The nptool framework: news and other excitment

Adrien MATTA, ^a for the nptool collaboration

^aLPC Caen, ENSICAEN, UNICAEN, CNRS-IN2P3

GRIT workshop, 9-11th October 2019, Florence

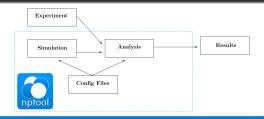
00000				
Simulatior	n and an	alysis landsc	ape	
Root		Geant	4	

- CERN supported
- Standard for data analysis
- Tree / MVA
- Physics Class

- CERN supported
- Standard for MC simulation
- Geometry / Material
- Matter Interaction / Transport

• 00000 00000 00000	000 000 00							
Simulation and analysis landscape								
Root	Geant4							
 CERN supported 	 CERN supported 							
 Standard for data analysis 	 Standard for MC simulation 							
• Tree / MVA	 Geometry / Material 							
Physics Class	• Matter Interaction / Transport							
Usual approach in the Nuclear Physics community								
• Purpose made code $ ightarrow$ almost one pe	• Purpose made code \rightarrow almost one per experiment							
• Separate Simulation and Analysis $ ightarrow$	hard to validate							

- Poorly modular
- Not maintained


• 0000 00000 00000									
Simulation and analysis landscape									
Root	Geant4								
 CERN supported 	 CERN supported 								
 Standard for data analysis 	 Standard for MC simulation 								
• Tree / MVA	 Geometry / Material 								
Physics Class	 Matter Interaction / Transport 								
Usual approach in the Nuclear Phys	ics community								
• Purpose made code $ ightarrow$ almost one p	er experiment								
- Separate Simulation and Analysis $ ightarrow$	hard to validate								
 Poorly modular 									
 Not maintained 									
a few exceptions (not exhaustif)									
• Kaliveda (Indra / Fazia)									
 FAIRRoot (FAIR) 									
 nptool (no string attached) 									

Key Concept

- A common framework for low energy nuclear physics experiment
- By and for the community: Open source, everybody is welcome!
- Modular and scalable ightarrow Any detector, any setup, any physics
- Promote good practices:
 - Framework philosophy ightarrow best use of Root and Geant4, readable input, ...
 - Implementation \rightarrow Well commented, documented, readable code, ...
 - Physics \rightarrow Validate simulation and analysis together

Basic workflow

00000			
What i	is nptool?		

Concrete implementation

- Detectors are plugin library
- Event Generator are plugin library
 - $\rightarrow\,$ Dynamic loading at run time
 - $\rightarrow~$ User focus on what matters
 - $\rightarrow\,$ Increased stability and performances
- All executables are Physics and Setup agnostic
- Wizard script and template to add new detector and event generator
 - $\rightarrow\,$ Get to work on your detectors/physics within minutes
 - \rightarrow Homogeneity across detectors/physics
 - $\rightarrow\,$ Learn one detector, understand all of them

 what is nptool?
 what is nptool?

Information sources

Publication J. of Phys. G, Volume 43, Number 4 Project website nptool.org (new website in preparation!) Project repository gitlab.in2p3.fr/np/nptool (new!)

Main Contributors

- Adrien Matta (LPC)
- Nicolas de Sereville (IPNO)
- Pierre Morfouace (CEA/DAM)
- Marc Labiche (STFC/Dares. Lab)
- Freddy Flavigny (LPC)
- Valerian Alcindor (GANIL)
- Greg Christian (Texas A&M)
- D. Cox (Lundt)

Other lab users

- University of Surrey
- CEA
- Triumf
- GANIL
- Texas A&M
- Bose Institute
- MSU/NSCL
- University of Liverpool

00000	00000	0000000	000	00					
nptool i	nptool in numbers								
The collabc	The collaboration								
• 16 contributors, around 30 users									
• 15 PhD,	1 dedicated paper	r, 8 citations							
• 15 labora	atory involved								
Code reposi	itory								
• 2500+ c	ommits								
• 50 000 li	ne of code (mainl	y C++)							
• 50+ dete	ectors								
• 10 minut	es to build and te	est each commit wi	ith gitlab-Cl						
#10yearsCl	nallenge								
		nptool is 10!							
		dec. 2008	dec. 2018						
	Adrien MATTA, for the nptoo	ol collaboration nptool							

