Improving the perturbative accuracy of TMD distributions: formalism

Valerio Bertone

INFN and Università di Pavía
In collaboration with:
Alessandro Bacchetta, Chíara Bíssolottí, Gíuseppe Bozzí, Fulvio Píacenza, Marco Radicí

Istituto Nazionale di Fisica Nucleare

July 8, 2019, Cagliari

MAPPING THE PROTON IN 3D

Introduction

- The q_{T} distribution of a generic high-mass (Q) system produced in hadronic collisions has two main regimes:
- for $q_{\mathrm{T}} \gtrsim Q$ collinear factorisation at fixed perturbative order is appropriate:

$$
\left(\frac{d \sigma}{d q_{T}}\right)_{\text {f.o. }}=\int_{0}^{1} d x_{1} \int_{0}^{1} d x_{2} f_{1}\left(x_{1}, Q\right) f_{2}\left(x_{2}, Q\right) \frac{d \hat{\sigma}}{d q_{T}}+\mathcal{O}\left[\left(\frac{\Lambda_{\mathrm{QCD}}}{Q}\right)^{n}\right]
$$

- for q_{T} < Q transverse-momentum-dependent (TMD) factorisation at fixed logarithmic accuracy is appropriate:
$\left(\frac{d \sigma}{d q_{T}}\right)_{\text {res. }} \stackrel{\mathrm{TMD}}{=} \sigma_{0} H(Q) \int d^{2} \mathbf{b}_{T} e^{i \mathbf{b}_{T} \cdot \mathbf{q}_{T}} F_{1}\left(x_{1}, \mathbf{b}_{T}, Q, Q^{2}\right) F_{2}\left(x_{2}, \mathbf{b}_{T}, Q, Q^{2}\right)+\mathcal{O}\left[\left(\frac{q_{T}}{Q}\right)^{m}\right]$
- Collinear and TMD factorisations may eventually be matched to produce accurate results over the the full q_{T} spectrum.

TMD factorisation

- TMD factorisation introduces two independent artificial scales:
- the renormalisation scale $\boldsymbol{\mu}$, originating from UV renormalisation,
- the rapidity scale ζ, originating from the cancellation of the rapidity divergencies.
- The respective evolution equations are:
$\frac{\partial \ln F}{\partial \ln \sqrt{\zeta}}=K(\mu)$
$\frac{\partial \ln F}{\partial \ln \mu}=\gamma_{F}\left(\alpha_{s}(\mu)\right)-\gamma_{K}\left(\alpha_{s}(\mu)\right) \ln \frac{\sqrt{\zeta}}{\mu}$
with: $\quad \frac{\partial K}{\partial \ln \mu}=-\gamma_{K}\left(\alpha_{s}(\mu)\right)$
- In addition, for small values of b_{T}, TMDs can be matched on coll. PDFs:

$$
F(\mu, \zeta)=C(\mu, \zeta) \otimes f(\mu)
$$

- The solution is:
$F(\mu, \zeta)=\exp \left\{K\left(\mu_{0}\right) \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_{0}}}+\int_{\mu_{0}}^{\mu} \frac{d \mu^{\prime}}{\mu^{\prime}}\left[\gamma_{F}\left(\alpha_{s}\left(\mu^{\prime}\right)\right)-\gamma_{K}\left(\alpha_{s}\left(\mu^{\prime}\right)\right) \ln \frac{\sqrt{\zeta}}{\mu^{\prime}}\right]\right\} C\left(\mu_{0}, \zeta_{0}\right) \otimes f\left(\mu_{0}\right)$
Anomalous dims. and matching funcs. perturbatively computable.

