Coax Detector)

Energy (keV)

Gamma Counter Sensitivities

Isoto	pe PGT Detecto Sensitivity	r Well Detector Sensitivity	Gopher Detector Sensitivity	VdA Detector Sensitivity	Coax Detector Sensitivity
²³⁸	0.11 mBq	0.04 mBq	0.35 mBq	0.06 mBq	
²³⁵	0.15 mBq	0.02 mBq	0.23 mBq	0.04 mBq	
²³² T	ט 0.11 mBq	0.23 mBq	0.32 mBq	0.05 mBq	liess
⁴⁰ K	1.40 mBq	N/A	1.29 mBq	0.70 mBq	In Prog
⁶⁰ C0	o.04 mBq	N/A	0.04 mBq	0.02 mBq	und Run
¹³⁷ C	s 0.14 mBq	0.02 mBq	0.08 mBq	0.03 mBq	ackgrou
⁵⁴ Mı	ט 0.04 mBq	0.80 mBq	0.05 MBq	0.02 mBq	Ĕ
²¹⁰ P	o N/A	0.08 mBq	N/A	1.65 mBq	

Typical Stainless Steel Spectrum

DEAP 1 sample - steel bolts, nuts, wa Sum sp. total + filter3

Counts

DAMIC Ceramic Spectrum

filter DAMIC, AI-N Ceramic, mass 94.4 g

Counts

DAMIC Data and Simulation Using Results From PGT HPGe Counter

Gopher Gamma Counter

Gopher HPGE detector, primarily for use by SCDMS, with MOU between U. of Minnesota and SNOLAB.

Currently counting SCDMS and SENSEI samples.

Detector is being re-calibrated to determine a new efficiency equation and to correct the GEANT4 geometry and detector dead layer estimates.

VdA and New Canberra Gamma Counters

VdA HPGE detector, primarily for use by EXO (nEXO), with MOU between Laurentian U and SNOLAB.

Detector is being calibrated to determine a new efficiency equation.

New Canberra Coaxial detector.

Much larger chamber for samples than previous SNOLAB detectors.

General purpose for all experiments. Background runs in progress, efficiency calibration has started.

Canberra Well Detector at SNOLAB

Typical Sample Bottles Volume is 3 ml

²¹⁰Pb Detection: Sensitive to 10⁻¹⁹ g/g in Plastic

Acrylic vaporized in a furnace and bot - toms collected with acid rinse.

Sample can be several kg.

Gamma count for 46 keV line, OR

Plate out Po-210 from aged effluent on metal discs.

Figure 5.2: The well detector has an acceptable background. (a) The background decreases as energy increases. (b) In the 44.5–48 keV ²¹⁰Pb window, the background is (10.6 ± 0.7) cpd.

Plot from MSc thesis of Corina Nantais, Queen's University at Kingston, 2014

November 5, 2019

Second DULIA-Bio Workshop

Typical spectrum from acrylic vapourisation sample

Ge Detectors Calibration Samples

The efficiency of a Ge detector is calculated to minimize systematic uncertanties from the Monte Carlo simulations required for each sample.

Use efficiency derived from measurement of a calibrated source. Monte Carlo corrections are always done in ratio

$$\epsilon_{sample}(E) = \epsilon_{cal}(E) \times \frac{\epsilon_{MC \ sample}(E)}{\epsilon_{MC \ cal}(E)}$$

SNOLAB counting has always used this technique. New crystals being brought online required new calibration sources. What is shown today is preliminary results for one calibration for illustration.

November 5, 2019

Pairs of Sources Made to fit all SNOLAB Ge Detectors

Sample jar	Major	Mass of IAEA	Activity (Bq
designation	isotope	component (g)	major isotope)
SRS-18-003-K1	40 K	49.998 ± 0.005	699.97 ± 1.0
SRS-18-003-T1	²³² Th	49.966 ± 0.003	162.39 ± 2.25
SRS-18-004-U1	²³⁸ U	49.950 ± 0.005	246.75 ± 0.75
SRS-18-003-K2	⁴⁰ K	49.928 ± 0.005	698.99 ± 1.00
SRS-18-003-T2	²³² Th	50.150 ± 0.005	162.99 ± 2.26
SRS-18-004-U2	²³⁸ U	49.933 ± 0.005	246.67 ± 0.75

IAEA certificates available

Detector Efficiency - Verification and Updates

All detectors are calibrated with IAEA ²³⁸U, ²³²Th and ⁴⁰K sources and a ¹⁵²Eu source from Eckert and Ziegler.

