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Introduction

@ The gr distribution of a generic high-mass (Q) system produced 1n
hadronic collisions has two main regimes:

=

@ for gr = O collinear factorisation at fixed perturbative order 1s appropriate:

<qu>fO / diCl/ defl L, )fQ(x27Q) | O _<AQQCD> _

(<

@ for gr € () transverse-momentum-dependent (TMD) factorisation at

fixed loganithmic accuracy 18 appropriate:

<d—0-> TED OOH(Q)/d2bT€ibT.qTF1($17bT7Q7QQ)F2(x27bT7Q7Q2) —I_O [<%>m]

@ Collinear and T factorisations may eventually be matched to produce

accurate results over the the full gt spectrum.



TMD factorisation

@ 1'MD factorisation introduces two independent artificial scales:

-

@ the renormalisation scale y, originating from UV renormalisation,
@ the rapidity scale (, originating from the cancellation of the rapidity
divergencies.
@ The respective evolution equations are:
Oln F
= K(p)
Oln /¢ , OK
with: 5 = =y (s (u))
Oln F | V¢ o
— ’7F(Ozs(/‘)) o 'VK(O‘S(:U)) n—

Oln p 14

@ In addition, for small values of bt, TMDs can be matched on coll. PDFs:
F(p,¢) = C(p, Q) @ f()

@ lhe solution 1s:

F(u,¢) = exp {K(Mo) In % [ dui [mas(u')) ~ (e () In ﬁ } Clh0, o) ® £(110)

@ Anomalous dims. and matching funcs. perturbatively computable.
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@ In addition, for small values of bt, TMDs can be matched on coll. PDFs:

onmafg?lii%gear F(p,¢) = Cp, ) @ f(1)

@ lhe solution 1s:

Evolution (Sudakov) factor
Pl.0) ~feso { K (o) % v [ [mas(u')) (o))

@ Anomalous dims. and matching funcs. perturbatively computable.



TMD factorisation

@ The single TMD distributions are then given by:

© matching to the collinear region at bt < 1/Aqgcp,

© factorises as fiard (perturbative) and longitudinal (1.e.
collinear, non-perturbative).
© CGS and RGE evolution,
© evolution to large b,
© perturbative.



TMD factorisation

@ When integrating over br, large values of bt give raise to low scales in
the non-perturbative region. "

1 =

l:)max =1 ——

0.8

@ Introduce the so-called b+-prescription:

=
L 06 |

bT ‘ 0.4 |
b*(bT) — \/1 —I_ b?r/b?nax A
@ and rewrite: o 1 2 : i 5 6
F 7b , )
F(maanuaC) — F(aj(’mb*(zT;f lf,)C) F(m, b, (bT),,LL,C) = pr(ZU, bT7 C)F(xﬁb*(bT)alua C)



TMD factorisation
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Non-perturbative,

@ Properties of fne: determine from data

@ has to go to one as br goes to zero: reproduce the fully perturbative regime,
@ has to got to zero as bt becomes large: mimic the Sudakov suppression.

@ Bottom line: avoidance ot the non-perturbative region upon integration
in bt implies the presence of both b«prescription and fnp.



TMD factorisation

@ Final expression:

% Moy CF) @ fi/p (T, 1p)

© matching fo the collinear region at b1 <« 1/Aqcp,

factorisesfas fhard (perturbative) and longitudinal (1.e.
collinear,jnon-perturbative).

(

. ~ @GS and RGE evolution,
© avoid the Landau pole, - evolution to large br,

© Jxp accounts for the mtroduction of b+, & perturbative.
© fnp 1s non-perturbative thus fit to data. 8



TMD factorising processes

@ Processes tor which leading-power 'T'MD factorisation has been proven:

Drell-Yan Semi-inclusive DIS e+e- annihilation

g:l:
V4
X
as
ho
PP s /*/F X prt Y fisz%hthX
@ Two TMD PDFs: @ One TMD PDF one FF: @ Two ITMD FFs:
@ Lots of data: @ many precise data points: @ di-hadron prod. from:
@ low-energy: FNAL, @ HERMES at DESY, @ BELLE at KEK,
@ mid-energy: RHIC, @ COMPASS at CERN. @ BABAR at SLAC.

@ high-energy:
Tevatron, LHC.