TMD factorisation

- TMD factorisation introduces two independent artificial scales:
- the renormalisation scale $\boldsymbol{\mu}$, originating from UV renormalisation,
- the rapidity scale ζ, originating from the cancellation of the rapidity divergencies.
- The respective evolution equations are:
$\frac{\partial \ln F}{\partial \ln \sqrt{\zeta}}=K(\mu)$
$\frac{\partial \ln F}{\partial \ln \mu}=\gamma_{F}\left(\alpha_{s}(\mu)\right)-\gamma_{K}\left(\alpha_{s}(\mu)\right) \ln \frac{\sqrt{\zeta}}{\mu}$
with: $\quad \frac{\partial K}{\partial \ln \mu}=-\gamma_{K}\left(\alpha_{s}(\mu)\right)$
- In addition, for small values of b_{T}, TMDs can be matched on coll. PDFs:

$$
\begin{aligned}
& \text { Matching } \\
& \text { onto collinear } \\
& F(\mu, \zeta)=C(\mu, \zeta) \otimes f(\mu)
\end{aligned}
$$

- The solution is:

Evolution (Sudakov) factor
$F(\mu, \zeta)=\exp \left\{K\left(\mu_{0}\right) \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_{0}}}+\int_{\mu_{0}}^{\mu} \frac{d \mu^{\prime}}{\mu^{\prime}}\left[\gamma_{F}\left(\alpha_{s}\left(\mu^{\prime}\right)\right)-\gamma_{K}\left(\alpha_{s}\left(\mu^{\prime}\right)\right) \ln \frac{\sqrt{\zeta}}{\mu^{\prime}}\right]\right\} C\left(\mu_{0}, \zeta_{0}\right) \otimes f\left(\mu_{0}\right)$
Anomalous dims. and matching funcs. perturbatively computable.

TMD factorisation

- The single TMD distributions are then given by:

- CS and RGE evolution,
- evolution to large b_{T},
- perturbative.

TMD factorisation

- When integrating over b_{T}, large values of b_{T} give raise to low scales in the non-perturbative region.
- Introduce the so-called $\mathbf{b} *$-prescription:

$$
b_{*}\left(b_{T}\right)=\frac{b_{T}}{\sqrt{1+b_{T}^{2} / b_{\max }^{2}}}
$$

and rewrite:

$$
F\left(x, b_{T}, \mu, \zeta\right)=\left[\frac{F\left(x, b_{T}, \mu, \zeta\right)}{F\left(x, b_{*}\left(b_{T}\right), \mu, \zeta\right)}\right] F\left(x, b_{*}\left(b_{T}\right), \mu, \zeta\right) \equiv f_{\mathrm{NP}}\left(x, b_{T}, \zeta\right) F\left(x, b_{*}\left(b_{T}\right), \mu, \zeta\right)
$$

TMD factorisation

- When integrating over b_{T}, large values of b_{T} give raise to low scales in the non-perturbative region.
- Introduce the so-called \mathbf{b} *-prescription:

$$
b_{*}\left(b_{T}\right)=\frac{b_{T}}{\sqrt{1+b_{T}^{2} / b_{\max }^{2}}}
$$

and rewrite:

Purely perturbative

$$
\left.F\left(x, b_{T}, \mu, \zeta\right)=\left[\frac{F\left(x, b_{T}, \mu, \zeta\right)}{F\left(x, b_{*}\left(b_{T}\right), \mu, \zeta\right)}\right] F\left(x, b_{*}\left(b_{T}\right), \mu, \zeta\right) \equiv f_{\mathrm{NP}}\left(x, b_{T}, \zeta\right) F\left(x, b_{*}\left(b_{T}\right), \mu, \zeta\right)\right)
$$

Non-perturbative,

- Properties of f_{NP} : determine from data
- has to go to one as b_{T} goes to zero: reproduce the fully perturbative regime,
- has to got to zero as b_{T} becomes large: mimic the Sudakov suppression.
- Bottom line: avoidance of the non-perturbative region upon integration in b_{T} implies the presence of both $b *$-prescription and f_{NP}.