GEANT4 simulations of each detector are completed taking into account the individual detector geometry and sample geometry and location.

Step 1, verify existing methods using the PGT detector which was calibrated in 2005 using a mixed radionuclide source.

Using this method, all of the high purity germanium detectors will be similarly calibrated.

Example (from using original calibration)

Sample from DarkSide

Next Steps to Ge Detectors Comparison Between Different UG Labs

- Program being lead by DarkSide.
- Create several calibration samples containing known quantities of several isotopes, such as U, Th, K, Co, Cs. Samples will be made by the IAEA and will be low activity samples.
- Samples will be prepared using a sample container which will fit all detectors to simplify comparisons.
- The samples will be counted at detectors located at several underground labs with ties to DarkSide, including SNOLAB, LNGS, LSM and LSC (other labs can be added if they are interested)
- The detector groups will be sent the samples to count without knowing the composition of the sample and then they will report their results to a coordinator. The different labs will keep the results confidential until each lab has counted their samples.
- Once all samples have been counted, then a comparison of the results will occur and we see what happens.
- The goal is to determine how each laboratory's different analyses methods compare and then to determine if there are any fundamental differences once the data is compared, this will also for us to use the same units for the comparison.
- This is in progress, some of the samples have been ordered by SNOLAB via a scientist not directly involved with gamma counting to avoid biases.

ICP-MS Screening

- Good for very small samples or pieces of large samples
- A few drawbacks, sample preparation is destructive and only samples parts of a larger sample.
- Sensitivity down to nBq level can be achieved
- Must ensure all components of the sample preparation process have extremely low backgrounds and work must be performed in a clean room (preferably class 100 or better).

Agilent 8800 ICP-MS Example of ICP-MS at PNNL

Comparison of Ge Counting and ICP-MS

Element	Rock Sa	mple 8	Rock Sample 11			
	Ge	ICP-MS	Ge	ICP-MS		
K (%)	1.09 ± 0.01	0.97	1.08 ± 0.03	1.02		
U (ppm)	1.24 ±0.16	1.21	1.09 ± 0.03	1.14		
Th (ppm)	5.44 ±0.37	5.54	5.72 ± 0.05	5.19		

Element	Shotcret	e Sample 15	Concrete Sample 14			
	Ge	ICP-MS	Ge	ICP-MS		
K (%)	1.78 ± 0.05		1.75 ± 0.05	1.61		
U (ppm)	2.46 ±0.09	2.56	2.41 ± 0.03	2.38		
Th (ppm)	15.24 ±0.14	14.90	15.38 ± 0.40	13.10		

Alpha Counting

Under commissioning at the SNOLAB surface clean lab

Teflon liner tray background runs show 400 nBq/cm^2 emissivity over full energy range (1-10MeV)

Plan to move it underground by 2019 / 2020

Count region: 1800cm² square and 707cm² circular Maximum sample weight: 9kg Maximum sample thickness: 6.3mm

Monitor system of environmental parameters (radon, humidity, temperature, particulates ..)

An ionization chamber with no wires.

Alphas ionize Ar gas.

The top of the XIA has a 1100 V anode. Charge drifts from the grounded sample tray. As the charges drift, they induce a current on the anode.

Risetime is the duration of the leading edge of the pulse, the charge drift time.

Risetime is a discriminating variable to reject mid-air decays. (Short rise time because of short drift distance.) 60us nominal cut.

Electrostatic Counting System (ESCs) (Alpha Counter)

Originally built for SNO, now used primarily by EXO. However, these counters are owned by SNOLAB so samples can be measured for other experiments.

Measures ²²²Rn, ²²⁴Ra and ²²⁶Ra levels. The technique involves recirculation of low pressure gas from sample volume to the ESC.

Sensitivity Levels are:

²²²Rn: 10⁻¹⁴ gU/g

²²⁴Ra: 10⁻¹⁵ gTh/g

²²⁶Ra: 10⁻¹⁶ gU/g

Work is ongoing to improve sensitivity even further.

9 counters located at SNOLAB,1 on loan to LBL (EXO),1 on loan to U of A (DEAP).

Alpha Beta (BiPo) Counting System

Ortec MPC-1000-GFW Commercial System

Transparent liquid scintillator vials optically coupled to 2" PMTs.

The technique is combination of pulse shape discrimination and coincidence counting for identifying BiPo events.

Sensitivity for ²³⁸U and ²³²Th is ~1 mBq assuming that the chains are in equilibrium.

