The 3D structure of the proton and its impact on high-energy precision measurements

giuseppe bozzi

European Research Council

A neither complete nor exhaustive review of something giuseppe bozzi (with the invaluable help of Valerio Bertone and Miguel Echevarria)

Disclaimer

Just a few slides to stimulate discussion and try to anticipate possible future steps for our benchmark

Kind of bird-eye view of different formalisms, without many technical details and with some "dictionary" included

Please forgive and point out any omission/mistake/inaccuracy: slides are meant to be continuously (even real-time!) updated

SCET

effective field theory: high energy d.o.f. integrated out, soft and collinear d.o.f. decouple

SCET

effective field theory: high energy d.o.f. integrated out, soft and collinear d.o.f. decouple

$$A^{\mu} \to A_{s}^{\mu} + A_{c}^{\mu} + A_{\bar{c}}^{\mu} + \dots$$

$$\psi \to \psi_{s} + \psi_{c} + \psi_{\bar{c}} + \dots$$

$$\mathscr{L} = \mathscr{L}_{s} + \mathscr{L}_{c} + \mathscr{L}_{\bar{c}} + \dots$$

$$\sigma \sim Beam(\mu, \nu) \otimes Beam(\mu, \nu) \otimes Soft(\mu, \nu) \otimes Hard(\mu, Q)$$

(DY)

SCE

• effective field theory: high energy d.o.f. integrated out, soft and collinear d.o.f. decouple

 $\begin{array}{l} A^{\mu} \rightarrow A^{\mu}_{s} + A^{\mu}_{c} + A^{\mu}_{\bar{c}} + \dots \\ \psi \rightarrow \psi_{s} + \psi_{c} + \psi_{\bar{c}} + \dots \\ \mathscr{L} = \mathscr{L}_{s} + \mathscr{L}_{c} + \mathscr{L}_{\bar{c}} + \dots \\ (\mathsf{DY}) \qquad \sigma \sim Beam(\mu, \nu) \otimes Beam(\mu, \nu) \otimes Soft(\mu, \nu) \otimes Hard(\mu, Q) \\ @ Beam function directly related to collinear PDF (C x f) \end{array}$

SCE

• effective field theory: high energy d.o.f. integrated out, soft and collinear d.o.f. decouple

 \circ two non-physical scales for renormalisation of UV (μ) and rapidity (ν) divergences

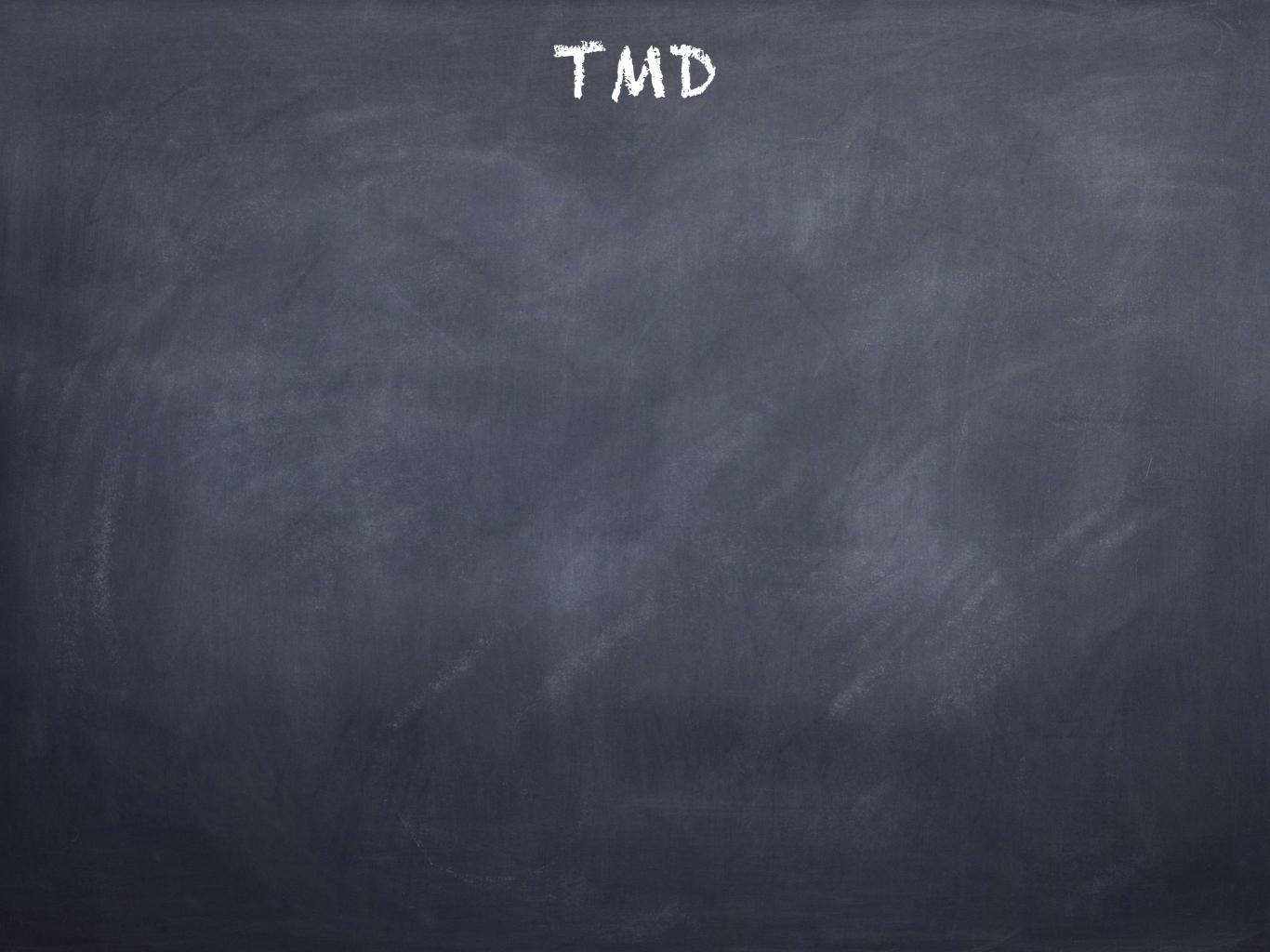
SCET

• effective field theory: high energy d.o.f. integrated out, soft and collinear d.o.f. decouple

 $A^{\mu} \to A^{\mu}_{s} + A^{\mu}_{c} + A^{\mu}_{\bar{c}} + \dots$ $\psi \to \psi_{s} + \psi_{c} + \psi_{\bar{c}} + \dots$ $\mathscr{L} = \mathscr{L}_{s} + \mathscr{L}_{c} + \mathscr{L}_{\bar{c}} + \dots$

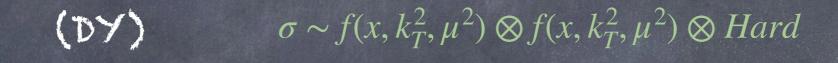
 $(\mathcal{DY}) \quad \sigma \sim Beam(\mu, \nu) \otimes Beam(\mu, \nu) \otimes Soft(\mu, \nu) \otimes Hard(\mu, Q)$

- Beam function directly related to collinear PDF (C x f)
- \circ two non-physical scales for renormalisation of UV (μ) and rapidity (ν) divergences
- \circ ν arises from distinguishing soft modes from collinear modes (connected by Lorentz boost), just as μ arises from distinguishing different virtualities


SCET

effective field theory: high energy d.o.f. integrated out, soft and collinear d.o.f. decouple

 $A^{\mu} \to A^{\mu}_{s} + A^{\mu}_{c} + A^{\mu}_{\bar{c}} + \dots$ $\psi \to \psi_{s} + \psi_{c} + \psi_{\bar{c}} + \dots$ $\mathscr{L} = \mathscr{L}_{s} + \mathscr{L}_{c} + \mathscr{L}_{\bar{c}} + \dots$


 $(\mathcal{DY}) \quad \sigma \sim Beam(\mu,\nu) \otimes Beam(\mu,\nu) \otimes Soft(\mu,\nu) \otimes Hard(\mu,Q)$

- Beam function directly related to collinear PDF (C x f)
- \circ two non-physical scales for renormalisation of UV (μ) and rapidity (ν) divergences
- \circ ν arises from distinguishing soft modes from collinear modes (connected by Lorentz boost), just as μ arises from distinguishing different virtualities
- each function has its own RG evolution: $\frac{d \ln X}{d \ln \mu} = \Gamma_X$ with X = B, H, S leading to resummed predictions and customary formula (next slide)

MB

2D factorisation theorem (SIDIS, DY, e+e-→ hadrons)

2D factorisation theorem (SIDIS, DY, e+e-→ hadrons)

(DY) $\sigma \sim f(x, k_T^2, \mu^2) \otimes f(x, k_T^2, \mu^2) \otimes Hard$

same divergencies -> same RG evolutions as SCET

2D factorisation theorem (SIDIS, DY, e+e-→ hadrons)

(DY) $\sigma \sim f(x, k_T^2, \mu^2) \otimes f(x, k_T^2, \mu^2) \otimes Hard$

same divergencies -> same RG evolutions as SCET

 $f(x, k_T^2, \mu^2) \sim Beam \otimes \sqrt{Soft}$

(DY) $\sigma \sim f(x, k_T^2, \mu^2) \otimes f(x, k_T^2, \mu^2) \otimes Hard$

same divergencies -> same RG evolutions as SCET

$f(x, k_T^2, \mu^2) \sim Beam \otimes \sqrt{Soft}$

· For the Drell-Yan process, SCET and TMD are equivalent

(DY) $\sigma \sim f(x, k_T^2, \mu^2) \otimes f(x, k_T^2, \mu^2) \otimes Hard$

same divergencies -> same RG evolutions as SCET

$f(x, k_T^2, \mu^2) \sim Beam \otimes \sqrt{Soft}$

- · For the Drell-Yan process, SCET and TMD are equivalent
 - $f(x, k_T^2, \mu^2) \otimes f(x, k_T^2, \mu^2) \otimes Hard \sim Beam \otimes Beam \otimes Soft \otimes Hard$

MD

(DY) $\sigma \sim f(x, k_T^2, \mu^2) \otimes f(x, k_T^2, \mu^2) \otimes Hard$

a same divergencies -> same RG evolutions as SCET

$f(x, k_T^2, \mu^2) \sim Beam \otimes \sqrt{Soft}$

· For the Drell-Yan process, SCET and TMD are equivalent

 $f(x, k_T^2, \mu^2) \otimes f(x, k_T^2, \mu^2) \otimes Hard \sim Beam \otimes Beam \otimes Soft \otimes Hard$

Common form (CSS)

MD

(DY) $\sigma \sim f(x, k_T^2, \mu^2) \otimes f(x, k_T^2, \mu^2) \otimes Hard$

same divergencies -> same RG evolutions as SCET

$f(x, k_T^2, \mu^2) \sim Beam \otimes \sqrt{Soft}$

· For the Drell-Yan process, SCET and TMD are equivalent

 $f(x, k_T^2, \mu^2) \otimes f(x, k_T^2, \mu^2) \otimes Hard \sim Beam \otimes Beam \otimes Soft \otimes Hard$

Common form (CSS)

 $\sigma \sim [C \otimes f(x)] Hard [C \otimes f(x)] \exp(S) \exp(S_{NP})$

• 1D (collinear) factorisation theorem

1D (collinear) factorisation theorem

 $\sigma \sim f(x, \mu^2) \otimes f(x, \mu^2) \otimes Hard$

1D (collinear) factorisation theorem

$\sigma \sim f(x, \mu^2) \otimes f(x, \mu^2) \otimes Hard$

 resummation (i.e. factorisation and exponentiation) of softgluon emissions to all orders

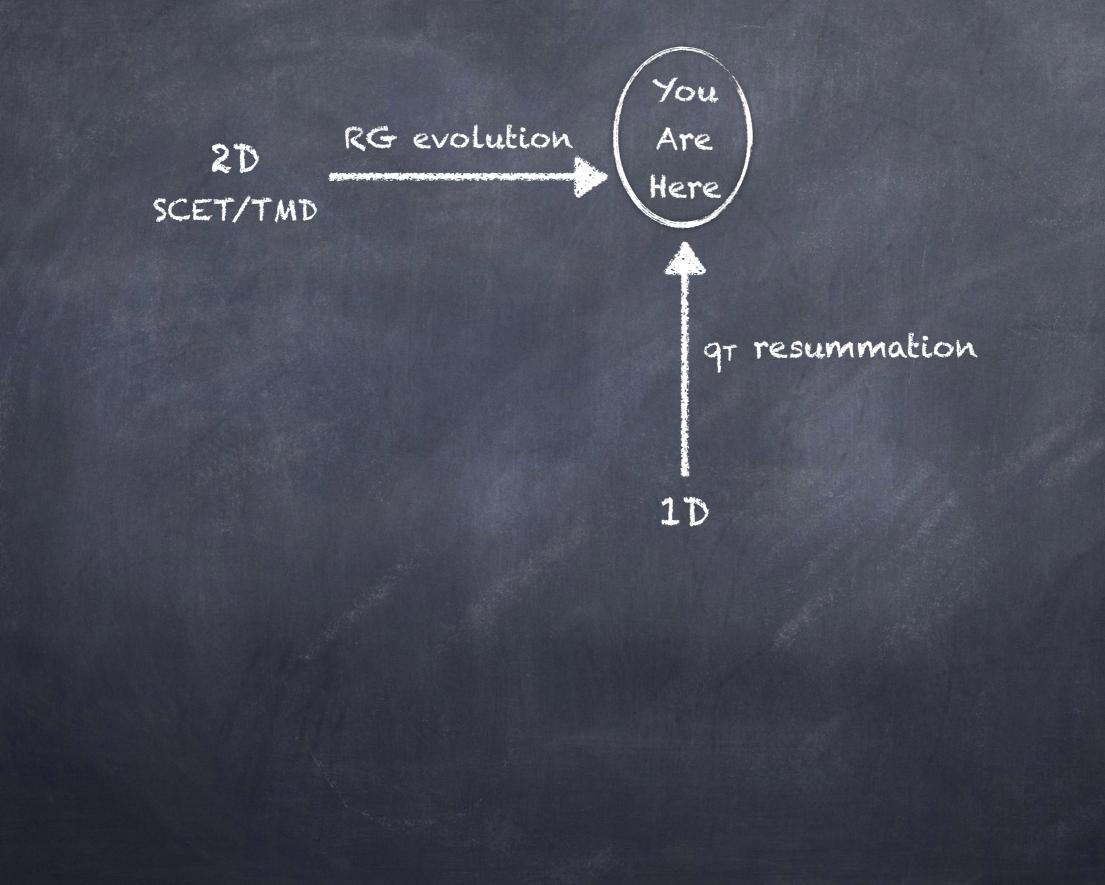
1D (collinear) factorisation theorem

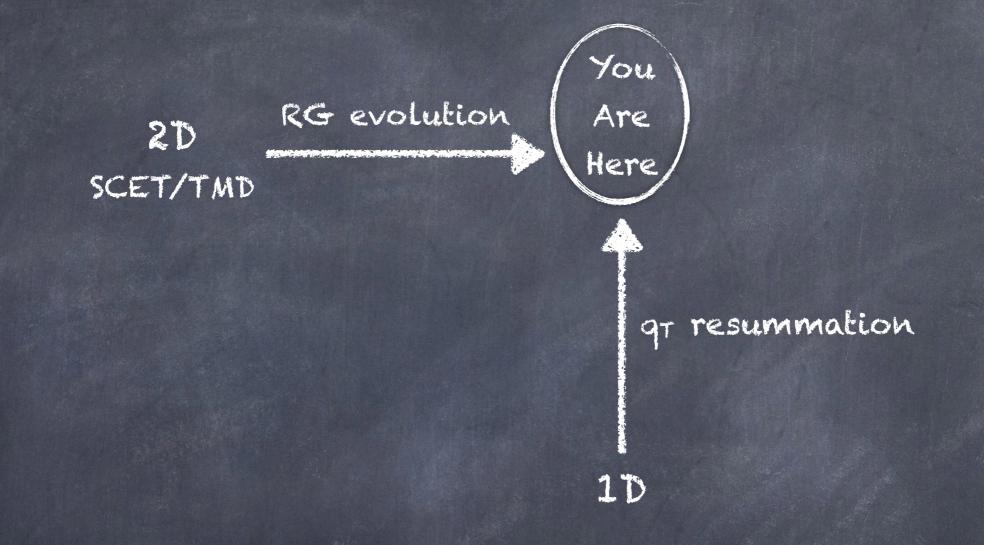
$\sigma \sim f(x, \mu^2) \otimes f(x, \mu^2) \otimes Hard$

- resummation (i.e. factorisation and exponentiation) of softgluon emissions to all orders
- dynamical $(|M_{n-gluons}| \sim |M_{1-gluon}|^n)$ and kinematical (PSn-gluons ~ Tn PS1-gluon) factorisation properties of QCD

