Sardinian Workshop on Spin Studies, Cagliari, July 2019

Kinematical analysis of non-collinearities

Charlotte van Hulse & Piet J Mulders

cvhuls@mail.cern.ch p.j.g.mulders@vu.nl

Abstract

Authors: Piet Mulders, Charlotte Van Hulse

The Drell-Yan process and electron-positron annihilation offer a natural arena for studies of non-collinearity. We [1] show how covariantly defined variables for these processes and also for semi-inclusive deep inelastic scattering are suited to get a feeling for the magnitude of intrinsic tranverse momenta.

[1] P.J. Mulders and C. Van Hulse ArXiv:1903.11467 [hep-ph], PRD 2019

See also:

- PJM, hep-ph/0010199 (AIP Conf. Proc. 588 (2001) 1, p. 75-88
- D. Boer, PJM, C. Pisano, ArXiv:0909.4652 [hep-ph], PRD 80 (2009) 094017
- M. Boglione et al., ArXiv:1904.12882 [hep-ph]
- Talk of Gunar Schnell

Introduction

Importance of kinematics in multi-GeV environment of a hard process. Well-known for collinear situation (momentum fractions)

For two-hadron situation giving access to non-collinearity (although convoluted) and a 'second choice' of collinearity measures

$$\begin{aligned} \zeta_{1}^{col} &= \frac{P_{1} \cdot P_{2}}{P_{2} \cdot q} \ \zeta_{2}^{col} = \frac{P_{1} \cdot P_{2}}{P_{1} \cdot q} \ \xi_{2}^{col} = -\frac{P_{h} \cdot q}{P \cdot P_{h}} \ \zeta_{h}^{col} = \frac{P \cdot P_{h}}{P \cdot q} \ \xi_{1}^{col} = \frac{P_{2} \cdot q}{P_{1} \cdot P_{2}} \ \xi_{2}^{col} = \frac{P_{1} \cdot q}{P_{1} \cdot P_{2}} \\ z_{1}\zeta_{2}^{col} &= z_{2}\zeta_{1}^{col} = \frac{2P_{1} \cdot P_{2}}{Q^{2}} \ \frac{\zeta_{h}^{col}}{x} = \frac{z_{h}}{\xi^{col}} = \frac{2P \cdot P_{h}}{Q^{2}} \ x_{1}\xi_{2}^{col} = x_{2}\xi_{1}^{col} = \frac{Q^{2}}{2P_{1} \cdot P_{2}} \end{aligned}$$

Non-collinearity in the annihilation process

Non-collinearity in annihilation process

Non-collinearity given by
$$q_T: q_T = q - \frac{K_1}{\zeta_1} - \frac{K_2}{\zeta_2}$$

 $K_1.q_T = K_2.q_T = 0 \rightarrow 2PI \text{ fractions}$
 $\frac{1}{\zeta_1} = \frac{\frac{1}{\zeta_1^{col}} - \frac{\epsilon_2}{\zeta_2^{col}}}{1 - \epsilon_1\epsilon_2} \approx \frac{1}{\zeta_1^{col}} - \frac{\epsilon_2}{\zeta_2^{col}} \qquad \frac{1}{\zeta_2} = \frac{\frac{1}{\zeta_2^{col}} - \frac{\epsilon_1}{\zeta_1^{col}}}{1 - \epsilon_1\epsilon_2} \approx \frac{1}{\zeta_2^{col}} - \frac{\epsilon_1}{\zeta_1^{col}}$

Some special frames:

• Hadrons collinear: $K_{1T} = K_{2T} = 0$

• γ^* collinear with one of the hadrons:

$$q_{\perp} = K_{1\perp} = 0 \Rightarrow q_T = -K_{2\perp(qK_1)}/\zeta_2$$
$$q_{\perp} = K_{2\perp} = 0 \Rightarrow q_T = -K_{1\perp(qK_2)}/\zeta_1$$

 \checkmark γ^* collinear with jet (cm frame)

 $q_T = -K_{1\perp}/\zeta_1 - K_{2\perp}/\zeta_2 \equiv k_{1T} + k_{2T}$ (there are small components along jet)

Measures of non-collinearity (no theoretical bias!)