TMD factorisation

- Final expression:

$$
\begin{aligned}
& F_{f / P}\left(x, \mathbf{b}_{T} ; \mu, \zeta\right)=\sum_{j} C_{f / j}\left(x, h_{\circledast} ; \mu_{b}, \zeta_{F}\right) \otimes f_{j / P}\left(x, \mu_{b}\right) \\
& \exp \left\{K\left(q_{\circledast} ; \mu_{b}\right) \ln \frac{\sqrt{\zeta_{F}}}{\mu_{b}}+\int_{\mu_{b}}^{\mu} \frac{d \mu^{\prime}}{\mu^{\prime}}\left[\gamma_{F}-\gamma_{K} \ln \frac{\sqrt{\zeta_{F}}}{\mu^{\prime}}\right]\right\} \\
& \exp \left\{g_{j / P}\left(x, b_{T}\right)+g_{K}\left(b_{T}\right) \ln \frac{\sqrt{\zeta_{F}}}{\sqrt{\zeta_{F, 0}}}\right\} \\
& \text { - CS and RGE evolution, } \\
& \text { - evolution to large } b_{\mathrm{T}} \text {, } \\
& \text { - } f_{\mathrm{NP}} \text { accounts for the introduction of } b * \text {, } \\
& \text { - perturbative. } \\
& { }^{\ominus} f_{\mathrm{NP}} \text { is non-perturbative thus fit to data. }
\end{aligned}
$$

TMD factorising processes

- Processes for which leading-power TMD factorisation has been proven:

Drell-Yan

$P P \longrightarrow \ell^{ \pm} \ell^{\mp} X$

- Two TMD PDFs:

Lots of data:

- low-energy: FNAL,
- mid-energy: RHIC,
- high-energy:

Tevatron, LHC.

- COMPASS at CERN.
- HERMES at DESY,
$e^{+} e^{-}$annihilation

Semi-inclusive DIS

$$
P \ell^{ \pm} \longrightarrow \ell^{ \pm} h X
$$

- One TMD PDF one FF:
- many precise data points:

$\ell^{ \pm} \ell^{\mp} \rightarrow h_{1} h_{2} X$
- Two TMD FFs:
di-hadron prod. from:
- BABAR at SLAC.

Logarithmic counting

- TMD factorisation provides resummation of large $\operatorname{logs} L=\log \left(q_{\mathrm{T}} / Q\right)$:
- implemented through the Sudakov form fact R.
- A perturbative expansion in powers of α_{s} of R would give:

$$
\begin{aligned}
\text { One Sudakov } \\
\text { for each TMD }
\end{aligned} R^{2}=\sum_{n=0}^{\infty} a_{s}^{n} \sum_{k=1}^{2 n} \widetilde{S}^{(n, k)} L^{k} \text { Double-log expansion }
$$

- that can be rearranged as:
$R^{2}=\sum_{m=0}^{\infty} R_{\mathrm{N}^{\mathrm{m} L L}}^{2} \quad$ with $\quad R_{\mathrm{N}^{\mathrm{m} L L}}^{2}=\sum_{n=[m / 2]) \text { Integer part of } \mathrm{m} / 2}^{\infty} \widetilde{S}^{(n, 2 n-m)} a_{s}^{n} L^{2 n-m}$
- Therefore, multiplying R by a power p of α_{s} gives:

$$
a_{s}^{p} R_{\mathrm{N}^{\mathrm{m} L L}}^{2}=\sum_{j=[(m+2 p) / 2]}^{\infty} \widetilde{S}^{(j-p, 2 j-(m+2 p))} a_{s}^{j} L^{2 j-(m+2 p)} \sim R_{\mathrm{N}^{\mathrm{m}}+2 \mathrm{PLL}}^{2}
$$

- Bottom line: any additional power of α_{s} causes a shift of two units in the logarithmic ordering.