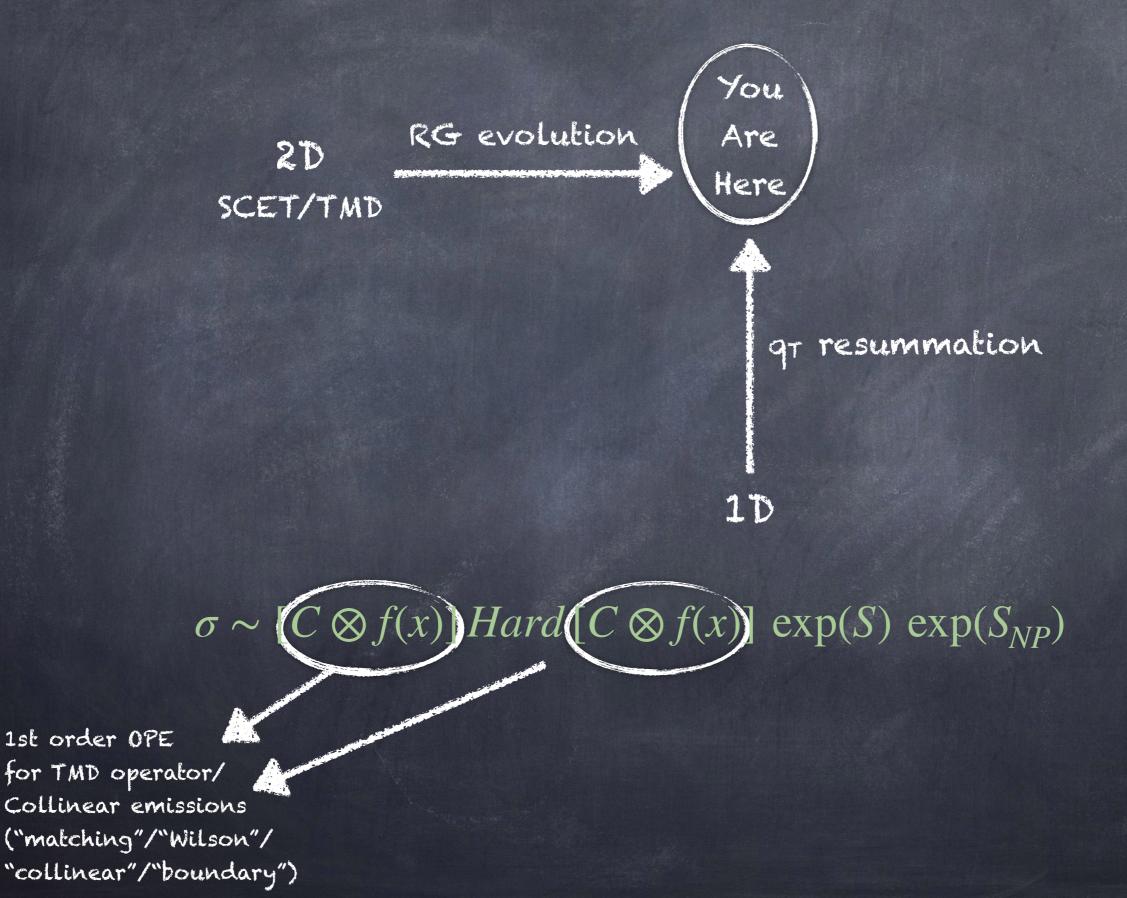
1D (collinear) factorisation theorem

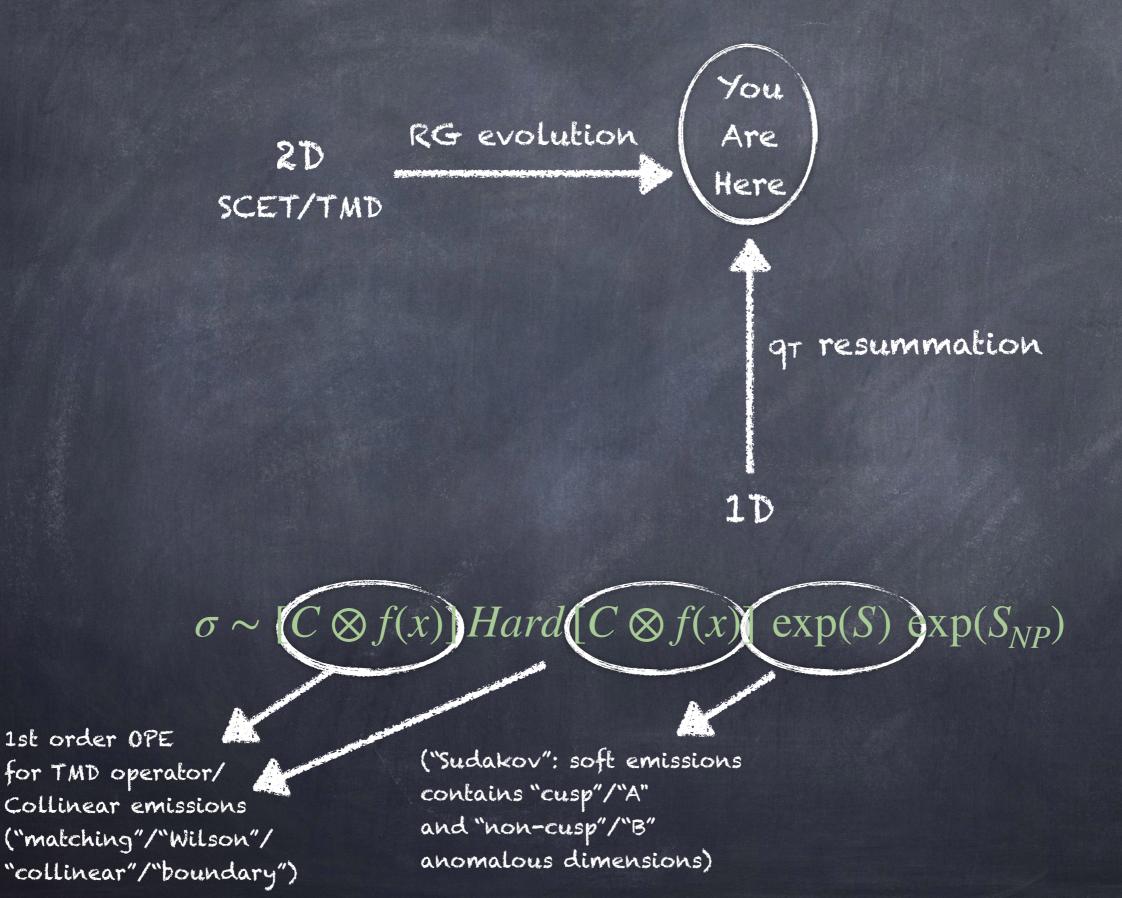
$\sigma \sim f(x, \mu^2) \otimes f(x, \mu^2) \otimes Hard$

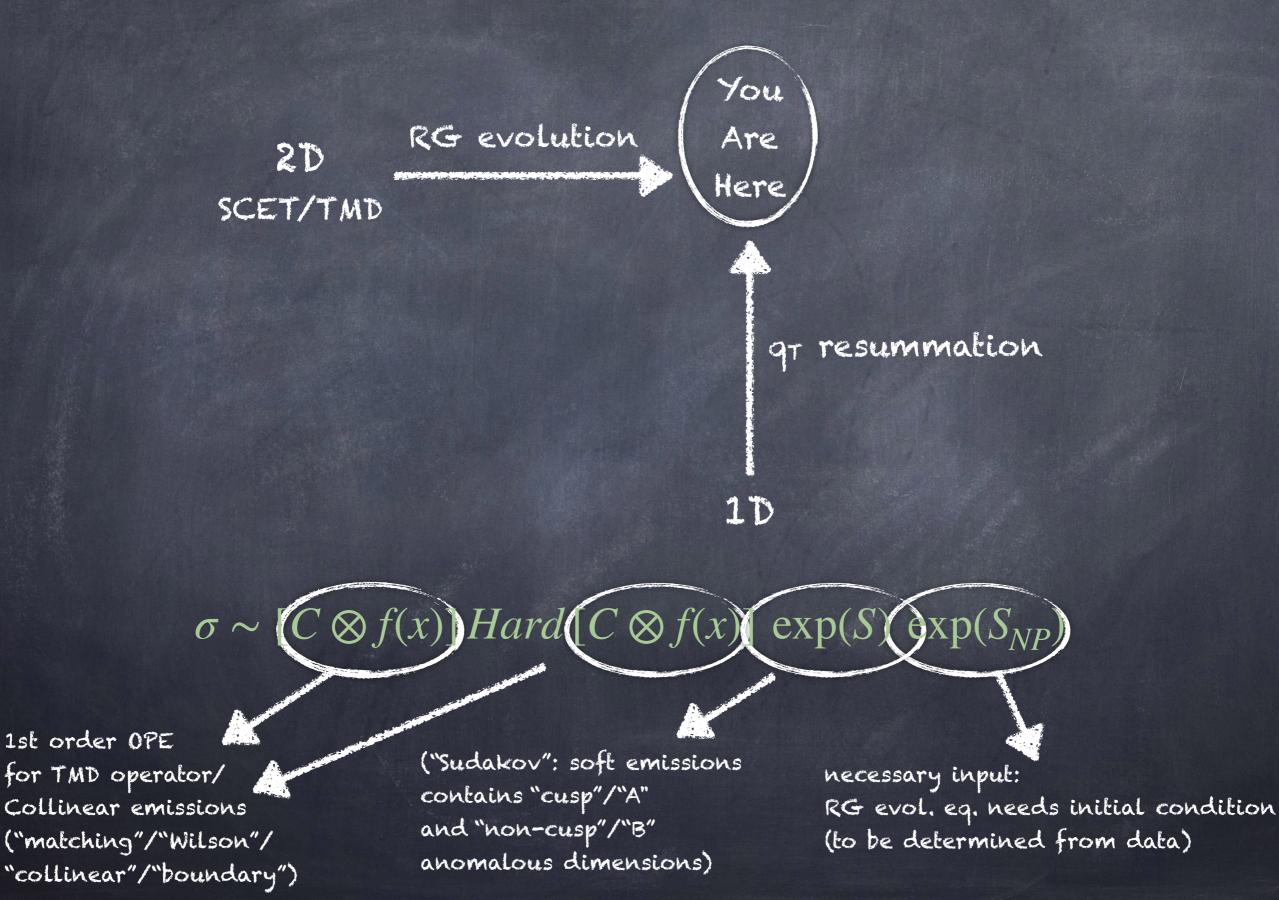

- resummation (i.e. factorisation and exponentiation) of softgluon emissions to all orders
- dynamical $(|M_{n-gluons}| \sim |M_{1-gluon}|^n)$ and kinematical (PSn-gluons ~ Tn PS1-gluon) factorisation properties of QCD
- o identical formula as in the previous slide


1D (collinear) factorisation theorem

$\sigma \sim f(x, \mu^2) \otimes f(x, \mu^2) \otimes Hard$


- resummation (i.e. factorisation and exponentiation) of softgluon emissions to all orders
- dynamical $(|M_{n-gluons}| \sim |M_{1-gluon}|^n)$ and kinematical (PSn-gluons ~ Tn PS1-gluon) factorisation properties of QCD
- o identical formula as in the previous slide


 $\sigma \sim [C \otimes f(x)] Hard [C \otimes f(x)] \exp(S) \exp(S_{NP})$



$\sigma \sim [C \otimes f(x)] Hard [C \otimes f(x)] \exp(S) \exp(S_{NP})$

 parton-shower based: evolution equation with Sudakov factor denoting probability of no-(resolvable)branching

- parton-shower based: evolution equation with Sudakov
 factor denoting probability of no-(resolvable)branching
- difference w.r.t. customary parton-shower: forward evolution (from hadron scale to hard scale) instead of backward evolution

- parton-shower based: evolution equation with Sudakov
 factor denoting probability of no-(resolvable)branching
- difference w.r.t. customary parton-shower: forward evolution (from hadron scale to hard scale) instead of backward evolution
- angular-ordered emissions from initial parton -> nonordered emissions give subleading logs

- parton-shower based: evolution equation with Sudakov
 factor denoting probability of no-(resolvable)branching
- difference w.r.t. customary parton-shower: forward evolution (from hadron scale to hard scale) instead of backward evolution
- angular-ordered emissions from initial parton -> nonordered emissions give subleading logs
- possible to prove formal equivalence with b-space formalism at various accuracies

Codes

- @ SCET: SCETLib, Cute
- TMD: ResBos2, NangaParbat
- @ gT resummation: DYRes/DYTURBO, Resolve
- shower-like: RadISH, PartonBranching

Codes

- · SCET: SCETLib, Cute
- TMD: ResBos2, NangaParbat
- @ qT resummation: DYRes/DYTURBO, Resolve
- shower-like: RadISH, PartonBranching

Basic ingredients (A,B,C functions) common to all codes.

Codes

- · SCET: SCETLib, Cute
- TMD: ResBos2, NangaParbat
- @ gT resummation: DYRes/DYTURBO, Resolve
- shower-like: RadISH, PartonBranching

Basic ingredients (A,B,C functions) common to all codes.

Main differences in:

Codes

- · SCET: SCETLib, Cute
- TMD: ResBos2, NangaParbat
- @ qT resummation: DYRes/DYTURBO, Resolve
- shower-like: RadISH, PartonBranching

Basic ingredients (A,B,C functions) common to all codes. Main differences in:

o working space for resummation/evolution (br or gr)

Codes

- · SCET: SCETLib, Cute
- TMD: ResBos2, NangaParbat
- @ gT resummation: DYRes/DYTURBO, Resolve
- shower-like: RadISH, PartonBranching

Basic ingredients (A,B,C functions) common to all codes. Main differences in:

@ working space for resummation/evolution (b_T or q_T) @ dealing with NP-physics (prescription/cutoff and intrinsic- k_T)

Codes

- · SCET: SCETLib, Cute
- TMD: ResBos2, NangaParbat
- @ gT resummation: DYRes/DYTURBO, Resolve
- shower-like: RadISH, PartonBranching

Basic ingredients (A,B,C functions) common to all codes. Main differences in:

@ working space for resummation/evolution (b_T or q_T) @ dealing with NP-physics (prescription/cutoff and intrinsic- k_T) @ matching with fixed order at intermediate q_T

Differences

Differences

Differences

ogr-space: Low-gr cutoff

Differences

ogr-space: Low-gr cutoff

Obt-space needs either a "freezing"/"saturation" of b (MANY CHOICES for "b*") or a "minimal prescription" (suitable integration path in complex-b plane)

Differences

ogr-space: Low-gr cutoff

Obt-space needs either a "freezing"/"saturation" of b (MANY CHOICES for "b*") or a "minimal prescription" (suitable integration path in complex-b plane)

NP-physics (2): intrinsic-k_T effects

Differences

ogr-space: Low-gr cutoff

obt-space needs either a "freezing"/"saturation" of b (MANY CHOICES for "b*") or a
 "minimal prescription" (suitable integration path in complex-b plane)

ONP-physics (2): intrinsic-kr effects

NP form factor to be determined from data, in principle kinematics- and flavourdependent

Differences

ogt-space: Low-gt cutoff

obt-space needs either a "freezing"/"saturation" of b (MANY CHOICES for "b*") or a "minimal prescription" (suitable integration path in complex-b plane)

ONP-physics (2): intrinsic-kr effects

NP form factor to be determined from data, in principle kinematics- and flavourdependent

omatching with fixed order at intermediate gr

Differences

ogr-space: Low-gr cutoff

obt-space needs either a "freezing"/"saturation" of b (MANY CHOICES for "b*") or a
 "minimal prescription" (suitable integration path in complex-b plane)

ONP-physics (2): intrinsic-kr effects

NP form factor to be determined from data, in principle kinematics- and flavourdependent

omatching with fixed order at intermediate gr

 $\ \ \, \text{multiplicative } \sigma_{res} \left[\frac{\sigma_{fix}}{\sigma_{res}} \right] \quad \text{or additive } \sigma_{res} + \sigma_{fix} - \sigma_{asy} \\ \ \, \text{expanded}$

Differences

ogr-space: Low-gr cutoff

obt-space needs either a "freezing"/"saturation" of b (MANY CHOICES for "b*") or a
 "minimal prescription" (suitable integration path in complex-b plane)

ONP-physics (2): intrinsic-kr effects

NP form factor to be determined from data, in principle kinematics- and flavourdependent

omatching with fixed order at intermediate gr

Image: multiplicative $\sigma_{res} \left[\frac{\sigma_{fix}}{\sigma_{res}} \right]_{expanded}$ or additive $\sigma_{res} + \sigma_{fix} - \sigma_{asy}$

adamping function to switch off resummation/evolution (MANY choices)

Differences

ogr-space: Low-gr cutoff

obt-space needs either a "freezing"/"saturation" of b (MANY CHOICES for "b*") or a
 "minimal prescription" (suitable integration path in complex-b plane)

ONP-physics (2): intrinsic-kr effects

NP form factor to be determined from data, in principle kinematics- and flavourdependent

omatching with fixed order at intermediate gr

$$\sigma$$
multiplicative $\sigma_{res} \left[rac{\sigma_{fix}}{\sigma_{res}}
ight]$ or additive $\sigma_{res} + \sigma_{fix} - \sigma_{asy}$

⊘damping function to switch off resummation/evolution (MANY choices) ⊘unitarity enforcing $\left(\int \frac{d\sigma}{dq_T} dq_T = \sigma\right)$, i.e. modified logs (damping function and NP may spoil it!)

Differences

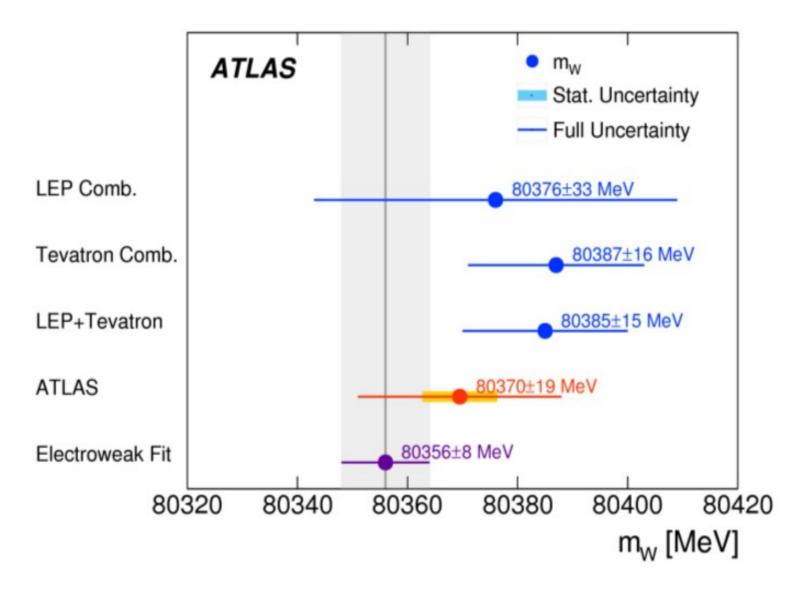
ogr-space: Low-gr cutoff

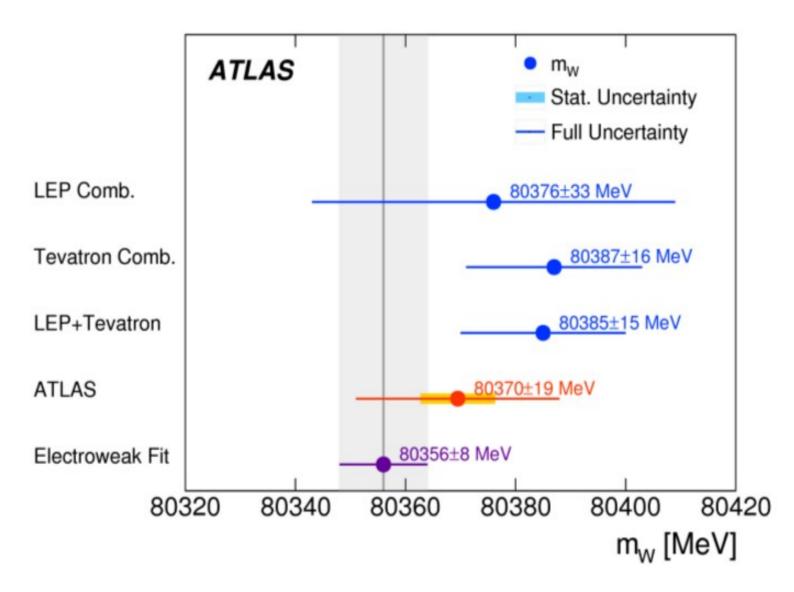
obt-space needs either a "freezing"/"saturation" of b (MANY CHOICES for "b*") or a
 "minimal prescription" (suitable integration path in complex-b plane)

