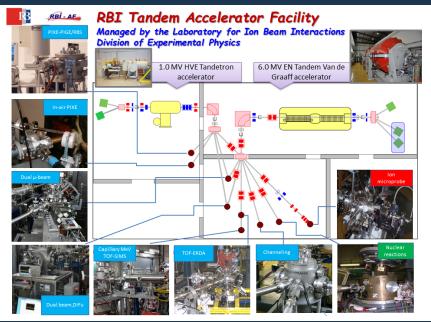


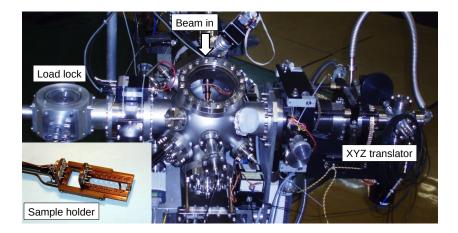
Present status and selected research activities at Ruđer Bošković Institute accelerator facility


Tea Mijatović, Ruđer Bošković Institute, Zagreb, Croatia tea.mijatovic@irb.hr

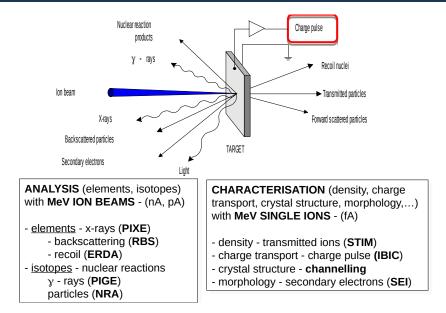
GRIT workshop, Florence, Italy

RBI accelerator complex

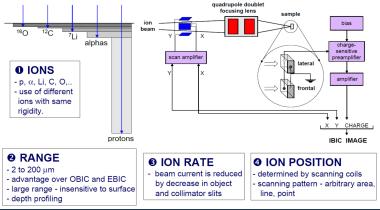
RBI accelerator complex: 9 beam lines


Nuclear microprobe

- a system of quadrupole lenses (doublet, triplet or quintuplet) - focus an ion beam to the μm size
- available beams: protons (0.4 to 8 MeV), most of other heavier ions (up to ME/q² ratio of 15 MeV)
- typical currents: 1 1000 pA, for the low current techniques (STIM and IBIC) reduced to fA range
- the beam spot size depends on: ion species, energy and current
 - as low as 250 nm
- ideal radiation source for detector testing
 - plenty of sample characterization techniques: PIXE, ERDA, RBS, NRA, PIGE, coincidence scattering, IL, MeV-SIMS, SEI, STIM and IBIC



Nuclear microprobe

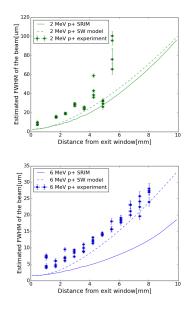


Ion beam analysis and nuclear microprobe

Ion Beam Induced Charge IBIC

- measuring the electronic response of a particle-charged excitation
- IBIC signal: correlating ion position (microprobe) with signal height (depends on electric field, mobility and lifetime of charge carriers) gives images of charge collection properties
- enables mapping of parameters such as charge collection efficiency, electric field configuration, charge carrier lifetime, mobility, diffusion length...

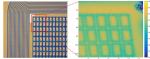
In-air IBIC experiment


- Large detector structures (above 8 cm) can not be tested in small vacuum chamber
- Alternative: in-air microbeam!
- But beam spot degradation

Energy / air path	100 nm Si₃N₄	6 μm diamond
3 MeV / 0.5 mm	1.02	9.0
3 MeV / 2.0 mm	4.39	30.6
6 MeV / 0.5 mm	0.50	4.3
6 MeV / 2.0 mm	2.06	14.8
9 MeV / 0.5mm	0.34	2.9
9 MeV / 2.0 mm	1.40	9.9

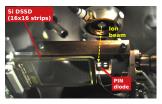
Degradation of beam spot (in micrometers) for SiN and diamond exit foil

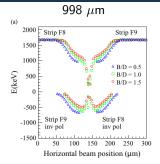

• SOLUTION:

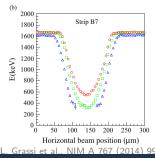

- SiN exit foil
- up to 2 mm working distance
- proton energy > 6 MeV !!

PaRaDeSEC and CDSE

- Particle and Radiation Detectors, Sensors and Electronics in Croatia
- Horizon 2020 ERA Chair Project
- Project manager: Neven Soić
- Project coordinator: Jaakko Härkönen
- duration: 1.7.2015 30.6.2020
 - final conference June 2020 in Zagreb
- established Center for Detectors, Sensors and Electronics
 - development and testing of detectors (emphasis on Si) and electronics
- examples:
 - radiation hardness test with the ⁶⁰Co gamma irradiation for new Pixel detector (for CERN)
 - test for nuclear and particle physics experiments: double sided Si, pixel CERN
- http://Inr.irb.hr/PaRaDeSEC/
- http://cems.irb.hr/en/

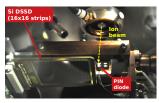


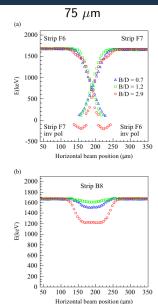

Examples: DSSSD Si detector


- IBIC a technique of choice for detector tests:
 - Si pixel detectors (CERN)
 - Diamond detectors for HADES (GSI)
 - 3D diamond detectors (CERN)

Example: DSSSD

- Study of the inter-strip gap effects using proton micro-beams
- The effective width of the inter-strip region (related to the efficiency for full energy detection) varies with both detected energy and bias voltage
- Investigation of reverse polarity pulses




Examples: DSSSD Si detector

- IBIC a technique of choice for detector tests:
 - Si pixel detectors (CERN)
 - Diamond detectors for HADES (GSI)
 - 3D diamond detectors (CERN)

Example: DSSSD

- Study of the inter-strip gap effects using proton micro-beams
- The effective width of the inter-strip region (related to the efficiency for full energy detection) varies with both detected energy and bias voltage
- Investigation of reverse polarity pulses

L. Grassi et al., NIM A 767 (2014) 99

Summary

- RBI accelerator facility hosts microbeam line used for IBIC
- IBIC (Lateral, Frontal and TRIBIC) is efficient method for mapping basic properties of semiconductor and insulator detector materials
 - powerful techniques for radiation hardness studies
 - only small regions are irradiated without a need to damage the whole device
- Other ion beam characterisation and irradiation techniques can be used as well
- New RBI dual microbeam irradiation facility simultaneous performance of irradiation and probing
- Future plans: 2020 starting of O-ZIP, 72 million Euro project that includes new 5 MV accelerator

Transnational Access funding

CERIC-ERIC

• RADIATE (from 2019)

https://www.ionbeamcenters.eu/radiate/

contact: Stjepko.Fazinic@irb.hr, Milko.Jaksic@irb.hr

Thank you!

Iva Božičević, Stjepko Fazinić, Milko Jakšić, Aneliya Karadzhinova-Ferrer, Georgios Provatas, Suzana Szilner, ...

Ruđer Bošković Institute, Zagreb, Croatia