Logarithmic counting

Accuracy	γ_{K}	γ_{F}	K	$C_{f f j}$	H
LL	α_{s}	-	-	1	1
NLL	$\alpha_{s}{ }^{2}$	α_{s}	α_{s}	1	1
NLL	$\alpha_{s}{ }^{2}$	α_{s}	α_{s}	α_{s}	α_{s}
$\mathrm{~N}^{2} \mathrm{LL}$	$\alpha_{s}{ }^{3}$	$\alpha_{s}{ }^{2}$	$\alpha_{s}{ }^{2}$	α_{s}	α_{s}
$\mathrm{~N}^{2} \mathrm{LL}$,	$\alpha_{s}{ }^{3}$	$\alpha_{s}{ }^{2}$	$\alpha_{s}{ }^{2}$	$\alpha_{s}{ }^{2}$	$\alpha_{s}{ }^{2}$
$\mathrm{~N}^{3} \mathrm{LL}$	$\alpha_{s}{ }^{4}$	$\alpha_{s}{ }^{3}$	$\alpha_{s}{ }^{3}$	$\alpha_{s}{ }^{2}$	$\alpha_{s}{ }^{2}$

$$
\left(\frac{d \sigma}{d q_{T}}\right)_{\text {res. }} \quad \stackrel{\mathrm{TMD}}{=} \quad \sigma_{0} H(Q) \int d^{2} \mathbf{b}_{T} e^{i \mathbf{b}_{T} \cdot \mathbf{q}_{T}} F_{1}\left(x_{1}, \mathbf{b}_{T}, Q, Q^{2}\right) F_{2}\left(x_{2}, \mathbf{b}_{T}, Q, Q^{2}\right)+\mathcal{O}\left[\left(\frac{q_{T}}{Q}\right)^{m}\right]
$$

$$
F_{f / P}\left(x, \mathbf{b}_{T} ; \mu, \zeta\right)=\sum_{j} C_{f / j}\left(x, b_{*} ; \mu_{b}, \zeta_{F}\right) \otimes f_{j / P}\left(x, \mu_{b}\right)
$$

$$
\times \quad \exp \left\{K\left(b_{*} ; \mu_{b}\right) \ln \frac{\sqrt{\zeta_{F}}}{\mu_{b}}+\int_{\mu_{b}}^{\mu} \frac{d \mu^{\prime}}{\mu^{\prime}}\left[\gamma_{F}-\gamma_{K} \ln \frac{\sqrt{\zeta_{F}}}{\mu^{\prime}}\right]\right\}
$$

Matching TMD to collinear

- Accurate predictions for all q_{T} 's by additive matching, order by order in perturbation theory, of collinear and TMD calculations:

$$
\left(\frac{d \sigma}{d q_{T}}\right)_{\text {add.match. }}=\left(\frac{d \sigma}{d q_{T}}\right)_{\text {res. }}+\left(\frac{d \sigma}{d q_{T}}\right)_{\text {f.o. }}-\left(\frac{d \sigma}{d q_{T}}\right)
$$

- In order for the match to actually take place:

$$
\left(\frac{d \sigma}{d q_{T}}\right)_{\text {res. }} \underset{\text { f.o. }}{\longrightarrow}\left(\frac{d \sigma}{d q_{T}}\right)_{\text {d.c. }} \underset{T \ll Q}{\overleftarrow{q_{T}}}\left(\frac{d \sigma}{d q_{T}}\right)_{\text {f.o. }}
$$

- Therefore, the "fixed-order" parts have to match in the relevant limits:

Log Accuracy	Minimal f.o. accuracy
NLL^{\prime}	$\alpha_{s}(\mathrm{LO})$
$\mathrm{N}^{2} L^{2}$	$\alpha_{s}(\mathrm{LO})$
$\mathrm{N}^{2} \mathrm{LL}^{\prime}$	$\alpha_{s}{ }^{2}(\mathrm{NLO})$
$\mathrm{N}^{3} \mathrm{LL}$	$\alpha_{s}{ }^{2}(\mathrm{NLO})$

Pavia 2019

Higher-order corrections

- Measurements of q_{T} distributions have reached the sub-percent level uncs.:

- State-of-the-art calculations are thus necessary to hope to describe this data:
- higher-order corrections and possibly matching between TMD and collinear.

Pavia 2019
Higher-order corrections

- Current state-of-the-art: $\mathbf{N}^{3} \mathbf{L L}+\mathbf{N N L O}:$

- required to describe the precise ATLAS Z-production data.
- This data can be used to determine the non-pert. component.