ONP-physics (2): intrinsic-kr effects

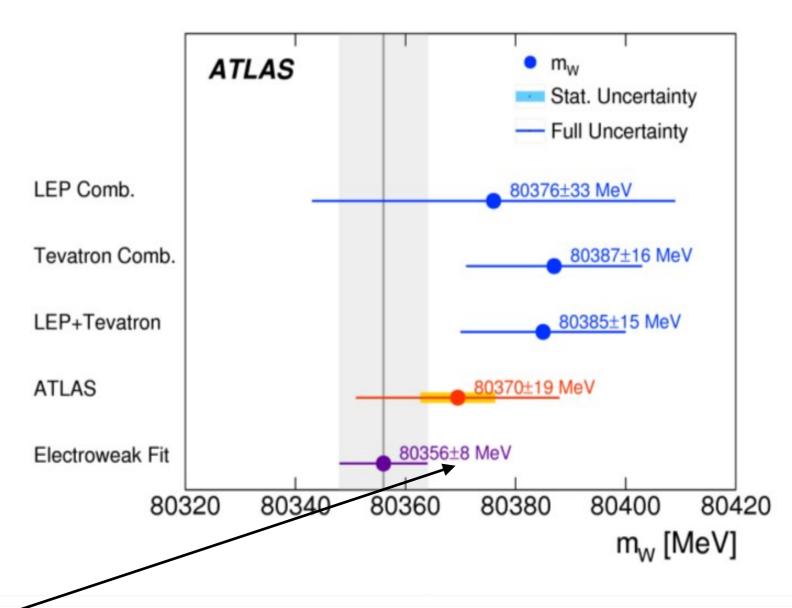
NP form factor to be determined from data, in principle kinematics- and flavourdependent

omatching with fixed order at intermediate gr


$$\sigma$$
multiplicative $\sigma_{res} \left[rac{\sigma_{fix}}{\sigma_{res}}
ight]$ or additive $\sigma_{res} + \sigma_{fix} - \sigma_{asy}$


edamping function to switch off resummation/evolution (MANY choices) eunitarity enforcing $\left(\int \frac{d\sigma}{dq_T} dq_T = \sigma\right)$, i.e. modified logs (damping function and NP may spoil it!) elepton cuts

Impact on precision measurements at the LHC: the W mass case


in collaboration with: A.Bacchetta (Pavia), M. Radici (Pavia), A. Signori (Argonne)

arXiv:1807.02101 - Phys.Lett. B788 (2019) 542-545

The determination of the *W*-boson mass from the global fit of the electroweak parameters has an uncertainty of 8 MeV, which sets a natural target for the precision of the experimental measurement of the mass of the *W* boson. The modelling uncertainties, which currently dominate the overall uncertainty on the m_W measurement presented in this note, need to be reduced in order to fully exploit the larger data samples available at centre-of-mass energies of 8 and 13 TeV. A better knowledge of the PDFs, as achievable with the inclusion in PDF fits of recent precise measurements of *W*- and *Z*-boson rapidity cross sections with the ATLAS detector [41], and improved QCD and electroweak predictions for Drell-Yan production, are therefore crucial for future measurements of the *W*-boson mass at the LHC. **ATLAS**, EPJC 78, 110 (2018)

The determination of the *W*-boson mass from the global fit of the electroweak parameters has an uncertainty of 8 MeV, which sets a natural target for the precision of the experimental measurement of the mass of the *W* boson. The modelling uncertainties, which currently dominate the overall uncertainty on the m_W measurement presented in this note, need to be reduced in order to fully exploit the larger data samples available at centre-of-mass energies of 8 and 13 TeV. A better knowledge of the PDFs, as achievable with the inclusion in PDF fits of recent precise measurements of *W*- and *Z*-boson rapidity cross sections with the ATLAS detector [41], and improved QCD and electroweak predictions for Drell-Yan production, are therefore crucial for future measurements of the *W*-boson mass at the LHC. **ATLAS**, EPJC 78, 110 (2018)

The determination of the *W*-boson mass from the global fit of the electroweak parameters has an uncertainty of 8 MeV, which sets a natural target for the precision of the experimental measurement of the mass of the *W* boson. The modelling uncertainties, which currently dominate the overall uncertainty on the m_W measurement presented in this note, need to be reduced in order to fully exploit the larger data samples available at centre-of-mass energies of 8 and 13 TeV. A better knowledge of the PDFs, as achievable with the inclusion in PDF fits of recent precise measurements of *W*- and *Z*-boson rapidity cross sections with the ATLAS detector [41], and improved QCD and electroweak predictions for Drell-Yan production, are therefore crucial for future measurements of the *W*-boson mass at the LHC. **ATLAS**, EPJC 78, 110 (2018)

Observables

accessible via counting experiments: cross sections and asymmetries

Observables

accessible via counting experiments: cross sections and asymmetries

Pseudo-Observables

- functions of cross sections and symmetries
- require a model to be properly defined
 - M_Z at LEP as pole of the Breit-Wigner resonance factor
 - *Mw* at hadron colliders as fitting parameter of a *template fit* procedure

Observables

accessible via counting experiments: cross sections and asymmetries

Pseudo-Observables

- functions of cross sections and symmetries
- require a model to be properly defined
 - M_Z at LEP as pole of the Breit-Wigner resonance factor
 - *Mw* at hadron colliders as fitting parameter of a *template fit* procedure

Template fit

Observables

accessible via counting experiments: cross sections and asymmetries

Pseudo-Observables

- functions of cross sections and symmetries
- require a model to be properly defined
 - M_Z at LEP as pole of the Breit-Wigner resonance factor
 - *Mw* at hadron colliders as fitting parameter of a *template fit* procedure

Template fit

1. generate several histograms with <u>highest available theoretical accuracy</u> and best possible detector simulation, and let the fit parameter (e.g. *Mw*) vary in a range

Observables

accessible via counting experiments: cross sections and asymmetries

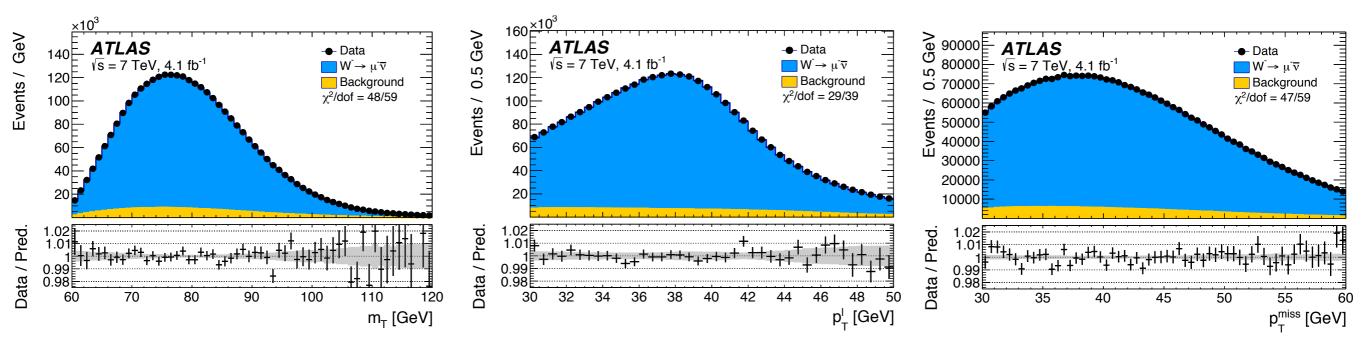
Pseudo-Observables

- functions of cross sections and symmetries
- require a model to be properly defined
 - M_Z at LEP as pole of the Breit-Wigner resonance factor
 - *Mw* at hadron colliders as fitting parameter of a *template fit* procedure

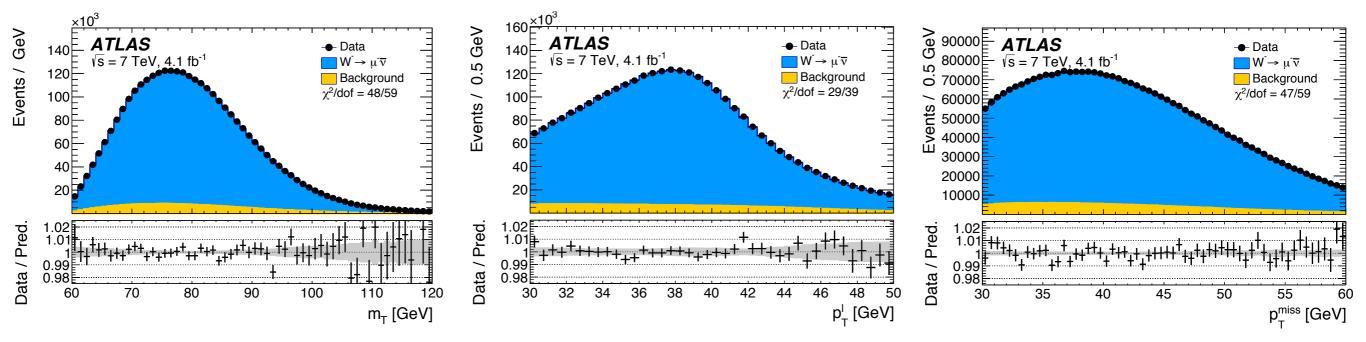
Template fit

- 1. generate several histograms with <u>highest available theoretical accuracy</u> and best possible detector simulation, and let the fit parameter (e.g. *Mw*) vary in a range
- 2. the histogram that best describes data selects the preferred (*i.e. measured*) Mw

Observables

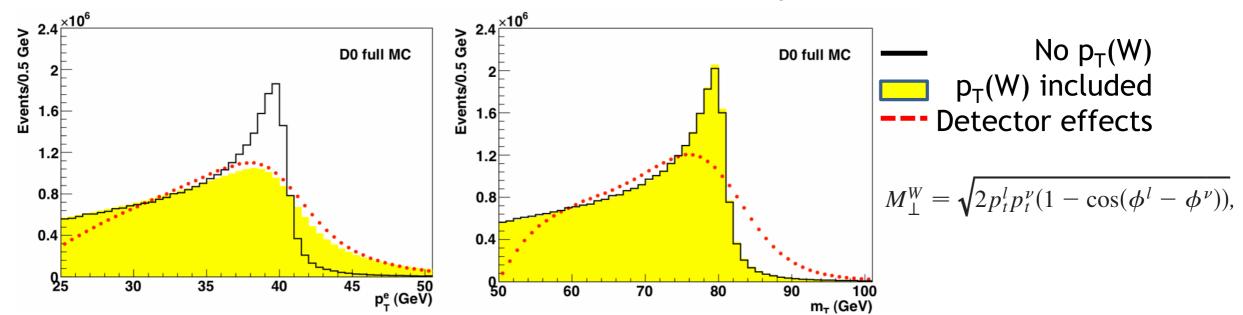

accessible via counting experiments: cross sections and asymmetries

Pseudo-Observables

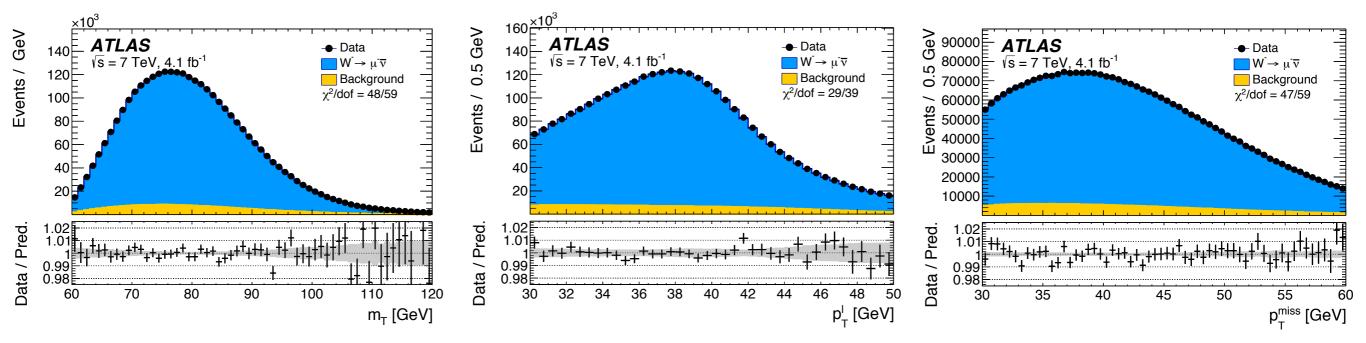

- functions of cross sections and symmetries
- require a model to be properly defined
 - M_Z at LEP as pole of the Breit-Wigner resonance factor
 - *Mw* at hadron colliders as fitting parameter of a *template fit* procedure

Template fit

- 1. generate several histograms with <u>highest available theoretical accuracy</u> and best possible detector simulation, and let the fit parameter (e.g. *Mw*) vary in a range
- 2. the histogram that best describes data selects the preferred (*i.e. measured*) Mw
- the result of the fit depends on the hypotheses used to compute the templates (PDFs, scales, non-perturbative, different prescriptions, ...)
- these hypotheses should be treated as theoretical systematic errors

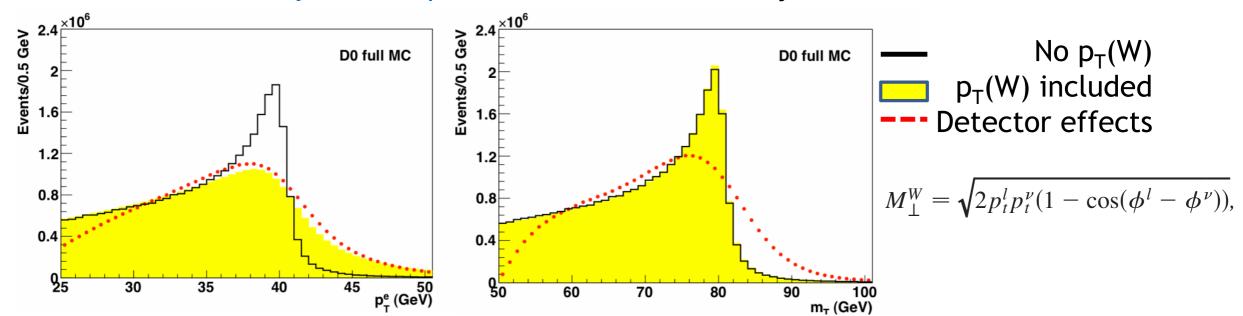


 M_W extracted from the study of the shape of m_T , p_{TI} , p_{Tmiss} jacobian peak enhances sensitivity to M_W

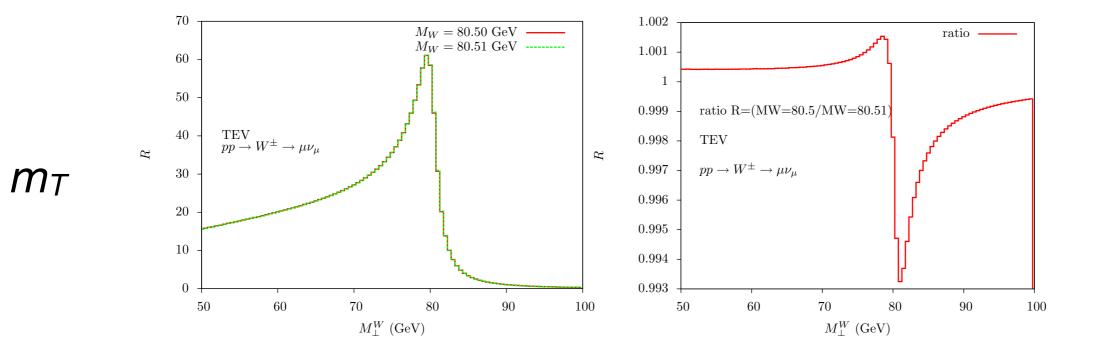


 M_W extracted from the study of the shape of m_T , p_{TI} , p_{Tmiss}

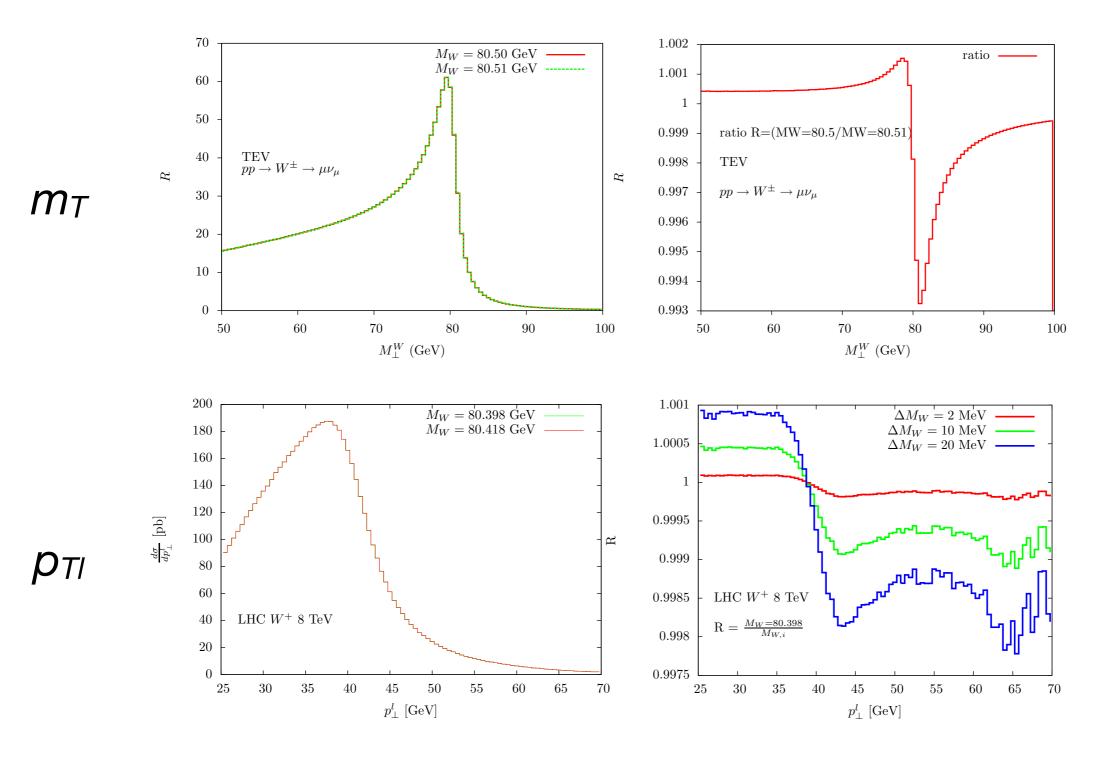
jacobian peak enhances sensitivity to M_W