November 5, 2019

Radon Emanation

Emanation: Radon atoms formed from the decay of radium escape from the decaying isotopes and into the spaces between the isotopes.

Transport: Diffusion and advective flow cause the movement of the radon atoms through the sample to the surface.

Exhalation: Radon atoms that have been transported to the surface and then exhaled to the surface.

Samples generally placed in a chamber to allow the radium to decay for several half-lives and then radium daughters are accumulated and counted to give the rate in Bq/m²/s of Bq/ kg/s

Sample	Rate (Bq/m²/s	References
Shotcrete	1.7-4.2 mBq/m ²	J. Bigu and E.D. Hallman SNO-STR-92- 064
Copper Foil	1.2-1.7 μBq/m²	G. Zuzel, H. Simgen, Applied Radiation and Isotopes, Volume 67, Issue 5, May 2009, 889.
Stainless Steel	4.6-10.2 µBq/m²	G. Zuzel, H. Simgen, Radon Emanation measurements, GERDA General Meeting, July 11, 2007
Silicon Rubber	196 mBq/m²	Zuzel, G., AIP Conference Proceedings, Vol. 785, pp. 142-149.

Neutron Activation

Sample is activated with neutrons causing its components to form radioactive isotopes.

Main advantage is that the sample does not need to be destroyed.

Sample can then be counted using usual methods such as Ge spectrometry.

Main drawback is that the sample may remain radioactive for quite some time and there are limited opportunities to irradiate samples as suitable activation reactors are declining.

Röntgen Excitation Analysis

X-ray fluorescence of a sample after being bombarded with high-energy X-rays or gamma rays.

Used for elemental analysis and chemical analysis, used generally for metals, glass, building materials, etc...

For low background experiments, for example, it can be used to measure surface contamination by observing any presence of heavy elements such as iron, calcium and zinc which can be found in mine dust.

Material Assay Database

		r	ad	î	õe	Ű	rit)	.or	g		
			Search		Submit	Edit	Setting	s Login			
		reflec	tor						κ α		
					To	otal resul	lts: 3				
Grouping	Name						Isotope	Amount	Isotope	Amount	
	Reflect	or panels (mai	n)				Th-232	1 mBq/unit			<i>₽</i> ★ ×
	Sample	Description	PTFE								
	Measurement	Results	Ra-226 Th-232	< <	3 1	(90%) (90%)	mBq/unit mBq/unit				
▼ LUX	Reflect	or panels (grid	supports)				Th-232	1.3 mBq/unit			2 + ×
	Sample	Description	PTFE								
	Measurement	Results	Ra-226 Th-232	< <	5 1.3	(90%) (90%)	mBq/unit mBq/unit				
▼ XENON100	(2011) PTFE, M	McMaster-Carr							U-238	0.25 mBq/kg	æ * ×
	Sample Description PTFE, McMaster-Carr, veto reflector					ector					
	Measurement	Results	Ra-228 Th-228 U-238 Ra-226		0.5 0.5 0.25 0.25	(1) (1) (5) (5)	mBq/kg mBq/kg mBq/kg mBq/kg				
			U-235 K-40	<	0.011 3.1	(2) (95%)	mBq/kg mBq/kg				

•The Assay and Acquisition of Radiopure Materials (AARM) Collaboration originally developed the Community Material Assay Database radiopurity.org.

•The database is now hosted at SNOLAB.

•Several UG labs are now in the early stages of deciding how to improve the database to include future data. November 5, 2019 Second DULIA-Bio Workshop 30

Future Plans at SNOLAB General Purpose Underground Shielding Tank (GUST)

- General Purpose shielding tank with veto system
- The tank could contain an inner acrylic tank an a PMT array counter
- Walls constructed from bolted, corrugated cylindrical segments of galvanized carbon steel, similar to other SNOLAB water tanks.
- Polyurea lined tank ~ 1 cm thick coats walls, floor, and transition to ss lid, to limit radioactivity from the tank walls.

Summary

- There are many different techniques to measure radioactive backgrounds.
- The technique can depend on several factors:
 - upon its size,
 - whether or not the sample itself is to be used in the experiment
 - can the sample be sacrificed, etc...
- Sometimes a sample can be counted using multiple methods
 - Ge spectrometry to measure the sample bulk
 - α spectrometry to measure the sample surface
- A program is being established to calibrate Ge detectors at several UG labs using common samples which will be sent to each lab for measurement.
- An improved database is being proposed to allow greater involvement with the community in the goal to include data from a much larger set of experiments.