00000	00000	0000000	000	00
nptool i	n numbers	5		
The collabo	oration			
• 16 contr	ibutors, around 3	0 users		
• 15 PhD,	1 dedicated pape	er, 8 citations		
• 15 labora	atory involved			
Code repos	itory			
• 2500+ c	ommits			
• 50 000 li	ine of code (mair	ly C++)		
• 50+ dete	ectors			
• 10 minut	tes to build and t	est each commit w	ith gitlab-Cl	
#10yearsCl	nallenge			
	60			
	40			
	20			

Adrien MATTA, for the nptool collaboration

А

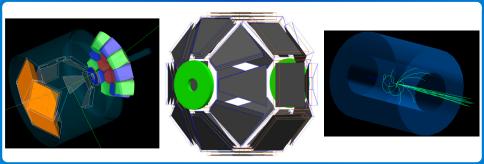
A.L

nptool

00000	00000	0000000	000	00				
nptool i	n numbers							
The collabo	oration							
• 16 contr	ibutors, around 30) users						
• 15 PhD,	1 dedicated pape	er, 8 citations						
• 15 labora	 15 laboratory involved 							
Code repos	Code repository							
• 2500+ c	ommits							
• 50 000 li	ine of code (main	ly C++)						
• 50+ det	ectors							
• 10 minut	 10 minutes to build and test each commit with gitlab-Cl 							
#10yearsCl	nallenge							
	60							
	40	First kic eaching	1					
	20 Writting thesis							

Adrien MATTA, for the nptool collaboration

0 2010


nptool

A lot of detectors to choose from

- Silicon (MUST2, HIRA, Sharc, TREX, GRIT, S1, ...)
- Ge (AGATA(!), MINIBALL,EXOGAM)

00000

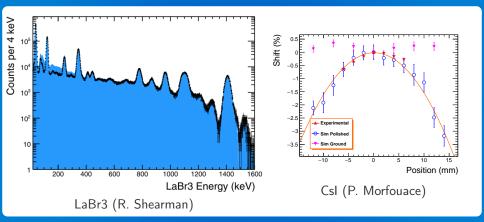
- Scintillator (PARIS, FATIMA, NANA, DALI, NEUTRON WALL,...)
- Magnetic (HELIOS/ISS, VAMOS(!))
- Gas (IC, ACTAR, MINOS)

nntool

00000

00000000

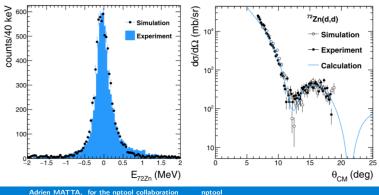
000


00

Modular Physics List

- Interactive change of the physics list
- Support for inflight decay
- Support for neutron
- Support for optical photon

EmPhysicsList Option4 DefaultCutOff 1000000 DriftElectronPhysics 0 IonBinaryCascadePhysics 0 NPIonInelasticPhysics 0 EmExtraPhysics 0 HadronElasticPhysics 0 StoppingPhysics 0 OpticalPhysics 0 HadronPhysicsINCLXX 0 HadronPhysicsQGSP_BIC_HP 0 Decay 1


Modular Physics List

Adrien MATTA, for the nptool collaboration nptool

00000 **Event Generator**

- Beam and source \rightarrow Emmitance, energy distribution,...
- Two body reaction \rightarrow angular distribution, beam energy dependence, ...
- Decay \rightarrow Particle and γ , angular distribution
- Cosmic ray
- Quasi-Free Scattering (coming soon!)

00000	00000		
User space			

Layout

Philosophy

- Experiment specific
 - \rightarrow Analysis Project
- Detector generic
 - \rightarrow NPLib, NPSimulation
- Separate Framework from plugin
 - ightarrow Focus on what matters
- Best of ROOT and Geant4
 → More on physics

User space libNPAnalysis user macro npanalysis npsimulation NPSimulation NPI ib Root Geant4 GSL Third party packages

Toolbox

Energy loss, Calibrations, Kinematics, Online ...