Transverse mass: important detector smearing effects, weakly sensitive to p_{TW} modelling Lepton p_T : moderate detector smearing effects, extremely sensitive to p_{TW} modelling


 M_W extracted from the study of the shape of m_T , p_{TI} , p_{Tmiss}

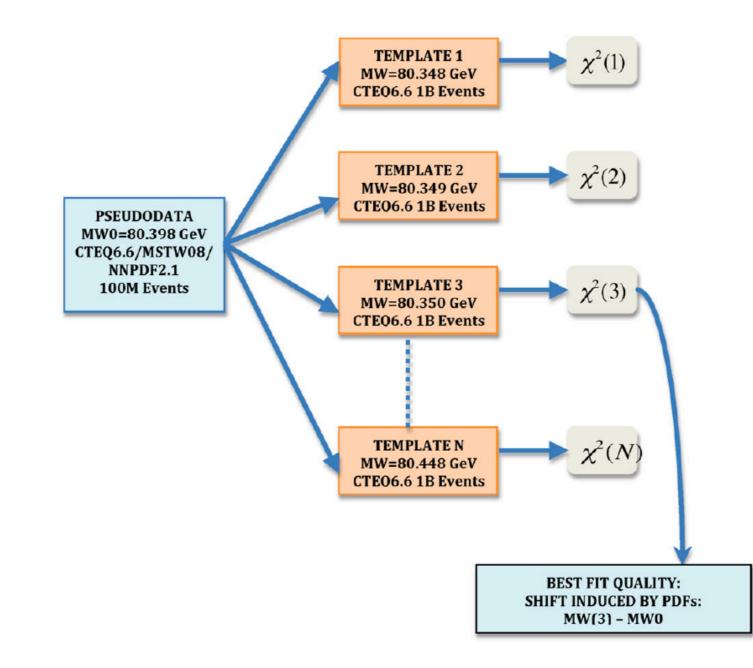
jacobian peak enhances sensitivity to M_W



Transverse mass: important detector smearing effects, weakly sensitive to p_{TW} modelling Lepton p_T : moderate detector smearing effects, extremely sensitive to p_{TW} modelling p_{TW} modelling depends on flavour and all-order treatment of QCD corrections

Challenging shape measurement: a distortion at the few per mille level of the distributions yields a shift of O(10 MeV) of the M_W value

Challenging shape measurement: a distortion at the few per mille level of the distributions yields a shift of O(10 MeV) of the M_W value


Template-fit estimate of theoretical uncertainties (ex:PDF)

Carloni Calame, Montagna, Nicrosini, Treccani PRD 69 (2004) Bozzi, Rojo, Vicini PRD 83 (2011) Bozzi, Citelli, Vicini PRD 91 (2015) Bozzi, Citelli, Vesterinen, Vicini EPJC 75 (2015)

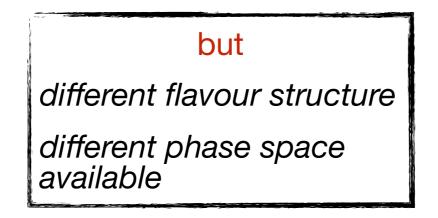
Template-fit estimate of theoretical uncertainties (ex:PDF)

Carloni Calame, Montagna, Nicrosini, Treccani PRD 69 (2004) Bozzi, Rojo, Vicini PRD 83 (2011) Bozzi, Citelli, Vicini PRD 91 (2015) Bozzi, Citelli, Vesterinen, Vicini EPJC 75 (2015)

- pseudodata with different PDF sets: <u>low-statistics</u> (100M) and <u>fixed M_{W0}</u>
- templates with a reference PDF set (CTEQ6.6): high-statistics (1B) and different M_W
- same code used to generate both pseudodata and templates → only effect probed is the PDF one

• $p_{TI} \Leftrightarrow p_{TW} \Leftrightarrow QCD$ initial state radiation + intrinsic k_T

- $p_{TI} \Leftrightarrow p_{TW} \Leftrightarrow QCD$ initial state radiation + intrinsic k_T
- Intrinsic k_T effects measured on Z data and used to predict W distributions, assuming universality

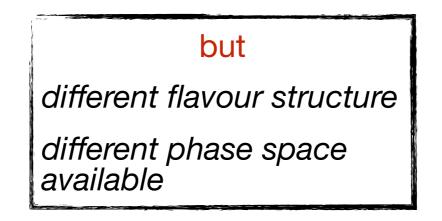

- $p_{TI} \Leftrightarrow p_{TW} \Leftrightarrow QCD$ initial state radiation + intrinsic k_T
- Intrinsic k_T effects measured on Z data and used to predict W distributions, assuming universality

but

different flavour structure

different phase space available

- $p_{TI} \Leftrightarrow p_{TW} \Leftrightarrow QCD$ initial state radiation + intrinsic k_T
- Intrinsic k_T effects measured on Z data and used to predict W distributions, assuming universality

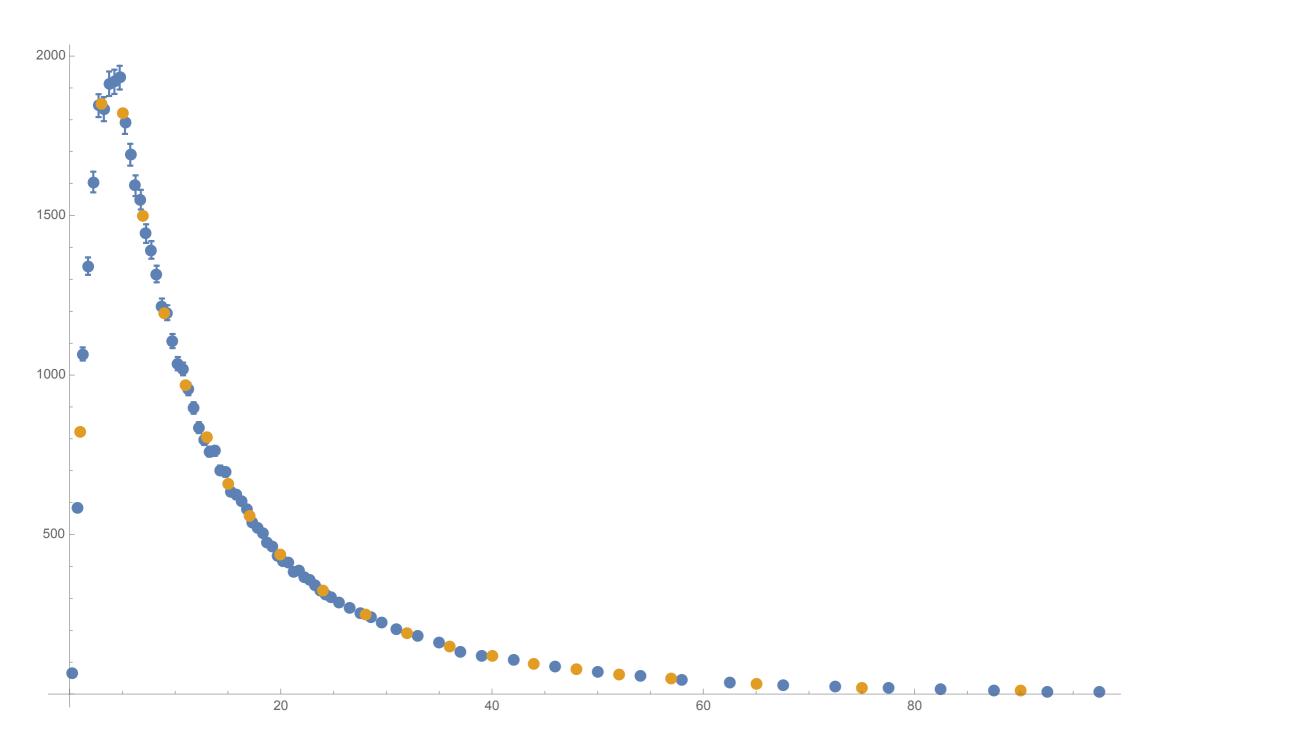


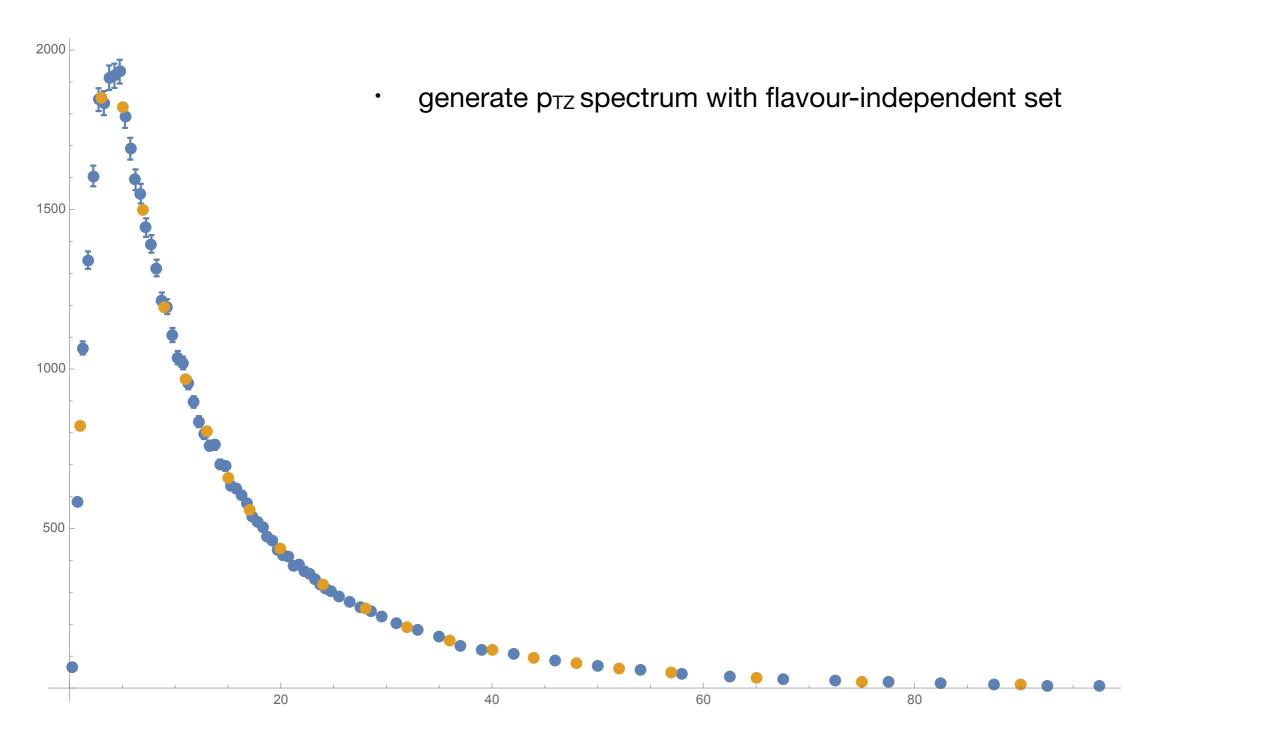
-> different Gaussian factors for different flavours

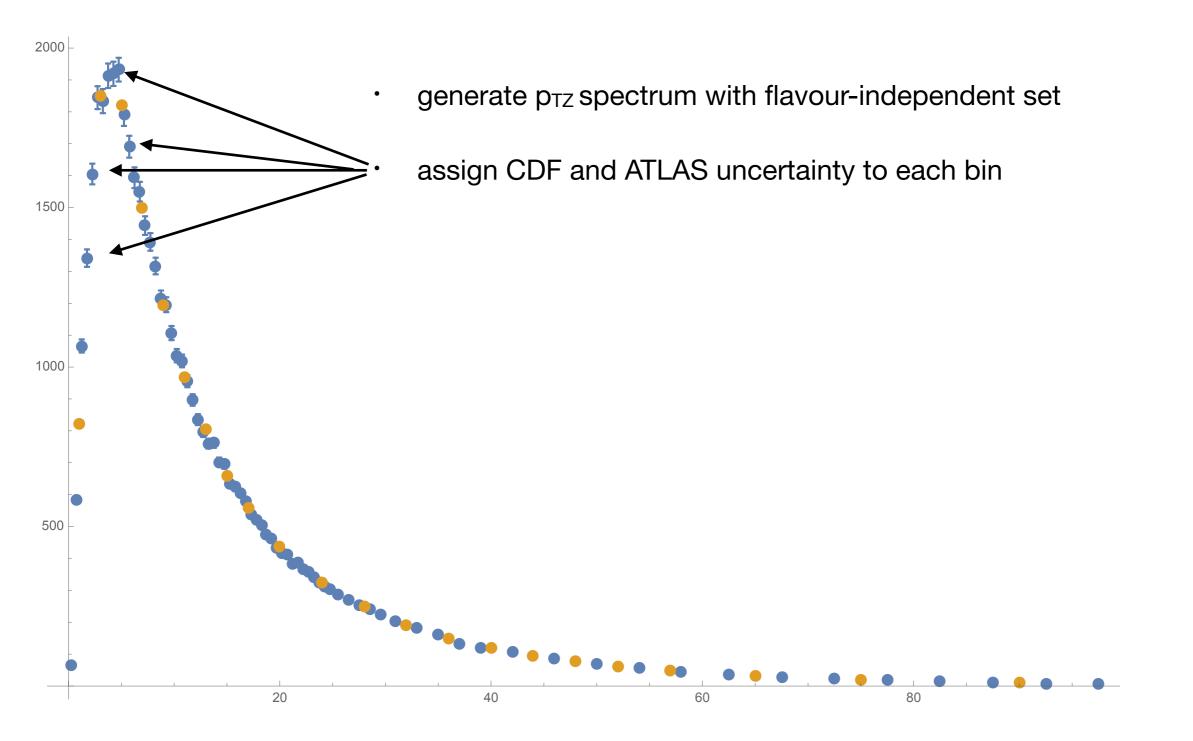
$$f_1^{aNP}(b_T^2) \propto e^{-g_{NP}^a b_T^2}$$

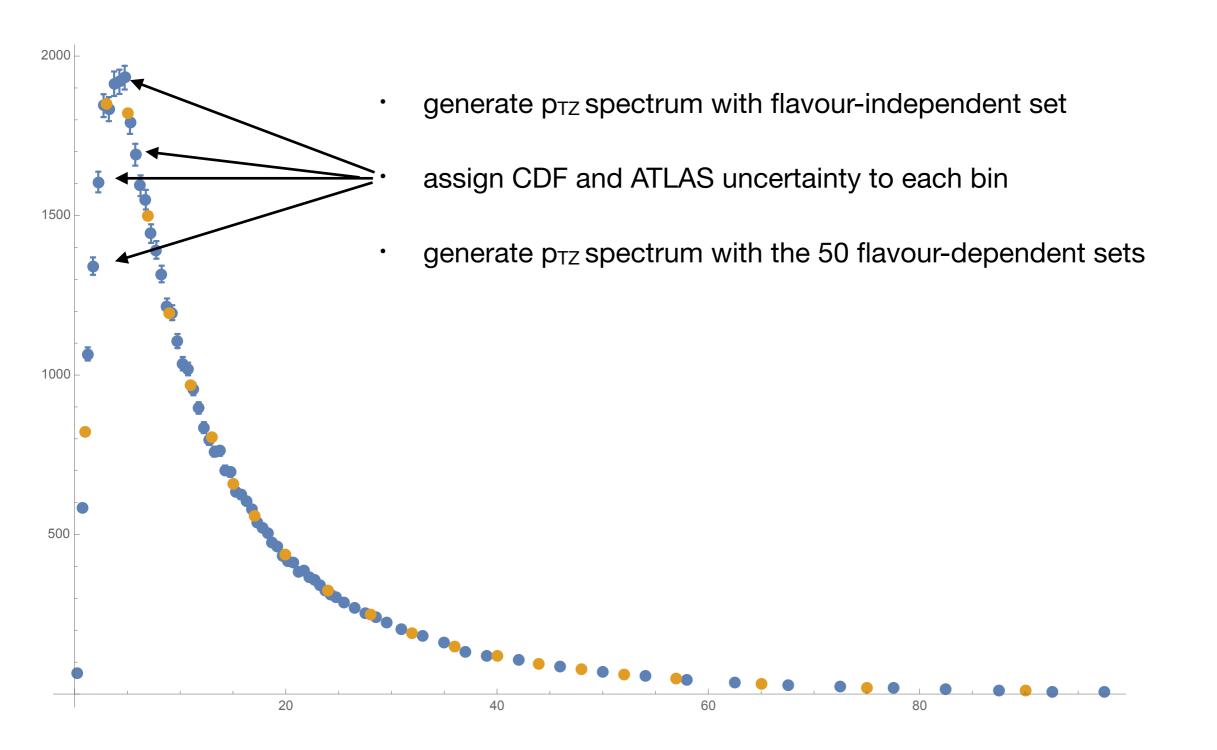
U								K/allul	
k	8								1
T,		7.81 °	70r	an	a K	ine	SUL	tic	
C	harg	ge co	njug	ation	1 and	l iso	spin	symm	et
		. ae	per	nae	ant	W1	atn	S,	
ιl	aetr	ızatı	on o	t col	linear	• F F	$\mathbf{S} [4]$	L but	n