Pavia 2019

Higher-order corrections

- In Pavia, we are actively working to reach the "state-of-the-art" accuracy:
- in fact, in the TMD region we already got there!

- A fast computation of this observable is implemented in a dedicated framework conceived to extract TMD distributions: NangaPargat.

\bigcirc	$\langle>$	D				Kerca	inseris	ciil nome del sito	web						(↔	■
: $:$:	Google	CERN Account	vunet	DFS webpages	Wiki	arXiv	Inspire	WordReference	Mijn Belastingdienst	La Repubblica	II Fatto Quotidiano	Flightradar24	Vidyo	ATLAS Results	CMS Results		

Nanga Parbat ${ }^{0.1 .0}$

A TMD fitting framework
Main Page Namespaces ~ Classes - Files * Examples
Nanga Parbat Documentation

Nanga Parbat: to the top of TMDs

Nanga Parbat is a fitting framework aimed at the determination of the non-perturbative component of the TMD distributions.

Download

You can obtain NangaParbat directly from the github repository:

- The fitting framework based on APFEL++ and that is currently being developed by the Pavia's group to extract TMD PDFs and FFs.

Under development, it will eventually be publicly available.

Pavia 2019

SIDIS studies: q_{T}-integrated multiplicities

- Let us start considering $\boldsymbol{q}_{\mathrm{T}}$-integrated SIDIS multiplicities:

$$
M^{h}\left(x, z, Q^{2}\right)=\frac{d^{3} \sigma^{h} / d x d z d Q^{2}}{d^{2} \sigma / d x d Q^{2}}
$$

- computable in collinear factorisation (to $O\left(\alpha_{\mathrm{s}}\right)$.

- This works pretty nicely.

This data has actually be included in the DSS14 fit of collinear FFs.

Pavia 2019
SIDIS studies: q_{T}-differential multiplicities

- Now, let us have a look at $\boldsymbol{q}_{\mathrm{T}}$-differential SIDIS multiplicities:

$$
\bar{M}^{h}\left(x, z, Q^{2}, q_{T}\right)=\frac{d^{3} \sigma^{h} / d x d z d Q^{2} d q_{T}^{2}}{d^{2} \sigma / d x d Q^{2}}
$$

- TMD factorisation at small q_{T}, collinear factorisation at large q_{T}.
- Utterly off!

- Unlikely that non-perturbative effects can accommodate such differences.

How comes that q_{T}-integrated works and q_{T}-differential does not?

Pavia 2019
 SIDIS studies: q_{T}-differential multiplicities

- One may try to integrate analytically the $O\left(\alpha_{\mathrm{s}}\right)$ fixed-order q_{T}-diff:

$$
\int d q_{T}^{2} \frac{d^{3} \sigma^{h}}{d x d z d Q^{2} d q_{T}^{2}}=\frac{d^{3} \sigma^{h}}{d x d z d Q^{2}}
$$

- This should give the q_{T}-integrated cross section that we know to work.
- If one tries, one finds that this is not the case:
- the general finding is that all terms involving virtuals $\left(q_{\mathrm{T}}=0\right)$ are absent,
- most noticeably, and somewhat expectedly, the $\boldsymbol{O}(\mathbf{1})$ contribution is not there.
- One can the try to reintroduce this terms by expanding the resummed cross section and retain only the terms proportional to $\boldsymbol{\delta}\left(\boldsymbol{q}_{\mathrm{T}}\right)$:
- this reproduces the $O(1)$ term but at $O\left(\alpha_{s}\right)$ this is not enough yet,
- threshold-enhanced terms are still missing from the $O\left(\boldsymbol{\alpha}_{\mathrm{s}}\right)$ corrections,
soft-gluon (threshold) resummation may help (?).