Logarithmic counting

@ TMD factorisation provides resummation of large logs . = log(g1/Q):

-

@ 1mplemented through the Sudakov form fact R.

@ A perturbative expansion in powers of a;of R would give:

One Sudakov _’B@ > @tm Double-log expansion
for each TMD = Z g Z SV L
n=0 k=1

@ that can be rearranged as:

O ®.@)
R2 — Z R12\ImLL with Rlz\ImLL _— Z S(n’2n_m) a,?L2n_m
m=0 (n=[m/2]) Integer part of m/2
@ l'herefore, multiplying R by a power p of o, gives:
o0

agRQNmLL _ Z G(i—p,2j—(m+2p)) agL2j—(m+2p) ~ Rlz\lmL
j=[(m+2p)/2]

@ Bottom line: any additional power of as causes a shift of two units in
the logarithmic ordering.



Logarithmic counting
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Matching TMD to collinear

@ Accurate predictions for all g7’s by additive matching, order by order
in perturbation theory, of collinear and TMD calculations:

(d_0> _ (dg> N (d_0> _
dQT add.match. dQT res. dQT f.o.

@ In order for the match to actually take place:

( do ) ( do )
_ SN YA _
dQT res. f.o. 97 < dC]T f.o.

@ lheretfore, the “fixed-order” parts have to match 1n the relevant limats:

Log Accuracy Minimal f.o0. accuracy
NLL’ as (LO)
N2LL as (LO)
N2LL’ as? (NLO)
N3LL o2 (NLO)
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Higher-order corrections

@ Measurements of gt distributions have reached the sub-percent level uncs.:
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@ State-of-the-art calculations are thus necessary to hope to describe this data:

-

@ higher-order corrections and possibly matching between TMD and collinear.
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Higher-order corrections
® (Current state-of-the-art: N3LL + NNLO:

[10.1007/JHEP12(2018)132]
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® |'his data can be used
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- Collinear

® required to describe the precise AT'LAS {-production data.

to determine the non-pert. component. 4
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Higher-ovder corrections

@ In Pavia, we are actively working to reach the “state-of-the-art” accuracy:

@ 1n fact, in the T'’MD region we already got there!
Vs =13 TeV, Q =Mz, y =0, (NangaParbat/APFEL++)
| | | |

3.5

0) 5 10 15 20 25 30
qr [GeV]

@ A fast computation of this observable 1s implemented 1n a dedicated framework
conceived to extract TMD distributions: NangaPargat. 15



NangaParbat
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Nanga Parbat o.1.0

A TMD fitting framework

Main Page l Namespaces v l Classes v ‘ Files v l Examples ‘

Nanga Parbat Documentation

Nanga Parbat: to the top of TMDs

Nanga Parbat is a fitting framework aimed at the determination of the non-perturbative component of the TMD distributions.

Download

You can obtain NangaParbat directly from the github repository:

The fitting framework based on APFEL++ and that 1s currently
being developed by the Pawvia’s group to extract I'’MD PDFs and FFs.

Under development, it will eventually be publicly available.
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SIDIS studies: gy-integrated multiplcities

@ Let us start considering gr-integrated SIDIS multiplicities:
d3o" /dxdzdQ?
d?c /dxd(Q)?

@ computable in collinear factorisation (to O(aL)).
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his works pretty nicely.

his data has actually be included in the DSS14 fit of collinear FFs.

¢
or Bl
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SIDIS studies: gy-differential multiplicities

@ Now, let us have a look at gr-differential SIDIS multiplicities:

-

M (xa 2 Q27 QT) —

@ TMD factorisation at small gr, collinear factorisation at large gr.

h

d3o™ /dxdzdQ?*dqg

SIDIS mult., x=0.157, 02=20G

d20 | dzdQ?
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1
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102 ' l 1 I
@ Utterly oft! gr [GeV]

@ Unlikely that non-perturbative etfects can accommodate such differences.

@ How comes that gr-integrated works and gr-differential does not?
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SIDIS studhes: qr-differential multiplicities

@ One may try to integrate analytically the O(a,) fixed-order gr-dift:

/ dq% d3 O.h _ d3 O.h

drdzdQ?dq7  dxdzdQ?
@ This should give the gr-integrated cross section that we know to work.
@ If one tries, one finds that this 1s not the case:

@ the general finding 1s that all terms involving virtuals (gr = 0) are absent,

@ most noticeably, and somewhat expectedly, the O(1) contribution 1s not there.