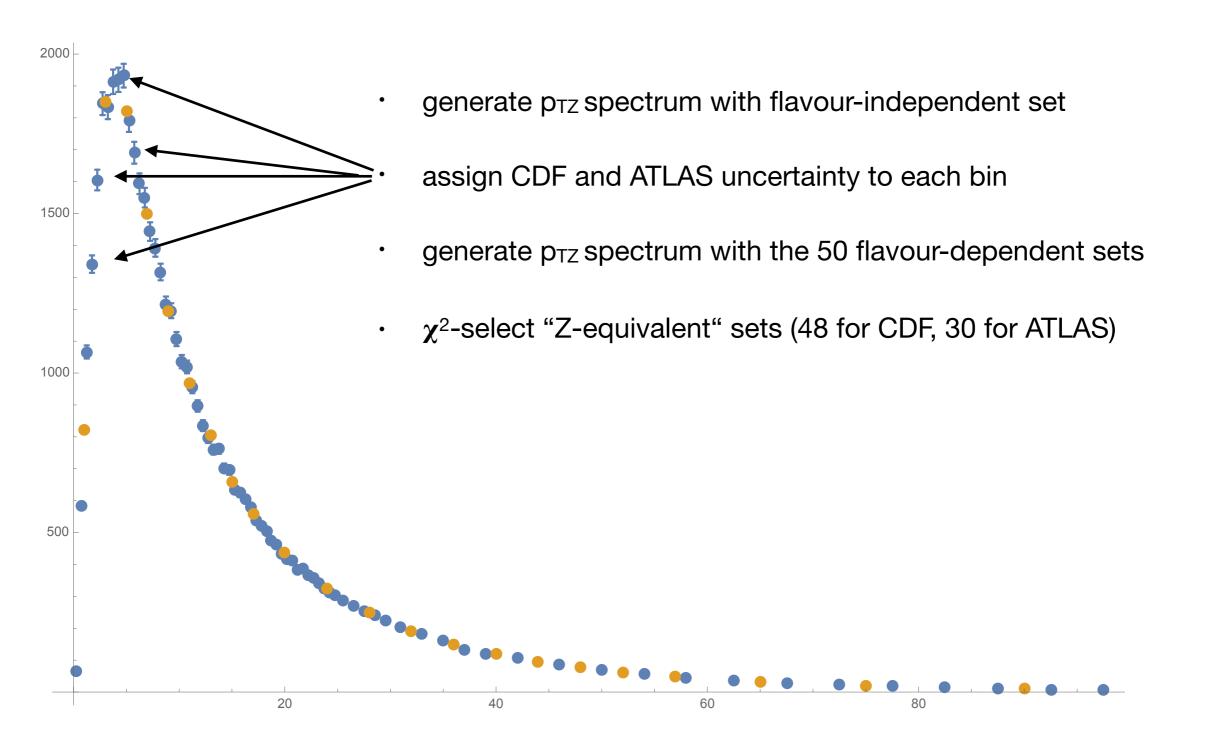
- $p_{TI} \Leftrightarrow p_{TW} \Leftrightarrow QCD$ initial state radiation + intrinsic k_T
- Intrinsic k_T effects measured on Z data and used to predict W distributions, assuming universality

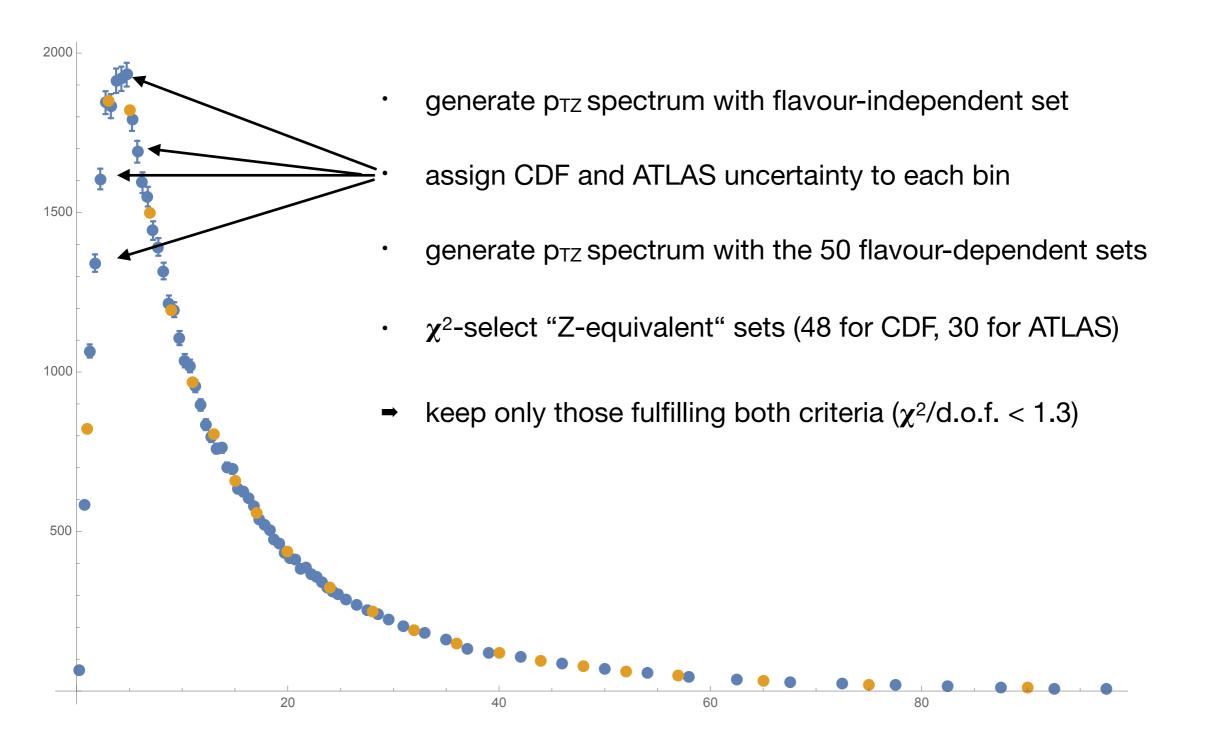



-> different Gaussian factors for different flavours


$$f_1^{aNP}(b_T^2) \propto e^{-g_{NP}^a b_T^2}$$


We consider :


- **50 flavour-dependent sets** $\{g_{NP}^{u_v}, g_{NP}^{d_v}, g_{NP}^{u_s}, g_{NP}^{d_s}, g_{NP}^s\}$ with $g_{NP}^a \in [0.2, 0.6]$ GeV²
- **1 flavour-independent set** with $g_{NP}^a = 0.4 \text{ GeV}^2$



 Take the "Z-equivalent" *flavour-dependent* parameter sets and compute *low-statistics* (135M) *m*_T, *p*_T, *p*_T distributions

 Take the "Z-equivalent" *flavour-dependent* parameter sets and compute *low-statistics* (135M) *m*_T, *p*_T, *p*_T distributions

➡ pseudodata

 Take the "Z-equivalent" *flavour-dependent* parameter sets and compute *low-statistics* (135M) *m*_T, *p*_T, *p*_T distributions

➡ pseudodata

 Take the *flavour-independent* parameter set and compute *high-statistics* (750M) *m_T*, *p_{Tl}*, *p_{Tn}* distributions for 30 different values of M_W

 Take the "Z-equivalent" *flavour-dependent* parameter sets and compute *low-statistics* (135M) *m*_T, *p*_T, *p*_T distributions

➡ pseudodata

- Take the *flavour-independent* parameter set and compute *high-statistics* (750M) *m_T*, *p_{Tl}*, *p_{Tn}* distributions for 30 different values of M_W
 - ➡ templates

 Take the "Z-equivalent" *flavour-dependent* parameter sets and compute *low-statistics* (135M) *m*_T, *p*_T, *p*_T distributions

➡ pseudodata

- Take the *flavour-independent* parameter set and compute *high-statistics* (750M) *m_T*, *p_{Tl}*, *p_{Tn}* distributions for 30 different values of M_W
 - ➡ templates
- perform the template fit procedure and compute the shifts induced by flavour effects

 Take the "Z-equivalent" *flavour-dependent* parameter sets and compute *low-statistics* (135M) *m*_T, *p*_T, *p*_T distributions

➡ pseudodata

 Take the *flavour-independent* parameter set and compute *high-statistics* (750M) *m_T*, *p_{TI}*, *p_{Tn}* distributions for 30 different values of M_W

➡ templates

 perform the template fit procedure and compute the shifts induced by flavour effects

	Δ	ΔM_{W^+}			ΔM_{W^-}			
Set	m_T	$p_{T\ell}$	$p_{T\nu}$	m_T	$p_{T\ell}$	$p_{T\nu}$		
1	0	-1	-2	-2	3	-3		
2	0	-6	0	-2	0	-5		
3	-1	9	0	-2	4	-10		
4	0	0	-2	-2	-4	-10		
	0	4	1	-1	-3	-6		
6	1	0	2	-1	4	-4		
7	2	-1	2	-1	0	-8		
8	0	2	8	1	7	8		
9	0	4	-3	-1	0	7		

	Δ	ΔM_W	r+	ΔM_{W^-}			
Set	m_T	$p_{T\ell}$	$p_{T\nu}$	m_T	$p_{T\ell}$	$p_{T\nu}$	
1	-1	-5	7	-1	-3	8	
2	-1	-15	6	0	5	10	
3	-1	1	8	-1	-7	5	
4	-1	-15	6	0	-4	5	
5	-1	-4	6	-1	-7	5	
6	-1	-5	7	0	2	9	
7	-1	-15	6	-1	-6	5	
8	-1	0	8	0	3	10	
9	-1	-7	7	0	4	10	

TABLE I: ATLAS 7 TeV

TABLE II: LHCb 13 TeV

Set	u_v	d_v	u_s	d_s	s
1	0.34	0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
4	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27
6	0.40	0.52	0.46	0.54	0.21
7	0.22	0.21	0.40	0.46	0.49
8	0.53	0.31	0.59	0.54	0.33
9	0.46	0.46	0.58	0.40	0.28

NLL+LO QCD analysis obtained through a modified version of the **DYRes** code [Catani, deFlorian, Ferrera, Grazzini (2015)]

 Take the "Z-equivalent" *flavour-dependent* parameter sets and compute *low-statistics* (135M) *m*_T, *p*_T, *p*_{Tn} distributions

➡ pseudodata

 Take the *flavour-independent* parameter set and compute *high-statistics* (750M) *m*_T, *p*_{Tl}, *p*_{Tn} distributions for 30 different values of M_W

➡ templates

perform the template fit procedure and compute the shifts induced by flavour effects

 <u>transverse mass</u>: zero or few MeV shifts, generally favouring lower values for W⁻ (preferred by EW fit)

	Δ	ΔM_{W^+}			$\Delta M_{W^{-}}$				
Set	m_T	$p_{T\ell}$		m_T	$p_{T\ell}$	$p_{T\nu}$			
1	0	-1	-2	-2	3	-3			
2	0	-6	0	-2	0	-5			
3	-1	9	0	-2	4	-10			
4	0	0	-2	-2	-4	-10			
	0	4	1	-1	-3	-6			
6	1	0	$\begin{vmatrix} 2\\ 2 \end{vmatrix}$	-1	4	-4			
7	2	-1		-1	0	-8			
8	0	2	8	1	7	8			
9	0	4	-3	-1	0	7			

	Δ	ΔM_W	·+	ΔM_{W^-}			
Set	m_T	$p_{T\ell}$	$p_{T\nu}$	m_T	$p_{T\ell}$	$p_{T\nu}$	
1	-1	-5	7	-1	-3	8	
2	-1	-15	6	0	5	10	
3	-1	1	8	-1	-7	5	
4	-1	-15	6	0	-4	5	
5	-1	-4	6	-1	-7	5	
6	-1	-5	7	0	2	9	
7	-1	-15	6	-1	-6	5	
8	-1	0	8	0	3	10	
9	-1	-7	7	0	4	10	

TABLE I: ATLAS 7 TeV

TABLE II: LHCb 13 TeV

Set	u_v	d_v	u_s	d_s	s
1	0.34	0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
4	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27
6	0.40	0.52	0.46	0.54	0.21
7	0.22	0.21	0.40	0.46	0.49
8	0.53	0.31	0.59	0.54	0.33
9	0.46	0.46	0.58	0.40	0.28

NLL+LO QCD analysis obtained through a modified version of the **DYRes** code [Catani, deFlorian, Ferrera, Grazzini (2015)]

 Take the "Z-equivalent" *flavour-dependent* parameter sets and compute *low-statistics* (135M) *m*_T, *p*_T, *p*_{Tn} distributions

➡ pseudodata

 Take the *flavour-independent* parameter set and compute *high-statistics* (750M) *m*_T, *p*_{Tl}, *p*_{Tn} distributions for 30 different values of M_W

➡ templates

perform the template fit procedure and compute the shifts induced by flavour effects

- <u>transverse mass</u>: zero or few MeV shifts, generally favouring lower values for W⁻ (preferred by EW fit)
- lepton pt: quite important shifts (envelope up to 15 MeV)

		ΔM_{W^+}			ΔM_{W^-}				
Set	m_T	$p_{T\ell}$		m_T	$p_{T\ell}$	$p_{T\nu}$			
1	0	-1	-2	-2	3	-3			
2	0	-6	0	-2	0	-5			
3	-1	9	0	-2	4	-10			
4	0	0	-2	-2	-4	-10			
5	0	4	1	-1	-3	-6			
6	1	0	2	-1	4	-4			
7	2	-1	2	-1	0	-8			
8	0	2	8	1	7	8			
9	0	4	-3	-1	0	7			

	Δ	ΔM_W	·+	ΔM_{W^-}			
Set	m_T	$p_{T\ell}$	$p_{T\nu}$	m_T	$p_{T\ell}$	$p_{T\nu}$	
1	-1	-5	7	-1	-3	8	
2	-1	-15	6	0	5	10	
3	-1	1	8	-1	-7	5	
4	-1	-15	6	0	-4	5	
5	-1	-4	6	-1	-7	5	
6	-1	-5	7	0	2	9	
7	-1	-15	6	-1	-6	5	
8	-1	0	8	0	3	10	
9	-1	-7	7	0	4	10	

TABLE I: ATLAS 7 TeV

TABLE II: LHCb 13 TeV

Set	u_v	d_v	u_s	d_s	S
1	0.34	0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
4	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27
6	0.40	0.52	0.46	0.54	0.21
7	0.22	0.21	0.40	0.46	0.49
8	0.53	0.31	0.59	0.54	0.33
9	0.46	0.46	0.58	0.40	0.28

NLL+LO QCD analysis obtained through a modified version of the **DYRes** code [Catani, deFlorian, Ferrera, Grazzini (2015)]

 Take the "Z-equivalent" *flavour-dependent* parameter sets and compute *low-statistics* (135M) *m*_T, *p*_T, *p*_T distributions

➡ pseudodata

 Take the *flavour-independent* parameter set and compute *high-statistics* (750M) *m*_T, *p*_{Tl}, *p*_{Tn} distributions for 30 different values of M_W

➡ templates

perform the template fit procedure and compute the shifts induced by flavour effects

- <u>transverse mass</u>: zero or few MeV shifts, generally favouring lower values for W⁻ (preferred by EW fit)
- lepton pt: quite important shifts (envelope up to 15 MeV)
- <u>neutrino pt</u>: same order of magnitude (or bigger) as lepton pt

	Δ	ΔM_{W^+}			ΔM_{W^-}		
Set	m_T	$p_{T\ell}$	$p_{T\nu}$	m_T	$p_{T\ell}$	$p_{T\nu}$	
1	0	-1	-2	-2	3	-3	
2	0	-6	0	-2	0	-5	
3	-1	9	0	-2	4	-10	
4	0	0	-2	-2	-4	-10	
5	0	4	1	-1	-3	-6	
6	1	0	2	-1	4	-4	
7	2	-1	2	-1	0	-8	
8	0	2	8	1	7	8	
9	0	4	-3	-1	0	7	

	Δ	ΔM_{W^+}			$\Delta M_{W^{-}}$			
Set	m_T	$p_{T\ell}$	$p_{T\nu}$	m_T	$p_{T\ell}$	$p_{T\nu}$		
1	-1	-5	7	-1	-3	8		
2	-1	-15	6	0	5	10		
3	-1	1	8	-1	-7	5		
4	-1	-15	6	0	-4	5		
5	-1	-4	6	-1	-7	5		
6	-1	-5	7	0	2	9		
7	-1	-15	6	-1	-6	5		
8	-1	0	8	0	3	10		
9	-1	-7	7	0	4	10		

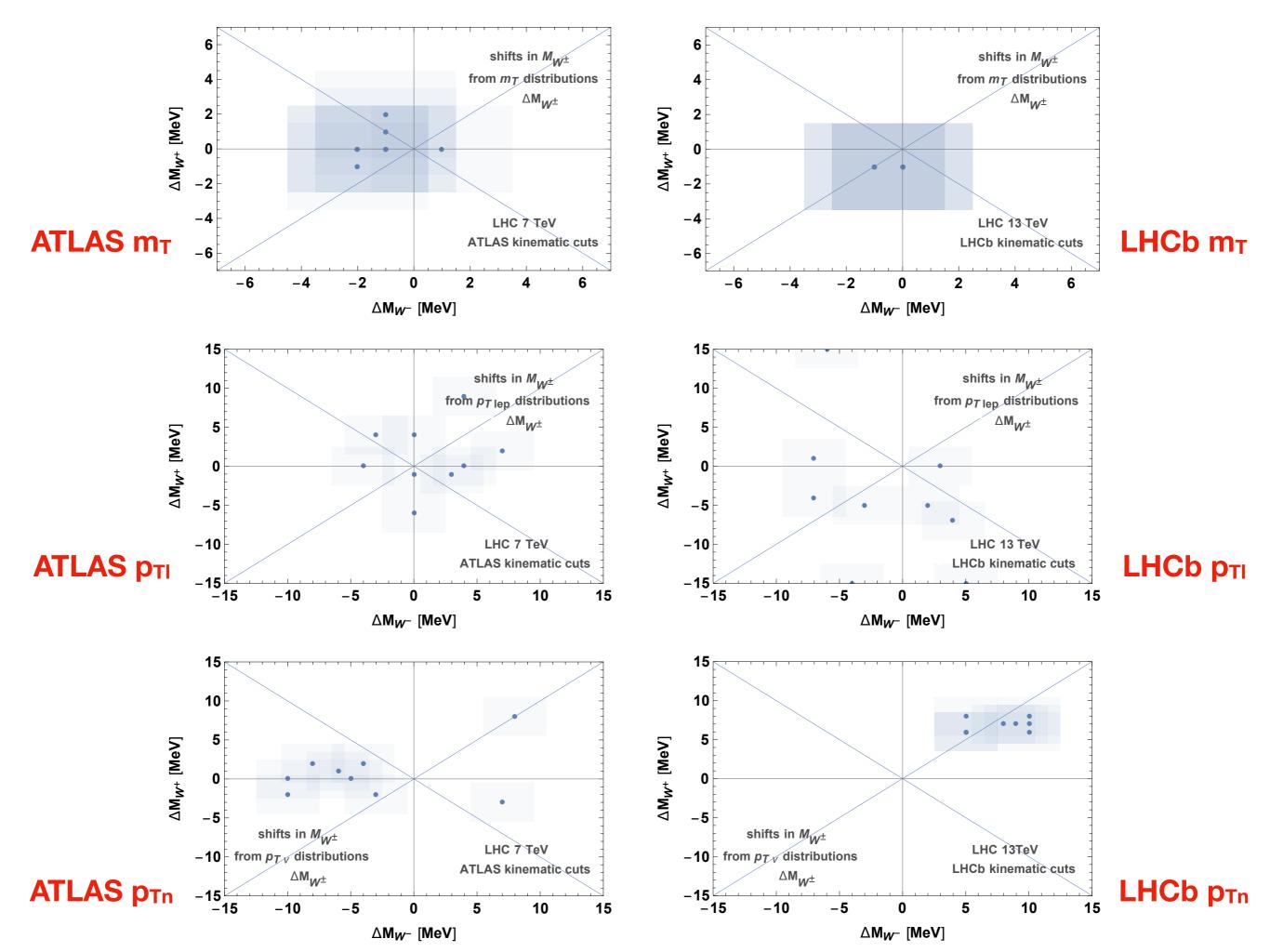

TABLE I: ATLAS 7 TeV

TABLE II: LHCb 13 TeV

Set	u_v	d_v	u_s	d_s	s
1	0.34	0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
4	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27
6	0.40	0.52	0.46	0.54	0.21
7	0.22	0.21	0.40	0.46	0.49
8	0.53	0.31	0.59	0.54	0.33
9	0.46	0.46	0.58	0.40	0.28

