Introduction O	Deep Learning	Dataset 000	Results 00	Conclusion
			TAS STOR	

Dept. of Physics and Astronomy University of Padova

Particle Identification in Silicon Detectors A Deep Learning Approach

Andrea Raggio Luca Morselli

Master Students Dept. of Physics and Astronomy University of Padova INFN-Sezione di Padova

- Deep Learning approach and Neural Network models
- Dataset used
- Processing of the data and results

- Dataset used
- Processing of the data and results

" Time (samples)

Dataset

• Deep Learning approach and Neural Network models

Deep Learning

- Dataset used
- Processing of the data and results

Results

Conclusion

Introduction

Subfield of machine learning where the algorithm attempt to learn representation of data by using hierarchy of multiple layers.

Subfield of machine learning where the algorithm attempt to learn representation of data by using hierarchy of multiple layers.

INPUT: $\tau = \{ (x_i \in \mathbb{R}^n, y_i = \mathbf{g}(x_i) \in \mathbb{R}^m) \}_{i=1}^N$

GOAL:

Find a parametric function f^{\ast} as close as possible to the unknow g

OUR CASE:

Learn high level features embedded in silicon detector signals in a data driven manner and perform a classification based on particle type.
Introduction
Deep Learning
Dataset
Results
Conclusion

0
0
000
000
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
0
00
0
0

Multi Layer Perceptron

The Perceptron $h_i = \sigma \left(\sum_{k=1}^n w_k^i x_k + b_k^i \right)$

 $\sigma \rightarrow$ activation function $w^i \rightarrow i^{th}$ neuron set of weights $b^i \rightarrow i^{th}$ neuron set of bias

Introduction O	Deep Learning ○●○	Dataset 000	Results 00	Conclusion
INFN	Ar	chitectures		R S S S S S S S S S S S S S S S S S S S

Multi Layer Perceptron

https://colah.github.io

An Example Separation of two class of data.

Multi Layer Perceptron

An Example Separation of two class of data.

No Hidden layer simple separation with a line

https://colah.github.io

Multi Layer Perceptron

https://colah.github.io

An Example Separation of two class of data.

No Hidden layer simple separation with a line

One Hidden layer

The Hidden layer learn a representation so that the data are linearly separable

IFN

Introduction Deep Learning Dataset Results Conclusion 0 00 00 00 00 00

Architectures

Convolutional Neural Network

Set of convolution layers Each hidden layer node is connected only to the neighbouring one. The weights are the same for all the nodes.

Convolutional Neural Network

Set of convolution layers Each hidden layer node is connected only to the neighbouring one. The weights are the same for all the nodes.

> Classic Example MNIST classification

GRIT workshop

Introduction	Deep Learning	Dataset	Results	Conclusion
		000		
\frown				05.57
UNF N		FAZIA		

- From Coulomb barrier up to 100 A MeV.
- Three-stage telescopes:
 - \rightarrow Si1: 300 μ m
 - \rightarrow Si2: 500 μ m
 - \rightarrow CsI(TI) scintillator

Datatset from a commissioning test from a single telescope.

(S. Valdré et al, NIM 930 (2019))

Introduction O	Deep Learning	Dataset ○●○	Results 00	Conclusion
				05.57

Composition

- $\sim 2 \cdot 10^6$ detected particles
- Z up to 23
- stopped in the second layer

For each event \downarrow (E₁,E₂, second layer signal)

The dataset provided is perfectly suited for this kind of test

REFERENCE LABEL

Double Layer identification

ΕΔΕ

COMPARISON LABEL

Single Layer identification

PSA: Current maximum vs. Energy

GRIT workshop

Introduction O	Deep Learning 000	Dataset 000	Results ●0	Conclusion
INFN	Dat	ta Processin	g	
	Raw Signals	CFD alignment and resampling		
	Raw Signals	CFD alignment and resampling		

Perspective:

- Investigate the accuracy trends.
- Exploit the lower efficiency at lower energies (Test with simulated signal?).
- Test the algorithms on light particles(experiment at LNL CN accelerator).
- Test other architectures (RNN..)

Introduction O	Deep Learning 000	Dataset 000	Results 00	Conclusion ⊙●
INFN	Ackn	owledgmen	ts	

Thanks to the FAZIA collaborations for providing the dataset and the simulation tool. Thank you for attention!