Low background techniques

Dr. Matthias Laubenstein Laboratori Nazionali del Gran Sasso

2nd InternationalWorkshop on Deep Underground Laboratory Integrating Activity in Biology November 4-5, 2019 Assergi (AQ), Italy

Introduction

- Many fundamental experiments aim to detect very weak signals. They have to fight against background of different origin.
 - cosmic radiation
 - particles of nuclear decays
 - intrinsic natural radioactivity

 \Rightarrow low background α and γ spectrometry @ L.N.G.S.

Rock properties

radioactivity (in Bq kg⁻¹):

	Gran Sasso	M ⁺ Blanc
²³² Th	0.25-0.5	≈90
238	5	80-500
²²⁶ Ra	4.5	30-300
⁴⁰ K	5-50	100-2000

Rock properties

 composition:
Ca 26 %, Si 1 %, Mg 9 %, O 51.5 %, C 12.5 %

$$<\rho> = (2.71 \pm 0.05) g cm^{-3}$$

 $= 11.4$
 $= 5.7$

Characteristics

lat. 42° 27' N long. 13° 34' E

mean depth: 3800 m.w.e. min. depth: 3000 m.w.e.

Muons

muon fluence: $\approx 1 \,\mu \,m^{-2} \,h^{-1}, E_{\mu} > 1 \,\text{TeV}$ (10⁶ reduction with respect to surface)

by courtesy of Dr. J. Carmona

Neutrons

neutron flux: e.g. @ L.N.G.S. fission and (α ,n) $\Phi_{th} \approx 3 \times 10^{-6} \text{ cm}^{-2} \text{ s}^{-1}$ $\Phi_{fc} < 0.3 \times 10^{-6} \text{ cm}^{-2} \text{ s}^{-1}$ (10³ reduction)

by courtesy of Dr. G. Heusser

Comparison of Radio-assay techniques for primordial U/Th decay chains and K suited for γ emitting nuclides Ge-spectrometry ²²⁶Ra, ²²⁸Th Rn emanation assay primordial parents neutron activation liquid scintillation counting α,β emitting nuclides \bigcirc mass spectrometry (ICP-MS; AMS) primordial parents graphite furnace AAS primordial parents primordial parents Röntgen Excitation Analysis ²¹⁰Po, α emitting nuclides α spectrometry difficult to compare because each method has its special application

Nov. 4th, 2019

method	suited for se	ensitivity for U/Th
Ge-spectrometry*	γ emitting nuclides	10-100 μBq/kg
Rn emanation assay	²²⁶ Ra, ²²⁸ Th	0.1-10 μ Bq/kg
neutron activation	primordial parents	Ο. Ο1 μΒq/kg
liquid scintillation counting	α, β emitting nuclides	1 mBq/kg
mass spectrometry (ICP-MS; AMS)	primordial parents	1-100 μBq/kg
graphite furnace AAS	primordial parents	1-1000 μBq/kg
Röntgen Excitation Analysis	primordial parents	10 mBq/kg
α spectrometry	²¹⁰ Po, α emitting nucli	ides 1 mBq/kg

* Needs counting times from several weeks to several months

see e.g. Borexino Collaboration, Arpesella, C. et al., Measurements of extremely low radioactivity levels in Borexino, Astrop. Phys. 18 (2002) 1-25

What is ULGS?

<u>Ultra Low-level Gamma Spectrometry</u>

i.e. low-level γ -spectrometry with additional background reduction by using active shields, material selection and/or underground laboratories

Sensitivity

Method	Detection limit for
	U and Th [Bq/kg]
ULGS (non-destructive) γ emitters	10-5 - 10-4
ICP-MS (destructive) primordial parents	10 ⁻⁶ - 10 ⁻⁵
ULGS + NAA primordial parents	10-7
$\frac{1}{1} Bq^{238} U/kg \cong 81 \times 10^{-9}$ $\frac{1}{1} Bq^{232} Th/kg \cong 246 \times 10^{-9}$	g/g g/g

 $1 \text{ Bq }^{40}\text{K/kg} \cong 32 \times 10^{-6} \text{ g/g}$

Nov. 4th, 2019

by courtesy of Dr. G. Heusser

²³²Th decay chain 228Th ²³²Th 14 · 10⁹a 1.91 a 227AC α α 5.42 MeV 4.01 MeV 6.13 h 224 Ra 228Ra β 1.2 MeV 3.66 d 5.75 a α β 5.69 MeV 0:04 MeV 220 Rn 220 Rn 55:6 s 55.6 s α 6.29 MeV if Rn can escape, 212Po 216Po (plate out activity) 0.3 µs 0.15 s 64% otherwise Rn and: 212 Bi α α the progenitors up 8.79 MeV 6.78 MeV 60.6 m to ²²⁸Th included 212Pb ²⁰⁸Pb' α 36%/ 6.05 MeV 10.64 h ß ²⁰⁸Ti 2.3 MeV ß 0.33 MeV 3.05 m Y 239 keV 1.8 M Y 583, 2615 keV

Nov. 4th, 2019

CELLAR

<u>Collaboration of European</u> <u>Low-level underground</u> <u>LAboRatories</u>

High energy muons are not stopped

e.m. showers are only partially attenuated

Neutron thermalization produces photons through (n,γ) captureInteraction of high energy particles with shielding induces secondary backgroundNov. 4th, 2019DULIA-bio 201918