@ One can the try to reintroduce this terms by expanding the resummed
cross section and retain only the terms proportional to 0(gr):

@ this reproduces the O(1) term but at O(ds) this 1s not enough vyet,

@ threshold-enhanced terms are still missing from the O(as) corrections,

@ soft-gluon (threshold) resummation may help (?).
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Pavia 2019
SIDIS studies: gy-differential multiplicities

Bottom line:

@ the origin of the discrepancy between data and theory for gr-ditterential
multiplicities may very well be in the denominator.

Are we (theorists) dividing gr-differential cross sections by the right
quantity?

A multiplicity has to be a quantity that integrated over gt and z should
glve one.

Is that really the case tor theoretical predictions?

This 1s clearly not a trivial question to ask:

@ Integrating over gr requires being able to compute predictions over the full
range.

-

@ This brings into play the question of matching TMD and collinear regimes.
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SIDIS studhes: gr-differential multiphcities

@ Further indication:

o 3

S | , 2
Q 107 T 2<0°<4.5GeV
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[Phys.Rev. D71 (2005) 034013]
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@ HERA absolute cross sections are fairly described fixed-order O(o.?):

@ caveat: Vs = 300 GeV, large energy.
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SIDIS studhes: gr-differential multiphcities

@ My personal opinion: SIDIS multiplicities have to be carefully
understood before they are included in a fit of PDFs/FFs:
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[arXiv:1905.03788]
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SIDIS studies: gr-differential multiphicities

@ My personal opinion: SIDIS multiplicities have to be carefully

understood before they are included in a fit of PDFs/FFs:
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SIDIS studhes: gr-differential multiphcities

@ My personal opinion: SIDIS multiplicities have to be carefully
understood before they are included in a fit of PDFs/FFs:
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SIDIS studhes: gr-differential multiphcities

@ My personal opinion: SIDIS multiplicities have to be carefully
understood before they are included in a fit of PDFs/FFs:
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[arXiv:1905.03788]



Conclusions

@ TMD factorisation provides a valuable tool to descrive gt distributions
at small values of gt (resummation ot large logs),

@ Non-perturbative component of TMDs to be determined from data.

@ Alotof effort 1s being invested on the extraction of TMD PDFs and FFs:

@ wide and precise datasets (COMPASS, HERMES, LHC and Tevatron exps.),

@ state-of-the-art theoretical computation (N3LL at small gr),

@ SIDIS multiplicities from COMPASS and HERMES are challenging:

-

@ neither TMD nor collinear factorisations seem to describe them,

-

@ more corrections needed (e.g soft-gluon resummation)’

@ orjust a matter of properly define the observable on the theoretical side?






Matching
Collmear and TMD frameworks

® Referring to colourless final-state processes, the description of gr

dependent observables 1s based on two well-established frameworks:
® the TMD framework for gr < Q,

® the collinear framework for gr = Q.

® These two regimes can be matched leading to theoretically possibly
accurate predictions over the full range 1n gr.

® However, assuming that collinear distributions are determined
reliably, the very-low g7 (I’ MD) region receives non-perturbative
contributions that need to be determined from data.

® A lot of effort has been put into the determination ot the T'MD

non-perturbative component but still far from a general agreement:

® different prescriptions (GSS, Parton Branching, Scimemi-Vladimirov, etc.),

® different perturbative orders and orderings,
ﬁ



gt dependence
Colhnear and TMD frameworks

® At relatively high energies, the separation between small- and

large-gr regimes 1s unambiguous:
® safe application of the two frameworks in the respective regions,

® just some care required in the transition region Aqcp <€ gr < Q that 1s

however well-defined (dependence on the matching prescription),

® limited eflfect of the TMD non-perturbative contributions.

do(m < qr 5 Q,Q) =W(qr,Q) +Y(qr, Q) +

TMD Collinear/twist-3
Q> Qr 2 Aqep[ @ Qr > Aqcp

\

Aacp << Qr << Q

Qr



Matching TMD to collinear

@ Multiplicative matching:

(d_<f> _ (d_0> y (d_<f> /(c&f)
qu mult.match. dQT res. dQT f.o. qu d.c.



