e768s Experiment analysis report

D. Brugnara et al.

University of Padova - LNL INFN

イロト 不得 トイヨト イヨト

3

- Introduction

The collaboration

- Spokepersons: A. Gottardo, M. Assié
- The Mugast, AGATA and VAMOS collaboration

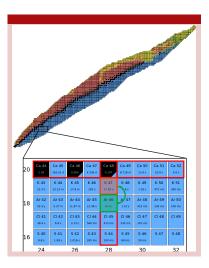
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Scientific Motivation

└─What we aim for

What we aim for

The aim of the experiment is to probe the proton wavefunction by a transfer direct reaction in $\rm ^{46}Ar$


Note that:

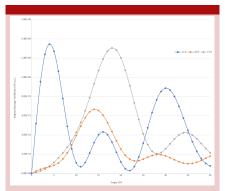
- We are looking into a well studied isotope We are not interested in studying the spectroscopy in search of new states
- The crucial aspect is to investigate the L transfer
- Thanks to the capabilities of the experimental apparatus, self consistency checks will be employed to control and quantify possible systematic errors (more on this later)

-Scientific Motivation

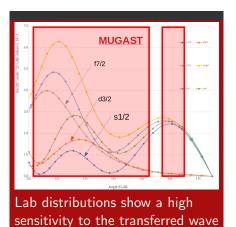
└─ The physics

The N=28 shell closure

- Nuclear models seem to fail in reproducing proton-wave dependent observables
- Inferring spectroscopic factors, which are very sensitive to proton shell-occupancies, might help the understanding of the issue
- Transition probabilities are in fact not in agreement with calculations in the framework of SPDF-U interaction


e768s Experiment analysis report

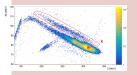
Scientific Motivation


- The Observables

Angular Distributions

⁴⁶Ar(³He, d)⁴⁷K @ 10MeV/u. (TWOFNR)

CM distributions show a high sensitivity to the transferred wave

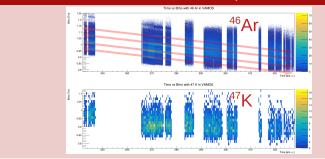

・ロト・「四ト・ヨー・ヨー・シックへ」
・

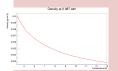
└_ VAMOS

VAMOS

- VAMOS at zero degrees proved itself crucial to:
 - 1. Monitor the beam, mainly the energy loss in the target over time
 - 2. Select reaction fragment

Z selection


- Z selection improves requiring no pileup
 Likely improvement will be returned by
 - considering the IC mylar deformation


Many tweaks are still needed in the analysis

└─VAMOS+TARGET

Target behaviour over time

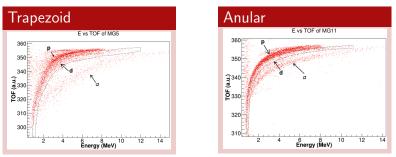
Total thickness over time can be extrapolated from BRho

³He density (and thickness) over time is known from experimental data \implies ice thickness over time can be extrapolated

└_VAMOS+TARGET

The total statistics

▶ 4×10^6 ⁴⁶Ar ions identified in VAMOS $\implies \approx 4 \times 10^9$ ⁴⁶Ar integrated current

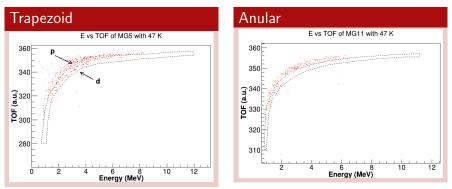

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 6.4×10^3 ⁴⁷K reaction fragments
- ▶ 12×10^9 ⁴⁶Ar beam time request
- ▶ 1/3 of the requested statistics

└─MUGAST

MUGAST: Particle discrimination

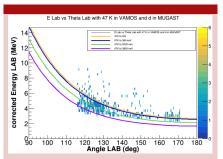
- The DSSD detector was essential to:
 - 1. Measure Angular distributions
 - 2. Discriminate the light fragment (d)



- Particles can be distinguished by Energy vs Time of Flight (between CATS2 and the detector)
- Energy not yet corrected from energy loss in the target

└─ MUGAST

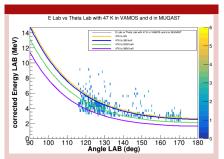
Particle discrimination


Selecting ⁴⁷K as the heavy partner in VAMOS

- Deuteron energy is clearly centered at different values in anular vs trapezoid detectors
- Separation will possibly be improved in the final analysis.