Energy	Isotope	Reaction
[keV]	(source)	
10.37	68,71 Ge	⁷⁰ Ge(n, v) ⁷¹ Ge, ⁷⁰ Ge(n, 3n) ⁶⁸ Ge
13.3	73m Ge	$^{72}Ge(n,\gamma)$, $^{74}Ge(n,2n)$
73.5	7im Ge	70 Ge(n x), 72 Ge(n.2n)
53.4	73m Ge	$^{72}Ge(n x)$, $^{74}Ge(n.2n)$
66 7	73m Ge	$^{72}Ge(n, \gamma)$, $^{74}Ge(n, 2n)$
68.7 *	73+Ge	⁷³ Ge(n,n')
109.9	19 * F	¹⁹ F(n n')
122.1	57 * Fe. 57Co	⁵⁷ Fe(n,n'), activation of Cu/Ni
136.5	57C0	activation of Cu /Ni
139.5	^{75m} Ge	74 Ge(n,v), 76 Ge(n,2n)
143.6	57C0	activation of Ge
159.5	77m Ge	76 Ge(n,v)
174.9	71mGe	70 Ge(n, γ), 72 Ge(n, 2n)
186.0	66 Cu	⁶⁵ Cu(n, v)
198 3	71mGe	70 Ge(n x). 72 Ge(n 2n)
278 3	64+Cu	⁶³ Cu(n, v), ⁶⁵ Cu(n, 2n)
368	200 + Ha	¹⁹⁹ Hg(n, v)
511	в+ 	muon-induced pair production
558.4	114 * Cd	$^{113}Cd(n,\gamma)$
562.8 *	76 * Ge	⁷⁶ Ge(n,n')
579.2	207 * Ph	²⁰⁷ Pb(n,n')
595.8 *	74 * Ge	74 Ge(n,n')
651.1	114Cd	$^{113}Cd(n,\gamma)$
669.6	63*Cu	⁶³ Cu(n,n')
691.0 ª	⁷² *Ge	72 Ge(n,n')
803.3	206 * Pb	²⁰⁶ Pb(n,n')
805.9	114 * Cd	$^{113}Cd(n,\gamma)$
810.8	58Co	activation of Cu/Ni
817.9	58Co	activation of Ge
834.0 ª	72 * Ge	72 Ge(n.n')
834.8	⁵⁴ Mn	activation of Fe/Co/Ni
840.8	⁵⁴ Mn	activation of Ge
846.8	56 * Fe	⁵⁶ Fe(n,n')
962.1	63*Cu	⁶³ Cu(n,n')
1063.6	²⁰⁷ * Pb	²⁰⁷ Pb(n,n')
1097.3	116 In	115 In(n, γ)
1115.5	⁶⁵ *Cu	⁶⁵ Cu(n,n')
1125.2	⁶⁵ Zn	activation of Ge
1173.2	60 Co	activation of Cu/Ni
1293.5	116In	115 In(n, γ)
1327.0	63*Cu	$^{63}Cu(n,n')$
1332.5	60 Co	activation of Cu/Ni
1412.1	63*Cu	⁶³ Cu(n,n')
1481.7	65 * Cu	⁶⁵ Cu(n,n')
1547	63 * Cu	$^{63}Cu(n,n')$
2223	2*H	$^{1}H(n,\gamma)$

* Broadened asymmetric peaks due to recoil. by courtesy of Dr. G. Heusser

Nov. 4th, 2019

Multiwire Proportional Counter

Nov. 4th, 2019

high energy muons are reduced by overburden and/or active shield e.m. showers are attenuated

Neutron thermalization produces photons through (n,γ) captureInteraction of high energy particles with shielding induces secondary background
Nov. 4th, 2019Nov. 4th, 2019DULIA-bio 201922

high energy muons are reduced further deep underground (factor >10⁻⁶ reduction @ LSCE & LNGS)

Neutrons now induced from natural radioactivity ((α ,n) & fission) (factor 10⁻³ reduction @ LNGS)

γ's now from natural radioactivity inside shielding and detector components Nov. 4th, 2019 DULIA-bio 2019 24

Nov. 4th, 2019

Journal of Modern Physics A, 32, Issue 30 (2017) 1743002

HPGe detectors

<u>shielding:</u>

- 20 cm low activity lead (²¹⁰Pb < 20 Bq kg⁻¹)
- 5 cm OFHC copper
- 5 cm acrylic on the bottom
- <u>Rn-suppression:</u>

1 cm acrylic cover with continuous N₂ flow <u>material selection</u>:

highly radiopure, (almost) no activation

G. Heusser B. Prokosch H. Neder M. Laubenstein

Nov. 4th, 2019

effective volume of sample chamber ~ 15 | (e.g. 125 kg Cu or 157 kg Pb)

-

High purity copper directly placed underground after electrolysis

Nov. 4th, 2019

GeDSG

Nov. 4th, 2019

PCB 1 - with and without components & bg

Energy [keV]

Background components in Ge spectrometry

- external gamma radiation (2.6 MeV ²⁰⁸TI, {up to 3.2 MeV ²¹⁴Bi})
- radio-impurities close to crystal (primordial, anthropogenic)
- Rn and its progenies
- cosmic rays (neutrons, muon and activation)
- neutrons from fission and (α,n) reactions

by courtesy of Dr. G. Heusser

most important: material screening

U/Th chains and K dominant from Bq/kg down to µBq/kg only reliably radiopure material - Cu - but mBq/kg cosmogenics besides Si, Ge, Au, Ag, Hg, (Pb - except ²¹⁰Pb)

improvements in iterative steps

further improvements possible:

- neutron shield
- material selection improved
- active shield
- going deeper underground
- storage of construction material underground
- multisegmented crystals or multiple crystals
- collaboration with producers

Conclusions

1.) The exceptional sensitivity and high resolution of high purity germanium detectors in gamma-ray spectrometry and their use in underground laboratories has increasing application.

2.) A growing number of underground measurements is done in fields such as environmental monitoring, surveillance of nuclear activities, benchmarking and material selection for experiments, which require materials with extremely low levels of radioactivity.