nntool

DSAM and cryogenic target

Adrien MATTA, for the nptool collaboration nptool

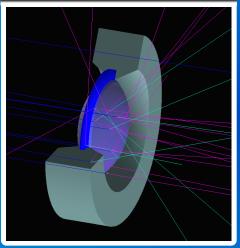
00000

00000000

000

00

Input File

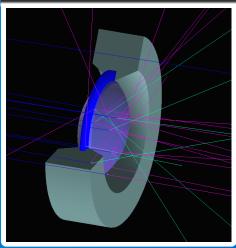

CryogenicTarget NominalThickness= 10 mm Material = LH2Density= 8 mg/cm3 Radius= 10 cm Angle= 0 deg X = 0Y = 0Z = 0FrontDeformation= 10 mm FrontThickness= 10 micrometer FrontRadius= 8 cm FrontMaterial= Mylar BackDeformation = 3 mmBackThickness= 10 micrometer BackRadius= 8 cm BackMaterial= Mylar FrameRadius= 12 cm FrameThickness= 5 cm FrontCone= 45 deg BackCone= 45 dea FrameMaterial = AlShieldInnerRadius= 30 cm ShieldOuterRadius= 31 cm ShieldBottomLength= 20 cm ShieldTopLength= 20 cm ShieldFrontRadius= 15 cm ShieldBackRadius= 10 cm ShieldMaterial= Al

Adrien MATTA, for the nptool collaboration

nptool

Input	File	Simu	lation	
	CryogenicTarget NominalThickness= 10 mm Material= LH2 Density= 8 mg/cm3 Radius= 10 cm Angle= 0 deg X= 0 Y= 0 Z= 0 FrontDeformation= 10 mm FrontThickness= 10 micrometer FrontRadius= 8 cm FrontMaterial= Mylar BackThickness= 10 micrometer BackTaformation = 3 mm BackThickness= 10 micrometer BackMaterial= Mylar FrameRadius= 12 cm FrameThickness= 5 cm FrontCone= 45 deg BackCone= 45 deg FrameMaterial= Al ShieldInnerRadius= 30 cm ShieldBottomLength= 20 cm ShieldTopLength= 20 cm ShieldBackRadius= 15 cm ShieldMaterial= Al			
	Adrien MATTA, for the nptool collab	poration nptool		

Target cell in details


00000

00000000

000

00

Target cell in details

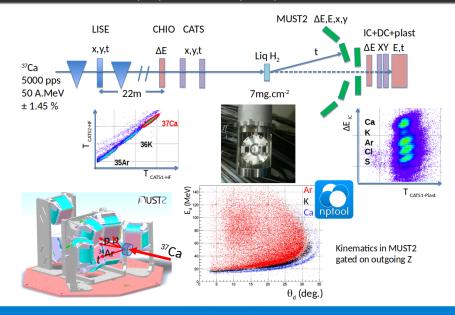
Windows deformation

$$\begin{split} f(x) &= (x_0 + b + 1) - cosh(\frac{x}{(R/acosh(b+1))})\\ b &= \text{window maximum deformation}\\ x_0 &= \text{offset}\\ R &= \text{windows radius} \end{split}$$

Simulation

- Generate volumes
- Beam \otimes Target

Analysis

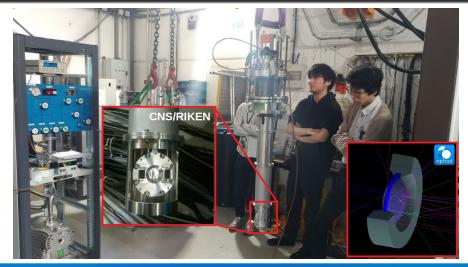

- Beam \otimes Target
- Position dependend E_{Loss}

00000

000000000

000

Study case: MUST2 (p,t) campaign (2018)


Adrien MATTA, for the nptool collaboration

00000

00000000

000

Study case: MUST2 (p,t) campaign (2018)

CryPTa (CNS/RIKEN)

Adrien MATTA, for the nptool collaboration

nptool

00000

000000000

000

00

DSAM target setup

```
Target
Thickness= 3 micrometer
Radius= 5 mm
Material= CD2
Angle= 0 deg
X= 0 mm
Y= 0 mm
Z= 0 mm
BackingMaterial= Au
BackingThickness= 5 micrometer
```

