

TMDs from SIDIS data: role of different choices in phenomenological analyses

Carlo Flore University & INFN, Cagliari

Sar Wors 2019, Cagliari July, 8th 2019

Outline

1. Introduction

2. A case study: fitting quark Sivers function

- 3. Transversity function
- 4. Conclusions

1. Introduction

 TMD physics is entering into a new era: EIC, COMPASS++, LHC (AFTER & LHC-Spin)...

- TMD physics is entering into a new era: EIC, COMPASS++, LHC (AFTER & LHC-Spin)...
- TMD theory got tremendous development

- TMD physics is entering into a new era: EIC, COMPASS++, LHC (AFTER & LHC-Spin)...
- TMD theory got tremendous development
- TMD phenomenology is the bridge connecting theory and experiment

Different choices for a model depend on:

Sar Wors 2019 3 / 23

Different choices for a model depend on:

theory input

Different choices for a model depend on:

- theory input
- data features (amount of datapoints, kinematical regions, binning, precision, correlations...)

Different choices for a model depend on:

- theory input
- data features (amount of datapoints, kinematical regions, binning, precision, correlations...)

Differences between collinear and TMD fits:

Different choices for a model depend on:

- theory input
- data features (amount of datapoints, kinematical regions, binning, precision, correlations...)

Differences between collinear and TMD fits:

- $\mathcal{O}(10^3)$ for collinear PDFs and unpolarised TMD-PDFs

Different choices for a model depend on:

- theory input
- data features (amount of datapoints, kinematical regions, binning, precision, correlations...)

Differences between collinear and TMD fits:

- $\mathcal{O}(10^3)$ for collinear PDFs and unpolarised TMD-PDFs
- $\mathcal{O}(10^2)$ for Sivers and Transversity + Collins

Different choices for a model depend on:

- theory input
- data features (amount of datapoints, kinematical regions, binning, precision, correlations...)

Differences between collinear and TMD fits:

- $\mathcal{O}(10^3)$ for collinear PDFs and unpolarised TMD-PDFs
- $\mathcal{O}(10^2)$ for Sivers and Transversity + Collins

Different amount of information for TMD physics

2. A case study: fitting quark Sivers function

Main motivations:

Main motivations:

new COMPASS SIDIS A^{sin(φ_h-φ_S)}_{UT} data (2D binning and more precise, Q²-dependence)

Main motivations:

- new COMPASS SIDIS A^{sin(φ_h-φ_S)}_{UT} data (2D binning and more precise, Q²-dependence)
- study visibility of TMD effects in the data

Main motivations:

- new COMPASS SIDIS A^{sin(φ_h-φ_S)}_{UT} data (2D binning and more precise, Q²-dependence)
- study visibility of TMD effects in the data
- test different choices based on different input from theory

Sivers fit- model (I)

• Sivers function:

$$\Delta^{N} f_{q/p^{\uparrow}}(x,k_{\perp}) = 4N_{q} x^{\alpha_{q}} (1-x)^{\beta_{q}} \frac{M_{p}}{\langle k_{\perp}^{2} \rangle_{S}} k_{\perp} \frac{e^{-k_{\perp}^{2}/\langle k_{\perp}^{2} \rangle_{S}}}{\pi \langle k_{\perp}^{2} \rangle_{S}}$$

Sivers fit- model (I)

Sivers function:

$$\Delta^{N} f_{q/p^{\uparrow}}(x,k_{\perp}) = 4N_{q} x^{\alpha_{q}} (1-x)^{\beta_{q}} \frac{M_{p}}{\langle k_{\perp}^{2} \rangle_{S}} k_{\perp} \frac{e^{-k_{\perp}^{2}/\langle k_{\perp}^{2} \rangle_{S}}}{\pi \langle k_{\perp}^{2} \rangle_{S}}$$

• Sivers first moment:

$$\Delta^{N} f_{q/p^{\uparrow}}^{(1)}(x) = \int d^{2}\mathbf{k}_{\perp} \frac{k_{\perp}}{4M_{p}} \Delta^{N} f_{q/p^{\uparrow}}(x,k_{\perp}) = N_{q} x^{\alpha_{q}} (1-x)^{\beta_{q}}$$