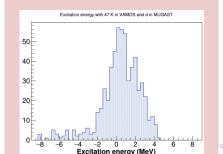
└─MUGAST

Kinematics


The kinematic line shows encouraging results, but also that considerable attention must be taken to caracthterize the energy loss in the target The shape of the target has been measured and compared with the theoretical deformation.

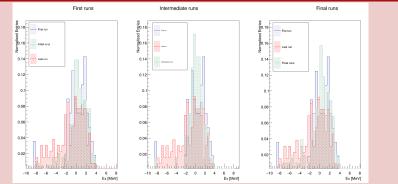
イロト 不得 トイヨト イヨト

-


└─MUGAST

Kinematics

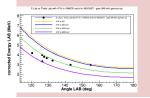
The kinematic line shows encouraging results, but also that considerable attention must be taken to caracthterize the energy loss in the target The shape of the target has been measured and compared with the theoretical deformation.


(Preliminary) Ex plot

└─MUGAST

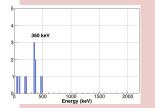
Much work needs to be done

Ex evolution over time



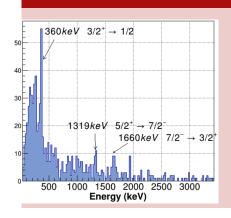
breaking up Ex over various runs show that a time-dependent energy correction must be included

└─MUGAST


Kinematics+AGATA+VAMOS

Kinematic line in coincidence with 360 KeV γ -ray

- ► 360 keV \(\gamma\) detected by AGATA+⁴⁷K identified in VAMOS+ deuteron measured in MUGAST ⇒ clear kinematic line
- Very low statistics


$\gamma\text{-rays}$ in coincidence with d and $^{47}\mathrm{K}$

- Only few counts are present with 1.4MeV <Ex< 2.1MeV , but enough to check for consistency
- No peak visible for Ex< 1MeV</p>

 \Box_{γ} spectra

What about the protons?

- Many protons are identified in MUGAST (one order of magnitude more respect to the deuterons)
- The protons are likely due to the inelastic breakup of d, an already observed reaction channel. Further investigation is necessary, is it a direct reaction?

e768s Experiment analysis report

- The analysis strategy
 - Simulating the response of AGATA

Simulating AGATA

The efficiency of AGATA can be precisely estimated with the Geant4 Monte Carlo simulation. \implies comparison with Ex

- The lifetimes of the 3/2⁺ and 7/2⁻ states are known (respectively 1.1 ns and 6.3 ns)
- This implies a great difference in detection efficiency
- The cryogenic target WILL be included to account for absorption

An ¹⁵²Eu run was acquired with the cryogenic-target in place, which will be used to check and rescale correctly the simulation

Future improvements

- Possible improvements on E-TOF selection?
- Efficiency considerations on AGATA
- VAMOS selection needs to be improved, accounting for IC mylar deformation and many other aspects
- MUGAST simulation needs to be changed to compute angular distributions, as the anular detector has a different size
- Include a parametrization of the energy loss over time, based on what VAMOS is measuring
- Inclusion of precise deformation as a function of the angle for energy loss estimate

- Conclusions

Conclusions

In conclusion:

- The reaction is clearly populated and the fragments identified
- All problematic aspects can, in principle, be accounted for
- A solid (in my opinion) analysis strategy has been proposed

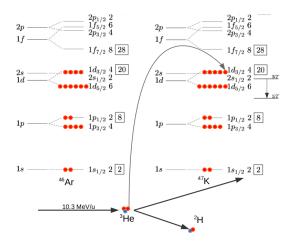
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Only 1/3 of the statistics acquired in very fragmented conditions: scientific outcome at risk

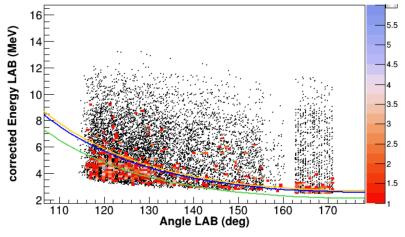
Thank you for your attention

Overview

Introduction Scientific Motivation What we aim for The physics The Observables The current (preliminary) status VAMOS VAMOS+TARGET MUGAST γ spectra The analysis strategy Simulating the response of AGATA Future improvements Conclusions Summary


∃ ► < ∃ ►</p>

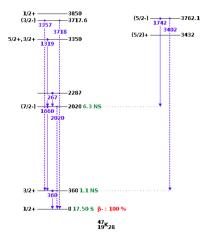
э


Backup Slides

(ロ)、(型)、(E)、(E)、 E) の(()

Simplistic Shell model picture

Protons vs Deuterons


 \blacktriangleright d gate traced without VAMOS \Longrightarrow more noise

No kinematic line for protons (three body process)

e768s Experiment analysis report

Summary

⁴⁷K level scheme