$$q_T^2 = Q^2 \left(1 - \frac{K_1 \cdot q}{\zeta_1 Q^2} - \frac{K_2 \cdot q}{\zeta_2 Q^2} \right) = \frac{Q^2}{2} \left(2 - \frac{z_1}{\zeta_1} - \frac{z_2}{\zeta_2} \right)$$
$$D_T \equiv -\frac{4 \epsilon_{\mu\nu\rho\sigma} l_1^{\mu} l_2^{\nu} K_1^{\rho} K_2^{\sigma}}{\zeta_1 \zeta_2 Q^3} \approx q_T^{\nu} \sin \theta + \frac{k_{1T}^{cm} \times k_{2T}^{cm}}{Q} \cos \theta$$

LT leaving k^- invariant $[K^-, \frac{M^2}{2K^-}, \mathbf{0}] \leftrightarrow [K^-, \frac{\mathbf{M}^2 + \mathbf{K}_{\perp}^2}{2K^-}, -\mathbf{K}_{\perp}]$ $[k^-, k^+, \mathbf{0}] \leftrightarrow [k^-, k^+ + \frac{\mathbf{k}_{\perp}^2}{2k^-}, -\mathbf{k}_{\perp}]$

 $\epsilon_1 = \frac{M_1^2}{2 K_1 \cdot K_2}$

 $\epsilon_2 = \frac{M_2^2}{2K_1 \cdot K_2}$

The annihilation process (fixing R_{12})

Allowed regions for given hadron pairs:

The annihilation process (fixing R_{12})

Allowed regions for given hadron pairs:

Monte Carlo simulation (Pythia, $e^+e^- \rightarrow \pi\pi$ at 10.58 GeV)

Two pions R₁₂ ~ 0.2 s₁₂ ~ (4.7 GeV)² ■ R₁₂ ~ 0.03 $s_{12} \sim (1.8 \text{ GeV})^2$ ■ R₁₂ ~ 0.006 $s_{12} \sim (0.8 \text{ GeV})^2$ For large R₁₂ only opposite-hemisphere Regions with ζ_{π} negative (red) for same-hemisphere

Monte Carlo simulation (Pythia, $e^+e^- \rightarrow \pi\pi$ at 10.58 GeV)

Two pions

- R₁₂ ~ 0.2
 s₁₂ ~ (4.7 GeV)²
- R₁₂ ~ 0.03 s₁₂ ~ (1.8 GeV)²
- R₁₂ ~ 0.006
 s₁₂ ~ (0.8 GeV)²
- For large R₁₂ only opposite-hemisphere
- Regions with ζ_π negative (red) for same-hemisphere

Monte Carlo simulation (Pythia, $e^+e^- \rightarrow \pi K$ at 10.58 GeV)

 $\zeta_{\pi^+}^{col} = 0.0150 \, \zeta_{\pi^+}^{col} = 0.03000$ $\zeta_{\pi^+}^{col} = 0.2025$ Pion-kaon pair 0.00600<R₁₂<0.00625 ∙._0.19750<R₁₂<0.20250 0.02500<R₁₂<0.0300 ζ_{1.2}>0, same R₁₂ ~ 0.2 ζ_{1,2}>0, same • ζ₁₂>0, opp. ζ_{1.2}>0, opp. $\zeta_1 < 0$ or $\zeta_2 < 0$, same s₁₂ ~ (4.7 GeV)² ζ_{1.2}>0, opp. ■ R₁₂ ~ 0.03 $\zeta^{col} = 0.1975$ $\zeta_{\pi^+}^{col} = 0.0250$ $s_{12} \sim (1.8 \text{ GeV})^2$ $\zeta_{\nu=}^{col} = 0.1975$ ■ R₁₂ ~ 0.006 $s_{12} \sim (0.8 \text{ GeV})^2$ 10^{-1} For large R₁₂ only opposite-hemisphere For small R_{12} there is a small region (red) with ζ_{π} negative and $\zeta_{K^{-}}^{col} = 0.0250$ a larger region (red) with ζ_{κ} negative for same-hemisphere 10⁻² pairs $f(\zeta_{\pi^+}^{col}) = 0.71 \zeta_{\pi^-}$ 10^{-2} 10⁻¹

ιv

Monte Carlo simulation (Pythia, $e^+e^- \rightarrow \pi K$ at 10.58 GeV)

Pion-kaon pair Ň R₁₂ ~ 0.2 s₁₂ ~ (4.7 GeV)² ■ R₁₂ ~ 0.03 $s_{12} \sim (1.8 \text{ GeV})^2$ ■ R₁₂ ~ 0.006 $s_{12} \sim (0.8 \text{ GeV})^2$ For large R₁₂ only opposite-hemisphere Small region (red) with ζ_{π} negative and larger region (red) with ζ_{K} negative for same-hemisphere pairs

Use of different fractions

- Overall z, ζ and ζ^{col} not very different
- For small z and ζ^{col} one does not find the correct q_T. It requires ζ !

