

GRIT

Granularity, Resolution, Identification, Transparency Status and timelines

D.Beaumel, IPN Orsay

GRIT 2019 meeting, Firenze, 9-11 oct, 2019

The GRIT project

(Granularity, Resolution, identification, Transparency)

 4π Si array fully integrable in AGATA & PARIS

Detectors for GRIT

Detectors for the first layer

- Trapezoid and squared geometries
- 6" wafers, 128 X + 128 Y
- Special packaging: very thin frame
- Kapton readout, ~90° w/r surface
- > NTD, random cut, reverse mount
- Thin and thick

Trapezoidal DSSD

Commissioned:

- ✓ 2 prototypes 500um IPNO
- ✓ 4 pre-series (Surrey U., IPNO, Santiago) (MICRON SC Ltd., UK)

Squared DSSD

Commissioned :

 ✓ 2 prototypes 500um INFN (MICRON SC Ltd, UK)

Under development

✓ 2 proto 500 um BARC Mumbai
 (Semiconductor Lab , Chandigarh, India)

Detectors for the second layer to be developed

Visit to Micron SL (May 2019)

PLAN

- > 2 thin trapezoids for next MUGAST campaign (2019)
- ➢ NRF+protos of 2nd layer, 1.5 mm thick, Trapez. and Square. (2019)
- Serial detectors (2020~2025)

Support from Normandy region (Grant of F.Flavigny)

R&D on Pulse Shape Discrimination

Initial detector:

- 500 um nTD DSSD
- 128X+128Y, 8° cut
- Pitch<500um
- **Special packaging**

New data under analysis

- Test of PSD with trapezoid
- Effect of radiation damage

Crucial to set electronics specs. (e.g. sampling rate,...)

Electronics of GRIT

BUILDING BLOCKS

GLOBAL SCHEME

ASIC version of the PACI preamp. (IPNO)
 + TOT preamp ASIC for 2nd layer (Milano)

- PLAS Analog memory circuit R.Aliaga et al., NIM A800(2015) Fast sampling analog memory (200Mhz) Version 1 available Version 2 to be submitted LPC Caen now in charge Change of technology required
- FASTER backend

GRIT Mechanical design

Constraints

- AGATA inner radius = 23cm
- Transparency to gamma-rays
- Special targets integration (CHyMENE, Orsay He)
- 7000 electronics channels
 FEE under vacuum -> few KW
 Connectics and feedthroughs

- Preliminary detailed design was achieved
- Final version to be completed (IPN Orsay)

Special targets for GRIT

The Orsay Helium target

Cooled gas cell at T~ 5K ⁴He and ³He versions

Reactions with ^{3,4}He probe

- (³He,d) proton shell evolution
- (³He,p) for np pairing
- (⁴He,³He) for neutron shells selective for high-L orbitals Complementary to (d,p)

Ø 16 mm, 2-3mm-thick cell Havar windows 3.8µm T = 5K , P = 1 bar

Status:

- ³He version has been developed
- Used in MUGAST-AGATA campaign at GANIL

The CHyMENE system

Continuous extrusion of ¹H or ²H through an extruder nozzle

<u>Collaboration</u>: CEA/IRFU Saclay (*project coordinator: A. Gillibert*) CEA/DAM Bruyères, IPN Orsay Funded by the French agency ANR **Suppresion of ¹²C-induced background** (in CH2 and CD2 targets)

- Tested under beam at ALTO in May 2019 20 and 100 μm ¹H
- ²H version to be developed

Gantt chart for GRIT development and construction

Major developments

> Si detectors

In close collaboration with MSL (UK), and Mumbai (SLC Chandigharg, India)

Electronics

Main developments by In2p3 IT's (iPACi, PLAS, boards, connectics) and use of FASTER backend (LPCC)

Mechanics

Challenging design (Detectors, targets and FEE integration, cooling, connectics),

to be performed at IPN Orsay

MUGAST: an intermediate step towards GRIT

MUGAST: - New detectors of GRIT + MUST2 electronics + few telescopes - Coupled with AGATA @ VAMOS

⇒ First High resolution Direct Reactions studies at Ganil (SPIRAL1 beams)

A MUGAST-EXOGAM configuration

(Conceptual design)

EXOGAM

2 configurations with 16 detectors : with(B) or w/o(A) side shield

	Photopeak (%	efficiency 6)	Peak-t (9	D _{target} (mm)	
	662 keV	1.3 MeV	662 keV	1.3 MeV	
EXOGAM configuration A ^a	28	20	57	47	115
EXOGAM configuration B ^b	17	12	72	60	150
Gamma-Cube ^c	15	10	72	60	68

(GEANT calc.)

Present: MUGAST@GANIL/VAMOS

First step towards GRIT

Positive scientific evaluations

- ✓ GANIL PAC
- ✓ GANIL Scientific committee
- ✓ IPNO Scientific committee
- Selected for AGATA campaigns at GANIL in 2019 and 2020

Next Step: MUGAST@GANIL/LISE

A new compact, 2-layer Si configuration 12 EXOGAM modules at 15cm from target

- Detectors for 2nd layer (1.5mm) Status: to be ordered in 2019-20
- New chamber /connectics Status: Designed / to be designed

	2019	2020	2021	2022	2023	2024 ~
MUGAST@VAMOS						
MUGAST@LISE						
GRIT (SPES, GANIL Isolde,Ariel, RIKEN, FAIR ?						