Pavia 2019 SIDIS studies: q_{T}-differential multiplicities

- Bottom line:
- the origin of the discrepancy between data and theory for q_{T}-differential multiplicities may very well be in the denominator.
- Are we (theorists) dividing q_{T}-differential cross sections by the right quantity?
- A multiplicity has to be a quantity that integrated over q_{T} and z should give one.
- Is that really the case for theoretical predictions?
- This is clearly not a trivial question to ask:
- integrating over q_{T} requires being able to compute predictions over the full range.
- This brings into play the question of matching TMD and collinear regimes.

Pavia 2019

SIDIS studies: q_{T}-differential multiplicities

- Further indication:

- HERA absolute cross sections are fairly described fixed-order $O\left(\alpha_{s}{ }^{2}\right)$:
caveat: $\sqrt{S}=300 \mathrm{GeV}$, large energy.

Pavia 2019

SIDIS studies: q_{T}-differential multiplicities

- My personal opinion: SIDIS multiplicities have to be carefully understood before they are included in a fit of PDFs/FFs:

[arXiv:1905.03788]

Pavia 2019

SIDIS studies: q_{T}-differential multiplicities

- My personal opinion: SIDIS multiplicities have to be carefully understood before they are included in a fit of PDFs/FFs:

Pavia 2019
SIDIS studies: q_{T}-differential multiplicities

- My personal opinion: SIDIS multiplicities have to be carefully understood before they are included in a fit of PDFs/FFs:

Pavia 2019
SIDIS studies: q_{T}-differential multiplicities

- My personal opinion: SIDIS multiplicities have to be carefully understood before they are included in a fit of PDFs/FFs:

Conclusions

- TMD factorisation provides a valuable tool to descrive q_{T} distributions at small values of q_{T} (resummation of large logs),
- Non-perturbative component of TMDs to be determined from data.

A lot of effort is being invested on the extraction of TMD PDFs and FFs:

- wide and precise datasets (COMPASS, HERMES, LHC and Tevatron exps.),
- state-of-the-art theoretical computation ($\mathrm{N}^{3} \mathrm{LL}$ at small q_{T}),
- SIDIS multiplicities from COMPASS and HERMES are challenging:
- neither TMD nor collinear factorisations seem to describe them,
- more corrections needed (e.g. soft-gluon resummation)?
- or just a matter of properly define the observable on the theoretical side?

Backup

Matching Collinear and TMD frameworks

- Referring to colourless final-state processes, the description of q_{T} dependent observables is based on two well-established frameworks: - the TMD framework for $q_{T} \ll Q$,
- the collinear framework for $q_{T} \simeq Q$.
- These two regimes can be matched leading to theoretically possibly accurate predictions over the full range in q_{T}.
- However, assuming that collinear distributions are determined reliably, the very-low q_{T} (TMD) region receives non-perturbative contributions that need to be determined from data.
- A lot of effort has been put into the determination of the TMD non-perturbative component but still far from a general agreement: - different prescriptions (CSS, Parton Branching, Scimemi-Vladimirov, etc.),
- different perturbative orders and orderings,

q_{T} dependence

Collinear and TMD frameworks

- At relatively high energies, the separation between small- and large- q_{T} regimes is unambiguous:
- safe application of the two frameworks in the respective regions,
- just some care required in the transition region $\Lambda_{\mathrm{QCD}} \ll q_{T} \ll Q$ that is however well-defined (dependence on the matching prescription),
- limited effect of the TMD non-perturbative contributions.

$$
d \sigma\left(m \lesssim q_{T} \lesssim Q, Q\right)=W\left(q_{T}, Q\right)+Y\left(q_{T}, Q\right)+O\left(\frac{m}{Q}\right)^{c} d \sigma\left(q_{T}, Q\right)
$$

Matching TMD to collinear

- Multiplicative matching:

$$
\left(\frac{d \sigma}{d q_{T}}\right)_{\text {mult.match. }}=\left(\frac{d \sigma}{d q_{T}}\right)_{\text {res. }} \times\left(\frac{d \sigma}{d q_{T}}\right)_{\mathrm{f.o.}} /\left(\frac{d \sigma}{d q_{T}}\right)
$$