Separation of hemispheres

Fine at large fractions
 Impossible at small fractions, but formally possible via v₁.v₂ for given pairs obtained from R₁₂ and ζ's

13

Range of 2PI variable ζ

can be negative for same hemisphere hadrons

 Negative values even occur (although suppressed) when using the thrust axis (replacing second hadron)

Experimental acces to qT using one hadron and thrust axis (red) compares well with full twohadron analysis using MC qqbar axis (blue).

Using the determinant

$$D_T \equiv -\frac{4 \epsilon_{\mu\nu\rho\sigma} l_1^{\mu} l_2^{\nu} K_1^{\rho} K_2^{\sigma}}{\zeta_1 \zeta_2 Q^3} \approx q_T^{\nu} \sin \theta + \frac{k_{1T}^{cm} \times k_{2T}^{cm}}{Q} \cos \theta$$

Data (extracted from D_T/(|q_T| sin θ) show a full range of events as a function of sin φ_h. Experimental acces using one hadron and thrust axis (red) compares well with full two-hadron analysis using MC qqbar axis (blue).

Using the determinant

$$D_T \equiv -\frac{4 \epsilon_{\mu\nu\rho\sigma} l_1^{\mu} l_2^{\nu} K_1^{\rho} K_2^{\sigma}}{\zeta_1 \zeta_2 Q^3} \approx q_T^{\gamma} \sin\theta + \frac{k_{1T}^{cm} \times k_{2T}^{cm}}{Q} \cos\theta$$

 As expected about a factor square root two between widths for the two-hadron (right) and hadron-thrust axis analysis (left)

Non-collinearity in the Drell-Yan process

Non-collinearity in Drell-Yan process

Non-collinearity given by q_T : $q_T = q - \xi_1 P_1 - \xi_2 P_2$ $P_1.q_T = P_2.q_T = 0 \rightarrow 2PI$ fractions

$$\xi_1 = \frac{\xi_1^{col} - \epsilon_2 \xi_2^{col}}{1 - \epsilon_1 \epsilon_2} \approx \xi_1^{col} - \epsilon_2 \xi_2^{col} \qquad \xi_2 = \frac{\xi_2^{col} - \epsilon_1 \xi_1^{col}}{1 - \epsilon_1 \epsilon_2} \approx \xi_2^{col} - \epsilon_1 \xi_1^{col}$$

• Hadrons collinear: $P_{1T} = P_{2T} = 0$

 \checkmark γ^* collinear with one of the hadrons:

$$q_{\perp} = P_{1\perp} = 0 \implies q_T = -\xi_2 P_{2\perp(qP_1)}$$
$$q_{\perp} = P_{2\perp} = 0 \implies q_T = -\xi_1 P_{1\perp(qP_1)}$$

$$v^*$$
 collinear with jet (Collins-Soper frame)

 $q_{\perp} = P_{2\perp} = 0 \implies q_T = -\xi_1 P_{1\perp(qP_2)} \qquad [p^-, p^+, \mathbf{0}] \iff [p^-, p^+, \mathbf{0}]$ * collinear with jet (Collins-Soper frame) $q_T = -\xi_1 P_{1\perp} - \xi_2 P_{2\perp} \equiv p_{1T} + p_{2T} \text{ (there are small component along jet)}$

Measures of non-collinearity (no theoretical bias!)

$$q_T^2 = Q^2 \left(1 - \xi_1 \frac{P_1 \cdot q}{Q^2} - \xi_2 \frac{P_2 \cdot q}{Q^2} \right) = \frac{Q^2}{2} \left(2 - \frac{\xi_1}{x_1} - \frac{\xi_2}{x_2} \right)$$
$$D_T \equiv -\frac{4\xi_1 \xi_2 \epsilon_{\mu\nu\rho\sigma} l_1^{\mu} l_2^{\nu} P_1^{\rho} P_2^{\sigma}}{Q^3}$$