00000

000000000

000

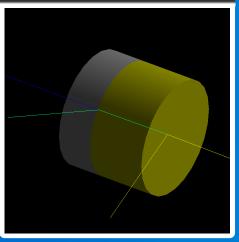
00

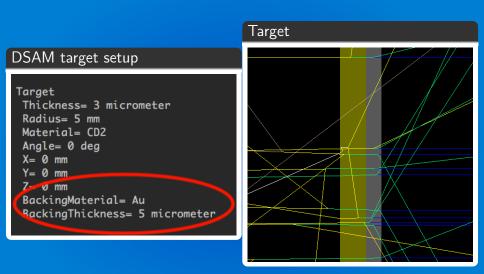
DSAM target setup

```
Target
Thickness= 3 micrometer
Radius= 5 mm
Material= CD2
Angle= 0 deg
X= 0 mm
Y= 0 mm
Z= 0 mm
BackingMaterial= Au
RackingThickness= 5 micrometer
```

00000

00000000


000


00

Target

DSAM target setup

```
Target
Thickness= 3 micrometer
Radius= 5 mm
Material= CD2
Angle= 0 deg
X= 0 mm
Y= 0 mm
Z= 0 mm
BackingMaterial= Au
BackingThickness= 5 micrometer
```


Adrien MATTA, for the nptool collaboration

nptool

00000		00000000	
Event generator	setup		
	Beam Particle= 190 ExcitationEnergy= Energy= 125.4 MeV SigmaEnergy= 0.1 SigmaThetaX= 0.01 SigmaThetaX= 0.01 SigmaX= 0.0 mm SigmaY= 0.0 mm MeanThetaX= 0 deg MeanPhiY= 0 deg	MeV deg jeg	

Adrien MATTA, for the nptool collaboration nptool

ExcitationEnergyLight= 0.0 MeV ExcitationEnergyHeavy= 4.072 MeV CrossSectionPath= CS.txt CSR1

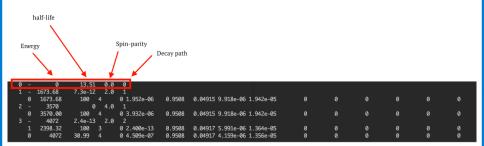
MeanX= 0 mm MeanY= 0 mm %EnergyProfilePath= %XThetaXProfilePath= %YPhiYProfilePath=

TwoBodyReaction Beam= 190 Target= 2H Light= 1H Heavy= 200

> ShootLight= 1 ShootHeavy= 1

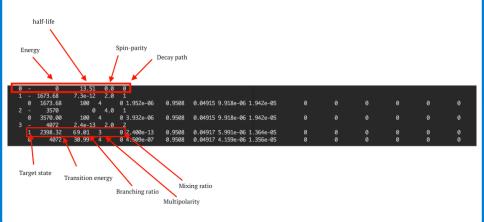
LevelData 200 Path= ./200.level

00000	00000	00000000	000	00
Event generato	r setup			
	Energy= 12 SigmaTheta SigmaTheta SigmaTheta SigmaTheta SigmaY= 0. MeanTheta0 MeanTheta0 MeanTheta0 MeanY= 0 m MeanY= 0 m MeanTheta MeanY= 0 m MeanY=	hEnergy- 0 MeV 25.4 MeV 25.4 MeV 25.4 MeV 25.4 MeV 25.4 MeV 25.6 MeV	36086560865656665566	


Path= ./200.level

Geant4 Photon Evaporation file format

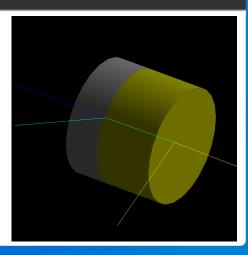
0	-	0	13.51 0.0	0						
1		1673.68	7.3e-12 2.0							
		1673.68	100 4	0 1.952e-06	0.9508	0.04915 9.918e-06 1	.942e-05			0
2		3570	0 4.0							
		3570.00	100 4	0 3.932e-06	0.9508	0.04915 9.918e-06 1	.942e-05			0
3		4072	2.4e-13 2.0							
		2398.32	100 3	0 2.400e-13	0.9508	0.04917 5.991e-06 1	.364e-05			0
		4072	30.99 4	0 4.509e-07	0.9508	0.04917 4.159e-06 1	.356e-05			0


	00000000	
	00000000	

Geant4 Photon Evaporation file format \rightarrow Defining State

	00000000	

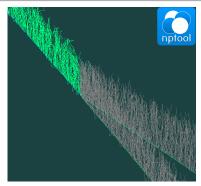
Geant4 Photon Evaporation file format \rightarrow Defining transition