NLL+LO QCD analysis obtained through a modified version of the **DYRes** code [Catani, deFlorian, Ferrera, Grazzini (2015)]

Statistical uncertainty: 2.5 MeV

Backup slides

Uncertainties on M_W due to p_{TW}

CDF

D0

Total Uncertainty

26

 $\mathbf{28}$

33

m _T	fit uncertainti	es		p_T^ℓ	fit uncertaintie	es		Source	Section	m_T	p_T^e	₿ _T
Source	$W \rightarrow \mu \nu$	$W \rightarrow ev$	Common	Source	$W \rightarrow \mu \nu$	$W \rightarrow ev$	Common	Experimental				
Lepton energy scale	7	10	5	Lepton energy scale	7	10	5	Electron Energy Scale	VIIC4	16	17	16
Lepton energy resolution	1	4	0	Lepton energy resolution	1	4	0	Electron Energy Resolution Electron Shower Model	VIIC5 VC	2 4	6	3
Lepton efficiency	0	0	0	Lepton efficiency	1	2	0	Electron Energy Loss	VD	4	4	4
Lepton tower removal	2	3	2	Lepton tower removal	0	0	0	Recoil Model Electron Efficiencies	VIID3 VIIB10	5	6	14
Recoil scale	5	5	5	Recoil scale	6	6	6	Backgrounds	VIII	2	2	2
Recoil resolution	7	7	7	Recoil resolution	5	5	5	\sum (Experimental)		18	20	24
Backgrounds	3	4	0	Backgrounds	5	3	0	W Production and Decay Model				
PDFs	10	10	10	PDFs	9	9	9	PDF	VIC	11	11	14
W boson p_T	3	3	3	W boson p_T	9	9	9	QED Boson p_T	VI B VI A	7	7	9
Photon radiation	4	4	4	Photon radiation	4	4	4	\sum (Model)	VIA	13	14	17
Statistical	16	19	0	Statistical	18	21	0	Systematic Uncertainty (Experimental and Model)		22	24	29
Total	23	26	15	Total	25	28	16	W Boson Statistics	IX	13	14	15
												

ATLAS

W-boson charge	W^+		W^{-}		Combine	d
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}
δm_W [MeV]						
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
AZ tune	3.0	3.4	3.0	3.4	3.0	3.4
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower μ_F with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3
Total	15.9	18.1	14.8	17.2	11.6	12.9

Uncertainties on M_W due to p_{TW}

CDF

D0

₽_T

 $\begin{array}{r}
 16 \\
 3 \\
 7 \\
 4 \\
 14 \\
 5 \\
 2 \\
 24
 \end{array}$

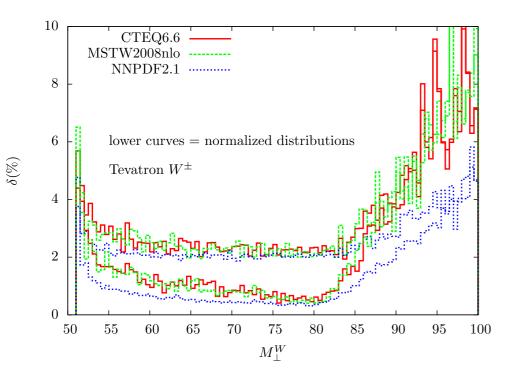
33

m_T	fit uncertaintie	es		p_T^ℓ	fit uncertaintie	es		Source	Section	m_T	p_T^e	Γ
Source	$W ightarrow \mu v$	$W \rightarrow ev$	Common	Source	$W ightarrow \mu \nu$	$W \rightarrow ev$	Common	Experimental				Г
Lepton energy scale	7	10	5	Lepton energy scale	7	10	5	Electron Energy Scale	VIIC4	16	17	
Lepton energy resolution	1	4	0	Lepton energy resolution	1	4	0	Electron Energy Resolution Electron Shower Model	VIIC5 VC	2	6	
Lepton efficiency	0	0	0	Lepton efficiency	1	2	0	Electron Energy Loss	VD	4	4	
Lepton tower removal	2	3	2	Lepton tower removal	0	0	0	Recoil Model	VIID3	5	6	
Recoil scale	5	5	5	Recoil scale	6	6	6	Electron Efficiencies Backgrounds	VII B 10 VIII		2	
Recoil resolution	7	7	7	Recoil resolution	5	5	5	\sum (Experimental)		18	20	
Backgrounds	3	4	0	Backgrounds	5	3	0	W Production and Decay Model				
PDFs	10	10	10	PDFs	9	9	9	PDF	VIC	11	11	
W boson p_T	3	3	3	W boson p_T	9	9	9	QED Boson <i>pt</i>	VI B VI A	7	5	
Photon radiation	4	4	4	Photon radiation	4	4	4	\sum (Model)	VIA	13	14	\vdash
Statistical	16	19	0	Statistical	18	21	0	Systematic Uncertainty (Experimental and Model)		22	24	\vdash
Total	23	26	15	Total	25	28	16		IV			\vdash
								W Boson Statistics	IX	13	14	\vdash
								Total Uncertainty		26	28	1

ATLAS

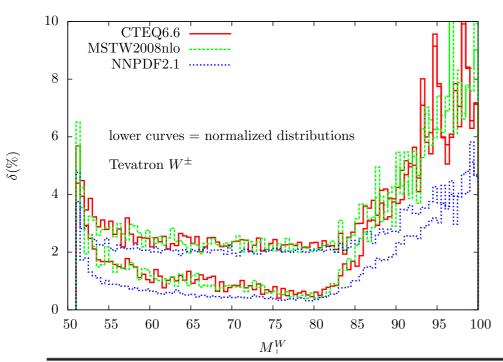
W-boson charge	W^+		W^{-}		Combine	d
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}
δm_W [MeV]						
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
AZ tune	3.0	3.4	3.0	3.4	3.0	3.4
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3
Total	15.9	18.1	14.8	17.2	11.6	12.9

Uncertainties on M_W due to p_{TW}


CDF

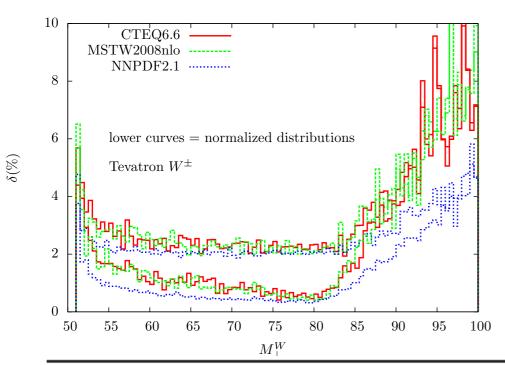
D0

<i>m</i> ₇	fit uncertaintie	es		p_T^ℓ	fit uncertaintie	es		Source	Section	m_T	p_T^e	₿ _T
Source	$W ightarrow \mu v$	$W \rightarrow ev$	Common	Source	$W \rightarrow \mu \nu$	$W \rightarrow ev$	Common	Experimental				
Lepton energy scale	7	10	5	Lepton energy scale	7	10	5	Electron Energy Scale	VIIC4 VIIC5	16	17	16
Lepton energy resolution	1	4	0	Lepton energy resolution	1	4	0	Electron Energy Resolution Electron Shower Model	VICS	4	6	3 7
Lepton efficiency	0	0	0	Lepton efficiency	1	2	0	Electron Energy Loss	VD	4	4	4
Lepton tower removal	2	3	2	Lepton tower removal	0	0	0	Recoil Model Electron Efficiencies	VIID3 VIIB10	5	6	14
Recoil scale	5	5	5	Recoil scale	6	6	6	Backgrounds	VIIBIO	2	2	5 2
Recoil resolution	7	7	7	Recoil resolution	5	5	5	\sum (Experimental)		18	20	24
Backgrounds	3	4	0	Backgrounds	5	3	0	W Production and Decay Model				
PDFs	10	10	10	PDFs	9	9	9	PDF	VIC	11	11	14
W boson p_T	3	3	(3)	W boson p_T	9	9	(9)	QED Boson <i>pT</i>	VIB VIA		5	9
Photon radiation	4	4	4	Photon radiation	4	4	4	\sum (Model)	VIA			17
Statistical	16	19	0	Statistical	18	21	0	Systematic Uncertainty (Experimental and Model)		22	24	29
Total	23	26	15	Total	25	28	16	W Boson Statistics	IX			
									IA	13	14	15
								Total Uncertainty		26	28	33


ATLAS

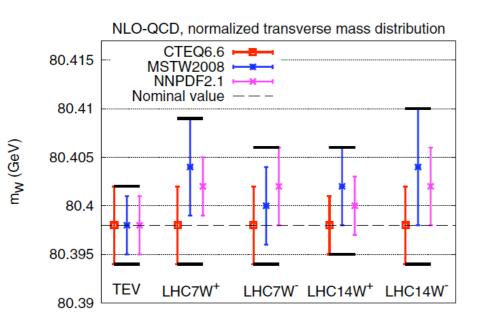
W-boson charge	W^+_{e}		<i>W</i> ⁻		Combined	
Kinematic distribution	$p_{\mathrm{T}}^{\epsilon}$	m_{T}	$p_{\mathrm{T}}^{\epsilon}$	m_{T}	p_{T}^{ℓ}	m_{T}
δm_W [MeV]						
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
AZ tune	3.0	3.4	3.0	3.4	(3.0)	3.4
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3
Total	15.9	18.1	14.8	17.2	11.6	12.9

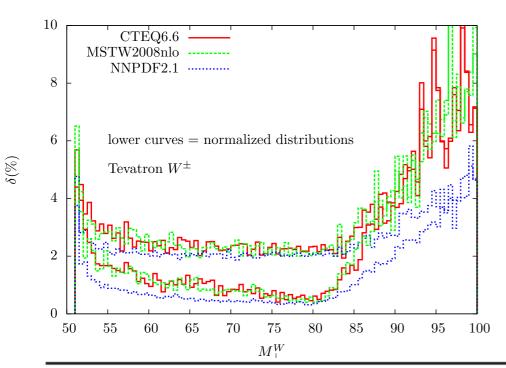
Bozzi, Rojo, Vicini PRD 83, 113008 (2011)


- Normalised distributions: reduced sensitivity to PDFs
- Ratio of (non-)normalised distributions w.r.t. to central PDF set
- Distributions obtained with **DYNNLO**

Bozzi, Rojo, Vicini PRD 83, 113008 (2011)

- Normalised distributions: reduced sensitivity to PDFs
- Ratio of (non-)normalised distributions w.r.t. to central PDF set
- Distributions obtained with **DYNNLO**

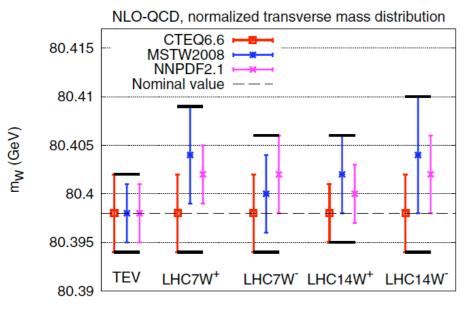

	CTEQ6.6		MSTW2008		NNPDF2.1		
	$m_W \pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$m_W\pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$m_W \pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$\delta_{\rm pdf}^{\rm tot}$
Tevatron, W^{\pm}	80.398 ± 0.004	1.42	80.398 ± 0.003	1.42	80.398 ± 0.003	1.30	4
LHC 7 TeV W^+	80.398 ± 0.004	1.22	80.404 ± 0.005	1.55	80.402 ± 0.003	1.35	8
LHC 7 TeV W ⁻	80.398 ± 0.004	1.22	80.400 ± 0.004	1.19	80.402 ± 0.004	1.78	6
LHC 14 TeV W ⁺	80.398 ± 0.003	1.34	80.402 ± 0.004	1.48	80.400 ± 0.003	1.41	6
LHC 14 TeV W ⁻	80.398 ± 0.004	1.44	80.404 ± 0.006	1.38	80.402 ± 0.004	1.57	8



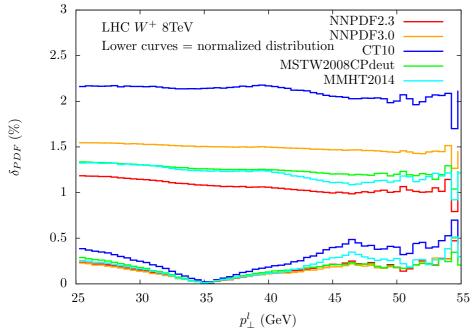
Bozzi, Rojo, Vicini PRD 83, 113008 (2011)

- Normalised distributions: reduced sensitivity to PDFs
- Ratio of (non-)normalised distributions w.r.t. to central PDF set
- Distributions obtained with **DYNNLO**

	CTEQ6.6		MSTW2008		NNPDF2.1		
	$m_W \pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$m_W \pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$m_W \pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$\delta_{\rm pdf}^{\rm tot}$
Tevatron, W^{\pm}	80.398 ± 0.004	1.42	80.398 ± 0.003	1.42	80.398 ± 0.003	1.30	4
LHC 7 TeV W^+	80.398 ± 0.004	1.22	80.404 ± 0.005	1.55	80.402 ± 0.003	1.35	8
LHC 7 TeV W^-	80.398 ± 0.004	1.22	80.400 ± 0.004	1.19	80.402 ± 0.004	1.78	6
LHC 14 TeV W ⁺	80.398 ± 0.003	1.34	80.402 ± 0.004	1.48	80.400 ± 0.003	1.41	6
LHC 14 TeV W-	80.398 ± 0.004	1.44	80.404 ± 0.006	1.38	80.402 ± 0.004	1.57	8

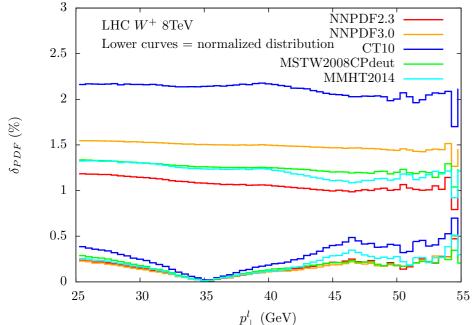


Bozzi, Rojo, Vicini PRD 83, 113008 (2011)


- Normalised distributions: reduced sensitivity to PDFs
- Ratio of (non-)normalised distributions w.r.t. to central PDF set
- Distributions obtained with **DYNNLO**

	CTEQ6.6		MSTW2008		NNPDF2,1		
	$m_W \pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$m_W \pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$m_W \pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$\delta_{\rm pdf}^{\rm tot}$
Tevatron, W^{\pm}	80.398 ± 0.004	1.42	80.398 ± 0.003	1.42	80.398 ± 0.003	1.30	4
LHC 7 TeV W^+	80.398 ± 0.004	1.22	80.404 ± 0.005	1.55	80.402 ± 0.003	1.35	8
LHC 7 TeV W^-	80.398 ± 0.004	1.22	80.400 ± 0.004	1.19	80.402 ± 0.004	1.78	6
LHC 14 TeV W ⁺	80.398 ± 0.003	1.34	80.402 ± 0.004	1.48	80.400 ± 0.003	1.41	6
LHC 14 TeV W ⁻	80.398 ± 0.004	1.44	80.404 ± 0.006	1.38	80.402 ± 0.004	1.57	8

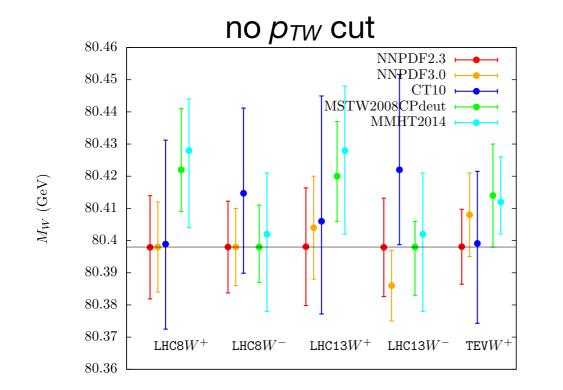
- Accuracy of templates <u>essential</u>: highly demanding computing task!
- For transverse mass distribution, a fixed-order NLO-QCD analysis is sufficient to assess this PDF uncertainty
- PDF error is moderate at the Tevatron but also at the LHC

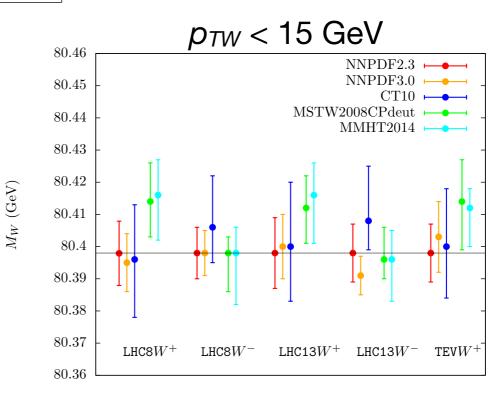

PDF effect on lepton p_T

Bozzi, Citelli, Vicini PRD 91, 113005 (2015)

- Conservative estimate of the PDF uncertainty: CC-DY channel alone
- Distributions obtained with **POWHEG+PYTHIA 6.4**
- PDF uncertainty over relevant p_T range almost flat: O(2%)
- Uncertainty of normalised distributions: below the O(0.5%) level (but still sufficient to yield large M_W shifts)