LT leaving p^+ invariant $\left[\frac{M^2}{2P^+}, P^+, \mathbf{0}\right] \leftrightarrow \left[\frac{\mathbf{M}^2 + \mathbf{P}_{\perp}^2}{2P^+}, P^+, -\mathbf{P}_{\perp}\right]$ $[p^-, p^+, \mathbf{0}] \leftrightarrow [p^- + \frac{\mathbf{p}_{\perp}^2}{2p^+}, p^+, -\mathbf{p}_{\perp}]$

 $\epsilon_1 = \frac{M_1^2}{P_1 \cdot P_2}$

 $\epsilon_2 = \frac{M_2^2}{P_1 \cdot P_2}$

The Drell-Yan process (fixing R_{12})

Allowed regions for given hadron pairs:

The Drell-Yan process (fixing R_{12})

Allowed regions for given hadron pairs:

Combine these two cases (annihilation and DY) in hadron induced hadroproduction with underlying partonic hard process $p_1 + p_2 \rightarrow k_1 + k_2$

<u>Dijet imbalance in hadronic collisions</u>
 <u>Daniel Boer (Vrije U., Amsterdam & Groningen, KVI), Piet J. Mulders (Vrije U., Amsterdam), Cristian Pisano (Vrije U., Amsterdam & Cagliari U. & INFN, Cagliari). Sep 2009. 14 pp.
 Published in Phys.Rev. D80 (2009) 094017
 DOI: <u>10.1103/PhysRevD.80.094017</u>
 e-Print: <u>arXiv:0909.4652</u> [hep-ph] | PDF
</u>

Non-collinearity in semi-inclusive deep inelastic scattering

Non-collinearity in SIDIS

Non-collinearity given by q_T : $q_T = q + \xi P - \frac{K_h}{\zeta_h}$ P. $q_T = K_h$. $q_T = 0 \rightarrow 2PI$ fractions

$$\xi = \frac{\xi^{col} + \frac{\epsilon_h}{\zeta^{col}}}{1 - \epsilon \epsilon_h} \approx \xi^{col} + \frac{\epsilon_h}{\zeta^{col}} \qquad \frac{1}{\zeta_h} = \frac{\frac{1}{\zeta_h^{col}} + \epsilon \xi^{col}}{1 - \epsilon \epsilon_h} \approx \frac{1}{\zeta_h^{col}} + \epsilon \xi^{col}$$

$$\epsilon = \frac{M^2}{P \cdot K_h}$$
$$\epsilon_h = \frac{M_h^2}{P \cdot K_h}$$

- Some special frames:
 - Hadrons collinear: $P_T = K_{hT} = 0$
 - γ^* collinear with one of the hadrons:
 - $q_{\perp} = P_{\perp} = 0 \implies q_T = -P_{h\perp(qP)}/\zeta_h$
 - γ* collinear with partons (Brick-Wall frame)
 - $q_T = \xi P_{\perp} P_{h\perp}\zeta_h \equiv k_T p_T$ (there are small component along jet)
- Measures of non-collinearity (no theoretical bias!)

$$q_T^2 = -Q^2 \left(1 - \xi \frac{P \cdot q}{Q^2} + \frac{K_h \cdot q}{\zeta_h Q^2} \right) = -\frac{Q^2}{2} \left(2 - \frac{\xi}{x} - \frac{z_h}{\zeta_h} \right)$$
$$D_T \equiv -\frac{4\xi \epsilon_{\mu\nu\rho\sigma} l_1^{\mu} l_2^{\nu} P^{\rho} K_h^{\sigma}}{\zeta Q^3}$$

SIDIS (fixing R₁₂)

Allowed regions for given hadron pairs (target and current fragmentation)

SIDIS (fixing R₁₂)

Allowed regions for given hadron pairs

Concluding remarks

- Collinear fractions are key ingredients in the hadron parton transition (in processes such as DIS and single hadron production in annihilation
- Difference between collinear fractions contain information on (convoluted) 3D structure in processes like SIDIS, two-hadron inclusive annihilation and Drell-Yan.
- Inclusion of lepton plane provides additional (also convoluted) information on individual transverse momenta (azimuthal structure in transverse plane).