	00000000	
	00000000	

Geant4 Photon Evaporation file format \rightarrow Defining EC properties

Simulation of upcoming ¹⁹O(d,p)

- Work just started
- Non trivial effect
 - $\rightarrow\,$ Kinematic of ^{20}O
 - $\rightarrow~$ Cross section distribution
- Fine tuning
 - $\rightarrow \ \text{Beam energy}$
 - \rightarrow Degrader thickness


nptool for Gas based detection

Adrien MATTA, for the nptool collaboration nptool

Geant4 Physics list for TPC (A. Matta & P. Morfouace)

To be submitted to Geant4:

- Inspired by Optical Photon
- New particle: Drift electrons
- Weigthed track system
- Ionization with DE
- Amplification/Absorption
- Realistic Transport
- Drift/Diffusion
 - \rightarrow Properties of Material

Example4 (nptool.org)

Geant4 Physics list for TPC (A. Matta & P. Morfouace)

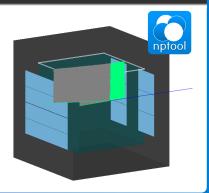
To be submitted to Geant4:

- Inspired by Optical Photon
- New particle: Drift electrons
- Weigthed track system
- Ionization with DE
- Amplification/Absorption
- Realistic Transport
- Drift/Diffusion
 - \rightarrow Properties of Material

G4MaterialPropertiesTable* MPT = nmp G4MaterialPropertiesTable(); MPT->AddConstProperty('DE PAIRENERGY",20*eV); MPT->AddConstProperty('DE YIELO',3e-1); //MPT->AddConstProperty('DE ABPLENTH',1*pc); MPT->AddConstProperty('DE ABSLENTH',1*pc); MPT->AddConstProperty('DE TRANSVERSALSPREAD',2e-5*mm2/ns); MPT->AddConstProperty('DE TRANSVERSALSPREAD',2e-5*mm2/ns);

Tool box for TPC (P. Morfouace & C.Lenain)

Part of NPLib:

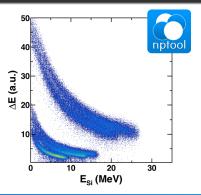

- Track reconstruction
- Vertex detection

- RANSAC
- Hough transformation

nptool

Key features

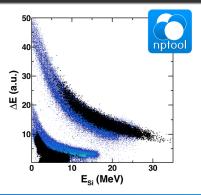
- Output data in "raw" format
 - \rightarrow Test existing analysis
- One step simulation
- Modular ancillary
- Human readable input file
- Simulation with other detectors
- Reproduce ID Plot
- Reproduce Resolution



Morfouace, Mauss, Matta

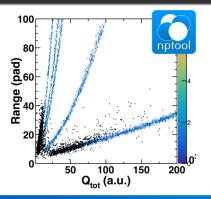
nptool

Key features


- Output data in "raw" format
 - \rightarrow Test existing analysis
- One step simulation
- Modular ancillary
- Human readable input file
- Simulation with other detectors
- Reproduce ID Plot
- Reproduce Resolution

Morfouace, Mauss, Matta

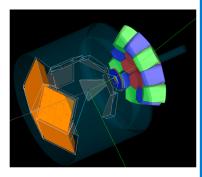
Key features


- Output data in "raw" format
 - \rightarrow Test existing analysis
- One step simulation
- Modular ancillary
- Human readable input file
- Simulation with other detectors
- Reproduce ID Plot
- Reproduce Resolution

Morfouace, Mauss, Matta

Key features

- Output data in "raw" format
 - \rightarrow Test existing analysis
- One step simulation
- Modular ancillary
- Human readable input file
- Simulation with other detectors
- Reproduce ID Plot
- Reproduce Resolution


Morfouace, Mauss, Matta

			•0	
 Simulation of DSAM/Plunger with direct reaction (Example5 coming soon) 				

- Cryogenic target simulation/analysis facilities
- Gaseous detector simulation/analysis facilities

Comming up for you

- New website
 - \rightarrow Better/More documentation
- Docker image (CI/CD)
 - \rightarrow Running w/o installation
- Mugast simulation
 - $\rightarrow~$ Dedicated class
- GRIT detector
 - ightarrow re-work of GASPARD
- Quasi-Free Scattering (F. Flavigny)
- Int.Conv./EXOGAM (Goigoux/Vandebrouck)

Adrien MATTA, for the nptool collaboration

nptool