PDF effect on lepton p_T

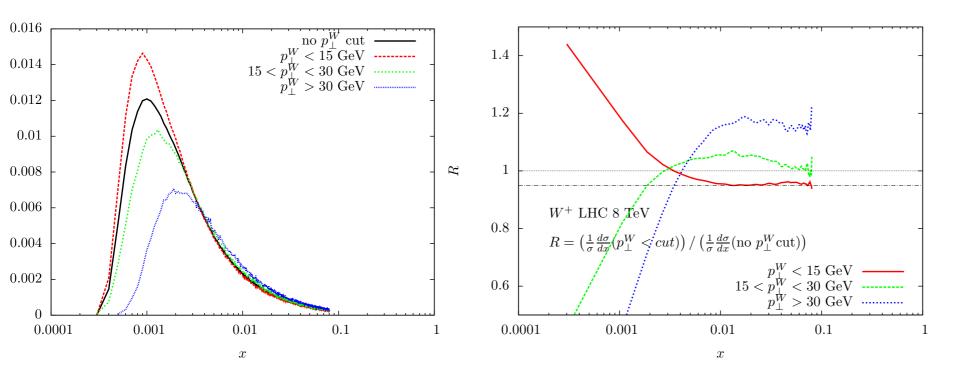



Bozzi, Citelli, Vicini PRD 91, 113005 (2015)

- Conservative estimate of the PDF uncertainty: CC-DY channel alone
- Distributions obtained with POWHEG+PYTHIA 6.4
- PDF uncertainty over relevant *p*_T range almost flat: O(2%)
- Uncertainty of normalised distributions: below the O(0.5%) level (but still sufficient to yield large M_W shifts)

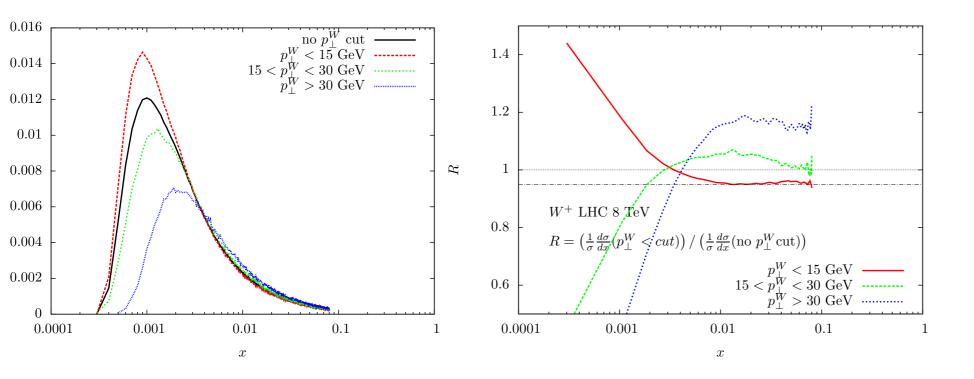
	no p_{\perp}^V	V cut	$p_{\perp}^W < 15 { m ~GeV}$		
	δ_{PDF} (MeV)	Δ_{sets} (MeV)	δ_{PDF} (MeV)	Δ_{sets} (MeV)	
Tevatron 1.96 TeV	27	16	21	15	
LHC 8 TeV W^+	33	26	24	18	
W^-	29	16	18	8	
LHC 13 TeV W^+	34	22	20	14	
W^	34	24	18	12	

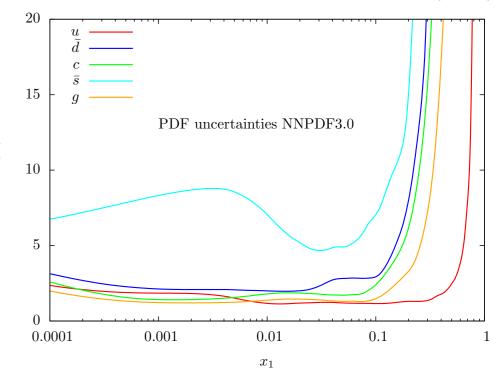
- Individual PDF sets provide non-pessimistic estimates: ΔM_W ~ O(10 MeV)
- Global envelope still shows large discrepancies of the central values
- *p*_{TW} cut is relevant



Acceptance cuts: interesting insights

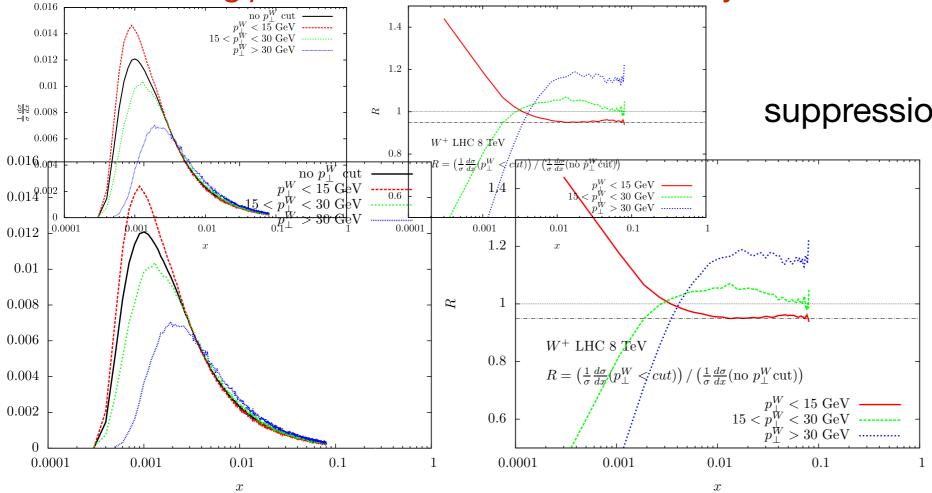
Bozzi, Citelli, Vicini PRD 91, 113005 (2015)


	normalized distributions										
cut on p_{\perp}^W	cut on $ \eta_l $	CT10	NNPDF3.0								
inclusive	$ \eta_l < 2.5$	80.400 + 0.032 - 0.027	80.398 ± 0.014								
$p_{\perp}^W < 20 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.027 - 0.020	80.394 ± 0.012								
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009								
$p_{\perp}^W < 10 \mathrm{GeV}$	$ \eta_l < 2.5$	80.392 + 0.015 - 0.012	80.394 ± 0.007								
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 1.0$	80.400 + 0.032 - 0.021	80.406 ± 0.017								
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009								
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 4.9$	80.400 + 0.009 - 0.004	80.401 ± 0.003								
$p_{\perp}^W < 15 \mathrm{GeV}$	$1.0 < \eta_l < 2.5$	80.392 + 0.025 - 0.018	80.388 ± 0.012								

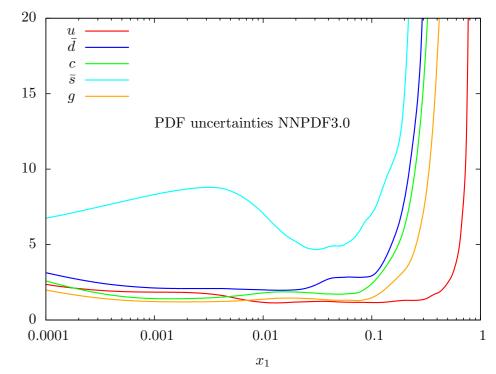

Bozzi, Citelli, Vicini PRD 91, 113005 (2015)

normalized distributions			
cut on p_{\perp}^W	cut on $ \eta_l $	CT10	NNPDF3.0
inclusive	$ \eta_l < 2.5$	80.400 + 0.032 - 0.027	80.398 ± 0.014
$p_{\perp}^W < 20 \mathrm{GeV}$	$ \eta_l < 2.5$	80.396 + 0.027 - 0.020	80.394 ± 0.012
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p^W_\perp < 10 \text{ GeV}$	$ \eta_l < 2.5$	80.392 + 0.015 - 0.012	80.394 ± 0.007
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 1.0$	80.400 + 0.032 - 0.021	80.406 ± 0.017
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 4.9$	80.400 + 0.009 - 0.004	80.401 ± 0.003
$p_{\perp}^W < 15 \text{ GeV}$	$1.0 < \eta_l < 2.5$	80.392 + 0.025 - 0.018	80.388 ± 0.012

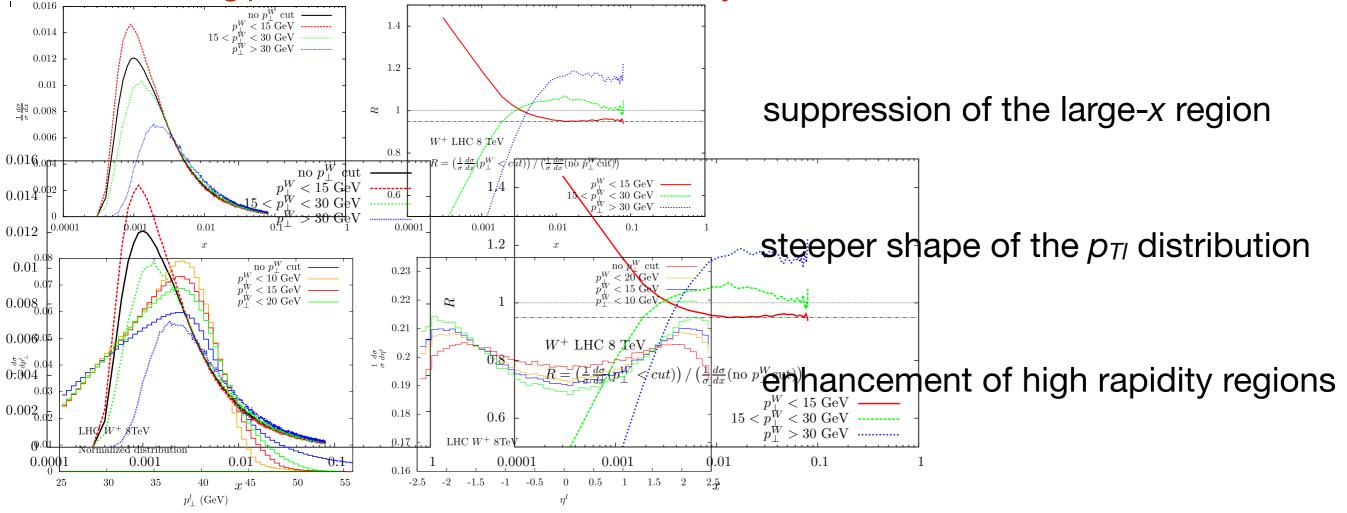
strong p_{TW} cut reduces M_W uncertainty



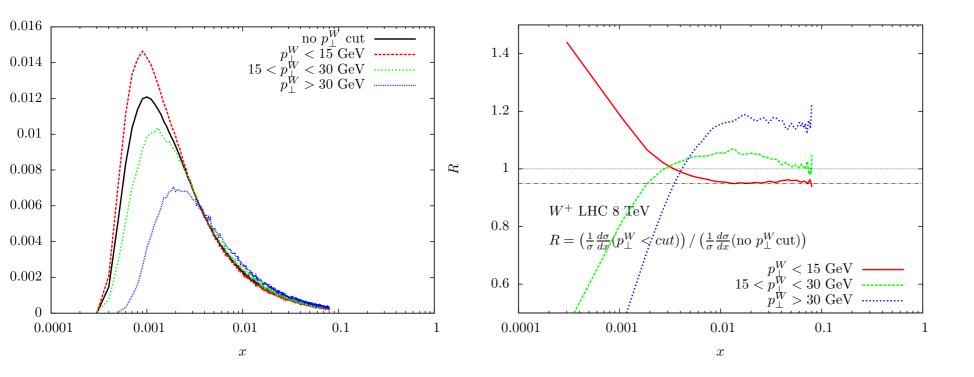
Bozzi, Citelli, Vicini PRD 91, 113005 (2015)


normalized distributions			
cut on p_{\perp}^W	cut on $ \eta_l $	CT10	NNPDF3.0
inclusive	$ \eta_l < 2.5$	80.400 + 0.032 - 0.027	80.398 ± 0.014
$p_{\perp}^W < 20 \mathrm{GeV}$	$ \eta_l < 2.5$	80.396 + 0.027 - 0.020	80.394 ± 0.012
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p^W_\perp < 10 \text{ GeV}$	$ \eta_l < 2.5$	80.392 + 0.015 - 0.012	80.394 ± 0.007
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 1.0$	80.400 + 0.032 - 0.021	80.406 ± 0.017
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 4.9$	80.400 + 0.009 - 0.004	80.401 ± 0.003
$p_{\perp}^W < 15 \text{ GeV}$	$1.0 < \eta_l < 2.5$	80.392 + 0.025 - 0.018	80.388 ± 0.012

strong p_{TW} cut reduces M_W uncertainty


suppression of the large-x region

Bozzi, Citelli, Vicini PRD 91, 113005 (2015)

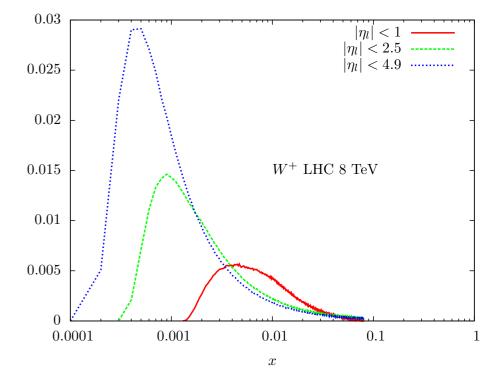

normalized distributions			
cut on p_{\perp}^W	cut on $ \eta_l $	CT10	NNPDF3.0
inclusive	$ \eta_l < 2.5$	80.400 + 0.032 - 0.027	80.398 ± 0.014
$p_{\perp}^W < 20 \mathrm{GeV}$	$ \eta_l < 2.5$	80.396 + 0.027 - 0.020	80.394 ± 0.012
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p^W_\perp < 10 \mathrm{GeV}$	$ \eta_l < 2.5$	80.392 + 0.015 - 0.012	80.394 ± 0.007
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 1.0$	80.400 + 0.032 - 0.021	80.406 ± 0.017
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 4.9$	80.400 + 0.009 - 0.004	80.401 ± 0.003
$p_{\perp}^W < 15 \text{ GeV}$	$1.0 < \eta_l < 2.5$	80.392 + 0.025 - 0.018	80.388 ± 0.012

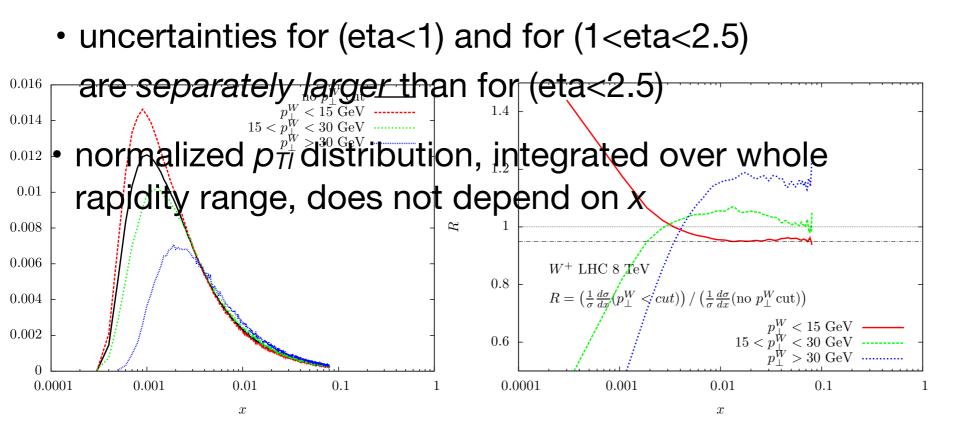
strong p_{TW} cut reduces M_W uncertainty

Bozzi, Citelli, Vicini PRD 91, 113005 (2015)

normalized distributions			
cut on p_{\perp}^W	cut on $ \eta_l $	CT10	NNPDF3.0
inclusive	$ \eta_l < 2.5$	80.400 + 0.032 - 0.027	80.398 ± 0.014
$p_{\perp}^W < 20 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.027 - 0.020	80.394 ± 0.012
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 10 \text{ GeV}$	$ \eta_l < 2.5$	80.392 + 0.015 - 0.012	80.394 ± 0.007
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 1.0$	80.400 + 0.032 - 0.021	80.406 ± 0.017
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 4.9$	80.400 + 0.009 - 0.004	80.401 ± 0.003
$p_{\perp}^W < 15 \mathrm{GeV}$	$1.0 < \eta_l < 2.5$	80.392 + 0.025 - 0.018	80.388 ± 0.012

Bozzi, Citelli, Vicini PRD 91, 113005 (2015)


normalized distributions			
cut on p_{\perp}^W	cut on $ \eta_l $	CT10	NNPDF3.0
inclusive	$ \eta_l < 2.5$	80.400 + 0.032 - 0.027	80.398 ± 0.014
$p_{\perp}^W < 20 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.027 - 0.020	80.394 ± 0.012
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 10 \mathrm{GeV}$	$ \eta_l < 2.5$	80.392 + 0.015 - 0.012	80.394 ± 0.007
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 1.0$	80.400 + 0.032 - 0.021	80.406 ± 0.017
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 4.9$	80.400 + 0.009 - 0.004	80.401 ± 0.003
$p_{\perp}^W < 15 \mathrm{GeV}$	$1.0 < \eta_l < 2.5$	80.392 + 0.025 - 0.018	80.388 ± 0.012


are separately larger than for (eta<2.5) 0.016 0.014 $15 < p_{\perp}^{W} < 30 \text{ GeV}$ > 30 GeV0.0121.20.01Ы 1 0.008 0.006 W^+ LHC 8 TeV 0.8 $R = \left(\frac{1}{\sigma} \frac{d\sigma}{dx} \left(p_{\perp}^{W} < cut \right) \right) / \left(\frac{1}{\sigma} \frac{d\sigma}{dx} (\text{no } p_{\perp}^{W} \text{cut}) \right)$ 0.004< 15 GeV0.002 0.6< 30 GeV15 < p> 30 GeV0.0001 0.0010.01 0.11 0.0001 0.001 0.01 0.11 xx

uncertainties for (eta<1) and for (1<eta<2.5)

Bozzi, Citelli, Vicini PRD 91, 113005 (2015)

normalized distributions			
cut on p_{\perp}^W	cut on $ \eta_l $	CT10	NNPDF3.0
inclusive	$ \eta_l < 2.5$	80.400 + 0.032 - 0.027	80.398 ± 0.014
$p_{\perp}^W < 20 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.027 - 0.020	80.394 ± 0.012
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 10 \mathrm{GeV}$	$ \eta_l < 2.5$	80.392 + 0.015 - 0.012	80.394 ± 0.007
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 1.0$	80.400 + 0.032 - 0.021	80.406 ± 0.017
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 4.9$	80.400 + 0.009 - 0.004	80.401 ± 0.003
$p_{\perp}^W < 15 \mathrm{GeV}$	$1.0 < \eta_l < 2.5$	80.392 + 0.025 - 0.018	80.388 ± 0.012

