Performances of thin detectors and design improvements

Franco Galtarossa, IPN Orsay GRIT Workshop Firenze, 9-11 October 2019

Introduction

> In-beam tests @ ALTO on trapezoid detectors

Pulse-shape analysis and particle identification

Possible design developments

Introduction

Wafer type	nTD 6 inches	
Thickness	500 μm	
Active area	64 cm ²	
Metal coverage	0.1 μm uniform	
Dead layer	0.1 μm on the N-side	
Number of strips	128X + 128Y	
θ_{lab} coverage	104° - 155°	
Distance from target	10.5 cm	

Five of these detectors, placed at backward angles, are currently mounted in GANIL to detect light particles (p, d, t, α) in stripping reactions in inverse kinematics, where the transfer cross sections are usually backward peaked.

F. Galtarossa, IPN Orsay

In-beam tests @ ALTO

⁷Li+¹²C @ E_{lab} = 35 MeV \rightarrow Favorable reaction producing many Z=1 and Z=2 particles

Only 9 strips N-side (front) and 9 strips Pside (back) are connected to the DAQ. Valid events can be registered in the "meeting points" between X and Y strips

Detector reverse mounted (particles enter through the low electric field side) to have the signal shapes mostly determined by the hole propagation (longer rise time)

In-beam tests @ ALTO

The preamplified signals are then digitized by the Wavecatcher digitizer (developed by LAL):

- 64 channels
- 12-bit resolution
- 400 MHz sampling rate

DISCLAIMER: Most of the following slides are based on the work by Laura Grassi

F. Galtarossa, IPN Orsay

α source calibration and resolution measurement

Detector bias voltage: 120 V. P-N side coincidences. Resolution per strip around 35 keV.

	FWHM (keV)		FWHM (keV)
QN0	31	QP0	33
QN1	32	QP1	34
QN2	28	QP2	40
QN3	29	QP3	43
QN4	29	QP4	35
QN5	32	QP5	32
QN6	33	QP6	36
QN7	30	QP7	33
QN8	36	QP8	not conn.

The N side generally shows a slightly better resolution

F. Galtarossa, IPN Orsay

α source calibration and resolution measurement

Interstrip events can be seen: the energy of the α particle is shared between two adiacent strips

Black points: multiplicity back side = 0 Red points: multiplicity back side = 1

F. Galtarossa, IPN Orsay

Pulse-Shape Analysis

F. Galtarossa, IPN Orsay

Particle identification

Working with an under-depleted detector allows to perform PSA on signals with higher rise time at the expense of resolution

Strip N2 - under-depleted V80

Strip N2 - under-depleted V80

Punch-through is present for all particles except Li. The punch-through energy can be used for calibration purposes, together with the energy of the elasticallyscattered Li ions.

Calibration extrapolation at high energies

The calibration looks very unlinear at high energies, probably because the Li point is wrongly attributed to elastically-scattered Li. For this reason the last point was removed.

GRIT workshop, Firenze, 9-11 October 2019

α

E (channel)

Particle identification – N side

Particle identification – P side

FoM versus strip length

F. Galtarossa, IPN Orsay

Particle identification (Z = 1 isotopes)

Strip P5 - under-depleted V80 I_{max} (channel) E (MeV) $I_{max} \, (ch \epsilon$ α E (MeV)

Comparison with the identification obtained in previous tests of a square detector (62 mm x 62 mm, 500 µm thick, reverse mounted), with the detector just at depletion voltage

The trend of the curve I_{max} vs E for the different particles is detector dependent

M. Assié et al., Eur. Phys. J A (2015) 51: 11

F. Galtarossa, IPN Orsay

Status during the GANIL campaign (summer 2019)

In the E-ToF spectra to fit the data one should set a distance targetdetector larger than the real one. The discrepancy is larger if, as in this case, the detectors are reverse mounted (low-field or ohmic side towards the incoming particles): the timing signal has a longer rise time and this can affect the absolute time determination.

F. Galtarossa, IPN Orsay

Status during the GANIL campaign (summer 2019)

F. Galtarossa, IPN Orsay

Design improvement

The kapton connection exits the frame with an angle of 22° and, due to its quite high rigidity, it is mechanically difficult to handle. It would be nice to foresee a design with an exit et 0°, also in view of the more compact configuration with a full ring of trapezoid detectors.

F. Galtarossa, IPN Orsay

Design improvement

F. Galtarossa, IPN Orsay

- We showed the general characteristics of the trapezoid detectors which compose MUGAST.
- PSA has been performed in in-beam tests of the detectors. Protons, deuterons and tritiums can be well distinguished.
- The particle identification does not seem to depend on the strip length.
- We outlined possible design developments in view of the next experimental campaign and of a more compact configuration with more detectors.