Bozzi, Citelli, Vicini PRD 91, 113005 (2015)

0.01 r

correlation of parton luminosities

within the 40.5 GeV p_{TI} bin

 $|\eta_l| < 1$ $|\eta_l| < 2.5$ ------ $|\eta_l| < 4.9$ ------

0.1

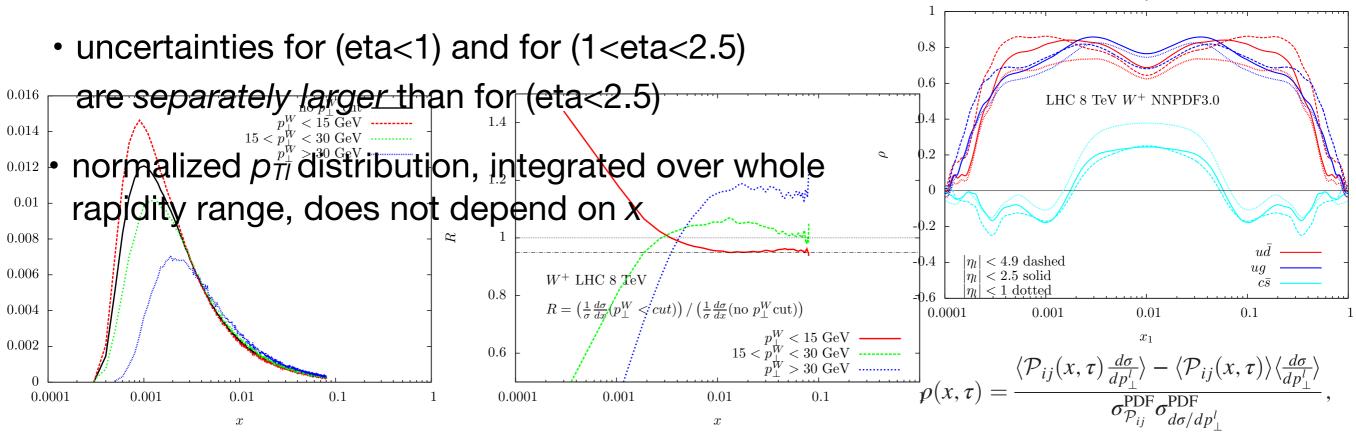
 W^+ LHC 8 TeV

0.03

0.025

0.02

0.015


0.01

0.005

0.0001

0.001

normalized distributions			
cut on p_{\perp}^W	cut on $ \eta_l $	CT10	NNPDF3.0
inclusive	$ \eta_l < 2.5$	80.400 + 0.032 - 0.027	80.398 ± 0.014
$p_{\perp}^W < 20 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.027 - 0.020	80.394 ± 0.012
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 10 \text{ GeV}$	$ \eta_l < 2.5$	80.392 + 0.015 - 0.012	80.394 ± 0.007
$p_{\perp}^W < 15 { m ~GeV}$	$ \eta_l < 1.0$	80.400 + 0.032 - 0.021	80.406 ± 0.017
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 4.9$	80.400 + 0.009 - 0.004	80.401 ± 0.003
$p_{\perp}^W < 15 \mathrm{GeV}$	$1.0 < \eta_l < 2.5$	80.392 + 0.025 - 0.018	80.388 ± 0.012

Bozzi, Citelli, Vicini PRD 91, 113005 (2015)

0.01

correlation of parton luminosities

within the 40.5 GeV pTI bin

 $|\eta_l| < 1 - m_l | < 2.5 - m_l | < 4.9 - m_l | < 4.9 - m_l | < 1.9$

0.1

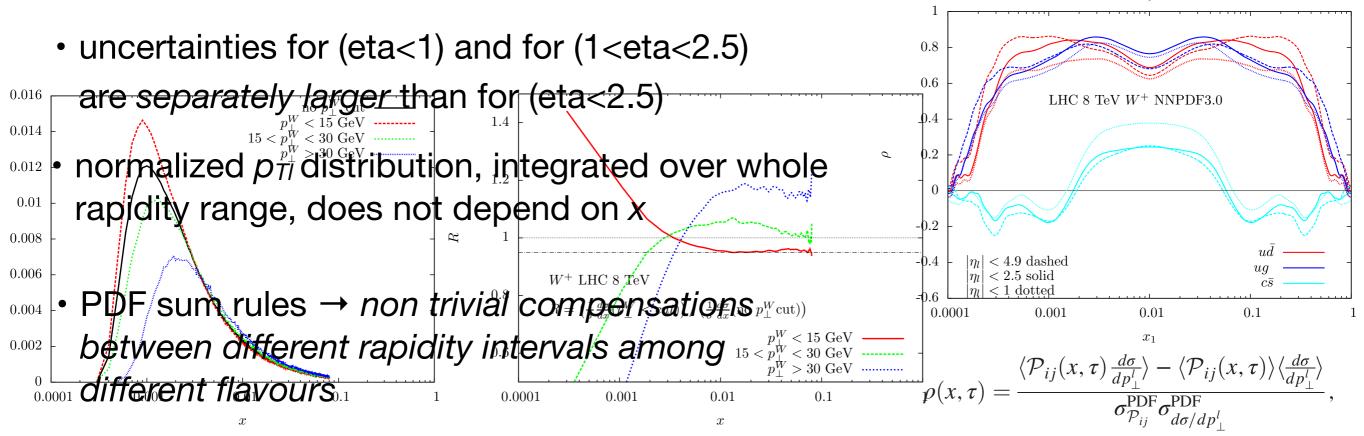
 W^+ LHC 8 TeV

0.03

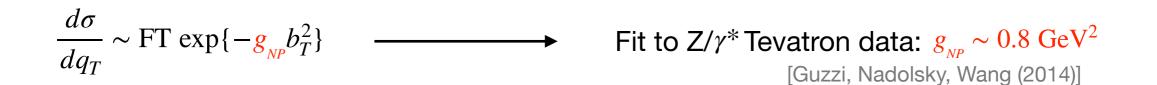
0.025

0.02

0.015


0.01

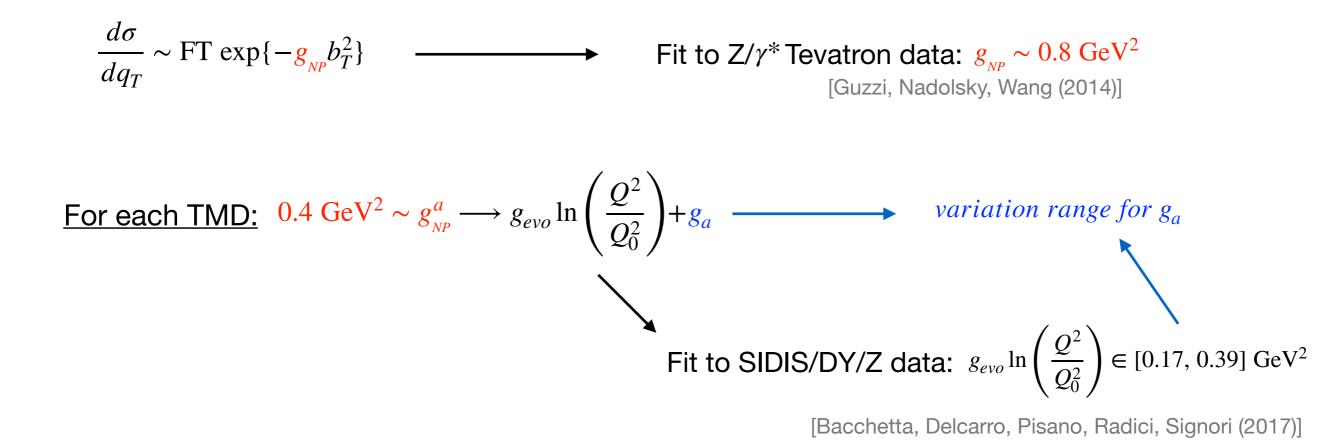
0.005

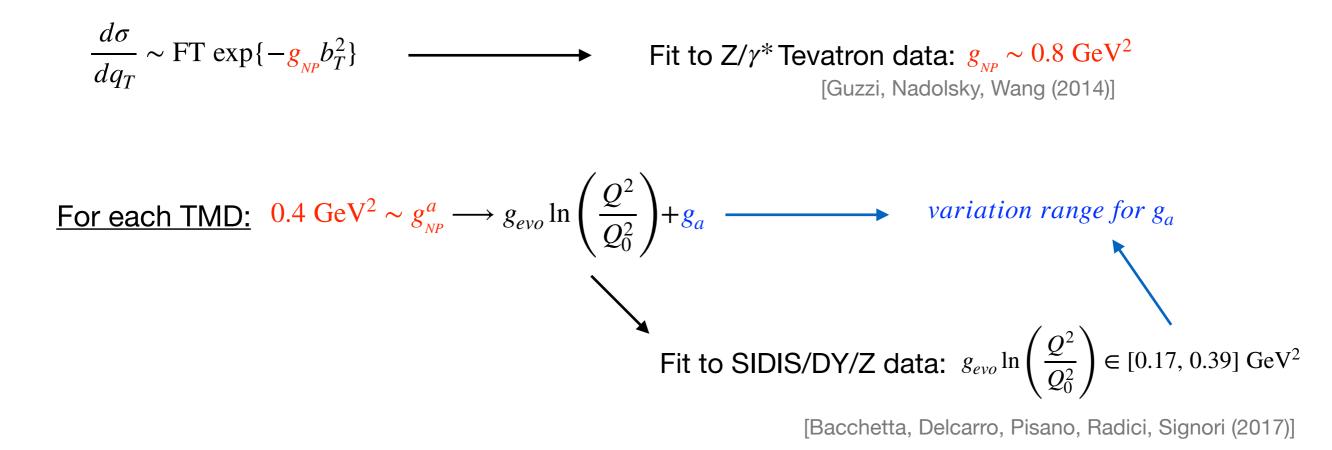

0.0001

0.001

r			
normalized distributions			
cut on p_{\perp}^W	cut on $ \eta_l $	CT10	NNPDF3.0
inclusive	$ \eta_l < 2.5$	80.400 + 0.032 - 0.027	80.398 ± 0.014
$p_{\perp}^W < 20 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.027 - 0.020	80.394 ± 0.012
$p_{\perp}^W < 15 \text{ GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 10 \text{ GeV}$	$ \eta_l < 2.5$	80.392 + 0.015 - 0.012	80.394 ± 0.007
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 1.0$	80.400 + 0.032 - 0.021	80.406 ± 0.017
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 2.5$	80.396 + 0.017 - 0.018	80.395 ± 0.009
$p_{\perp}^W < 15 \mathrm{GeV}$	$ \eta_l < 4.9$	80.400 + 0.009 - 0.004	80.401 ± 0.003
$p_{\perp}^W < 15 \mathrm{GeV}$	$1.0 < \eta_l < 2.5$	80.392 + 0.025 - 0.018	80.388 ± 0.012

$$\frac{d\sigma}{dq_T} \sim \text{FT} \exp\{-g_{_{NP}}b_T^2\}$$


 $\frac{d\sigma}{dq_T} \sim \text{FT} \exp\{-g_{NP} b_T^2\} \longrightarrow \text{Fit to } Z/\gamma^* \text{Tevatron data: } g_{NP} \sim 0.8 \text{ GeV}^2$ [Guzzi, Nadolsky, Wang (2014)]

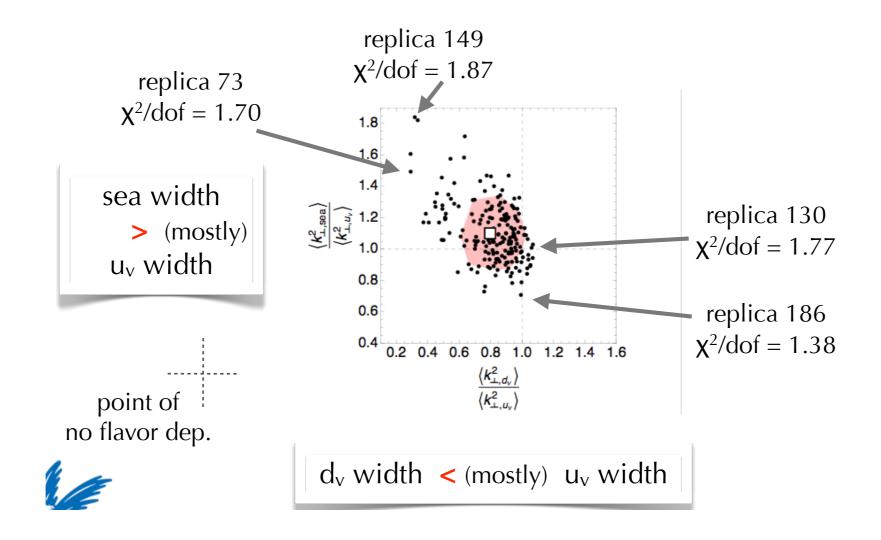

For each TMD: 0.4 GeV² ~
$$g^a_{NP} \longrightarrow g_{evo} \ln\left(\frac{Q^2}{Q_0^2}\right) + g_a$$

 $\frac{d\sigma}{dq_T} \sim \text{FT} \exp\{-g_{NP} b_T^2\} \longrightarrow \text{Fit to } Z/\gamma^* \text{Tevatron data: } g_{NP} \sim 0.8 \text{ GeV}^2$ [Guzzi, Nadolsky, Wang (2014)]

For each TMD: 0.4 GeV² ~
$$g_{NP}^{a} \longrightarrow g_{evo} \ln\left(\frac{Q^{2}}{Q_{0}^{2}}\right) + g_{a}$$

Fit to SIDIS/DY/Z data: $g_{evo} \ln\left(\frac{Q^{2}}{Q_{0}^{2}}\right) \in [0.17, 0.39] \text{ GeV}^{2}$

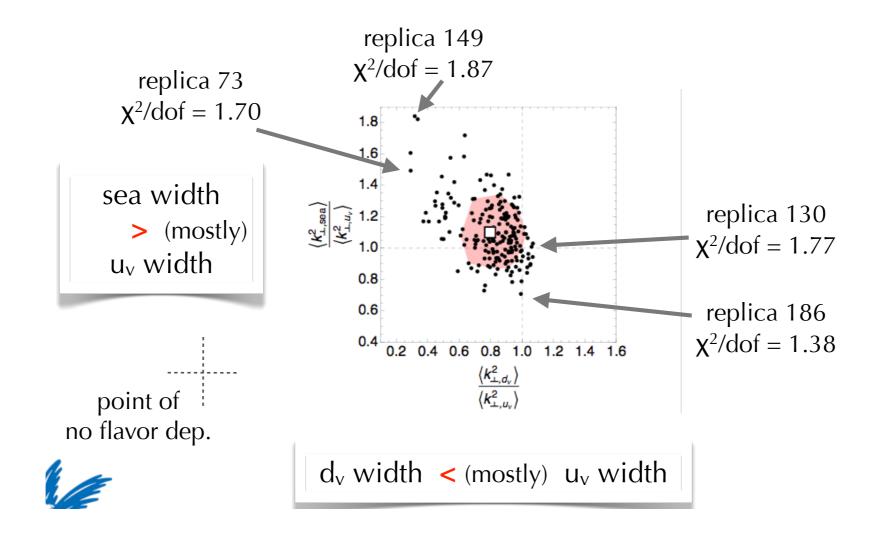
[Bacchetta, Delcarro, Pisano, Radici, Signori (2017)]


We consider :

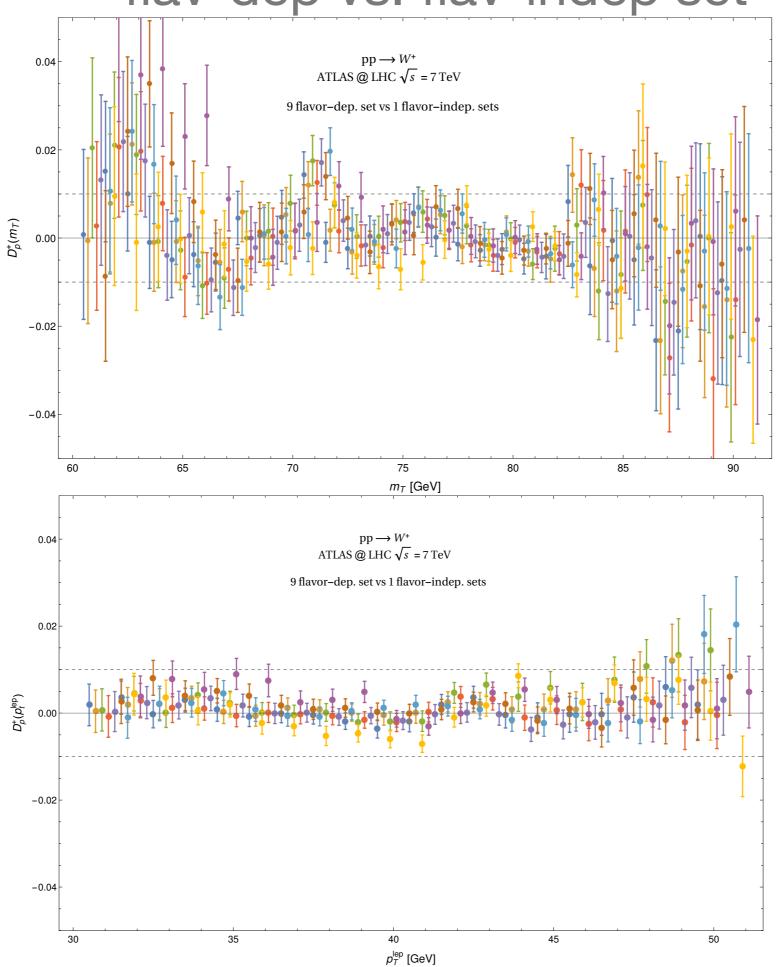
- **50 flavour-dependent sets** $\{g_{NP}^{u_v}, g_{NP}^{d_v}, g_{NP}^{u_s}, g_{NP}^{d_s}, g_{NP}^s\}$ with $g_{NP}^a \in [0.2, 0.6]$ GeV²
- **1 flavour-independent set** with $g_{NP}^a = 0.4 \text{ GeV}^2$

Extraction of parameters from SIDIS

Signori, Bacchetta, Radici, Schnell, JHEP 1311, 194 (2013)


template fit on HERMES data: distribution of parameters

Extraction of parameters from SIDIS


Signori, Bacchetta, Radici, Schnell, JHEP 1311, 194 (2013)

template fit on HERMES data: distribution of parameters

On average, sea > $u_v > d_v$

flav-dep vs. flav-indep set