Sivers fit- model (I)

Sivers function:

$$\Delta^{N} f_{q/p^{\uparrow}}(x,k_{\perp}) = 4N_{q} x^{\alpha_{q}} (1-x)^{\beta_{q}} \frac{M_{p}}{\langle k_{\perp}^{2} \rangle_{S}} k_{\perp} \frac{e^{-k_{\perp}^{2}/\langle k_{\perp}^{2} \rangle_{S}}}{\pi \langle k_{\perp}^{2} \rangle_{S}}$$

• Sivers first moment:

$$\Delta^{N} f_{q/p^{\uparrow}}^{(1)}(x) = \int d^{2} \mathbf{k}_{\perp} \frac{k_{\perp}}{4M_{p}} \Delta^{N} f_{q/p^{\uparrow}}(x, k_{\perp}) = N_{q} x^{\alpha_{q}} (1-x)^{\beta_{q}}$$

Parameters:

$$N_u, \alpha_u, \beta_u, N_d, \alpha_d, \beta_d, \langle k_{\perp}^2 \rangle_s$$

Within the GPM, the SIDIS azimuthal asymmetry reads:

$$A_{UT}^{\sin(\phi_h-\phi_S)} = 2 \frac{\int d\phi_S d\phi_h [d\sigma^{\uparrow} - d\sigma^{\downarrow}] \sin(\phi_h - \phi_S)}{\int d\phi_S d\phi_h [d\sigma^{\uparrow} + d\sigma^{\downarrow}]} = \frac{F_{UT}^{\sin(\phi_h - \phi_S)}}{F_{UU}}$$

where

$$F_{UT}^{\sin(\phi_h-\phi_S)}(x,P_T,z) = 2z \frac{P_T M_p}{\langle P_T^2 \rangle_S} \frac{e^{-P_T^2/\langle P_T^2 \rangle_S}}{\pi \langle P_T^2 \rangle_S} \sum_q e_q^2 \left(N_q x^{\alpha_q} (1-x)^{\beta_q}\right) D_{h/q}(z)$$

$$F_{UU}(x, P_T, z) = \frac{e^{-P_T^2/\langle P_T^2 \rangle}}{\pi \langle P_T^2 \rangle} \sum_q e_q^2 f_{q/p}(x) D_{h/q}(z)$$
$$\langle P_T^2 \rangle = \langle p_\perp^2 \rangle + z^2 \langle k_\perp^2 \rangle, \qquad \langle P_T^2 \rangle_S = \langle p_\perp^2 \rangle + z^2 \langle k_\perp^2 \rangle_S$$

Data selection:

Sar Wors 2019 7 / 23

Data selection:

no z-dependent data

Data selection:

- no z-dependent data
- no K⁻ data

Data selection:

- no z-dependent data
- no K⁻ data
- data from:
 - HERMES $(\pi^{\pm}, \pi^{0}, K^{+} \text{ production off proton target})$
 - COMPASS (π[±], K⁰, K⁺ production off deuteron target and h[±] off proton target Q² binned!)
 - JLab (π^{\pm} production off neutron target)

Data selection:

- no z-dependent data
- no K⁻ data
- data from:
 - HERMES $(\pi^{\pm}, \pi^{0}, K^{+} \text{ production off proton target})$
 - COMPASS (π[±], K⁰, K⁺ production off deuteron target and h[±] off proton target Q² binned!)
 - JLab (π^{\pm} production off neutron target)
- bulk of data: $0.03 \lesssim x \lesssim 0.3$

Data selection:

- no z-dependent data
- no K⁻ data
- data from:
 - HERMES $(\pi^{\pm}, \pi^{0}, K^{+} \text{ production off proton target})$
 - COMPASS (π[±], K⁰, K⁺ production off deuteron target and h[±] off proton target Q² binned!)
 - JLab (π^{\pm} production off neutron target)
- bulk of data: $0.03 \lesssim x \lesssim 0.3$

\Rightarrow 220 data points

1. "reference fit": N_u , β_u , N_d , β_d , $\langle k_{\perp}^2 \rangle_S$

- 1. "reference fit": $N_u, \beta_u, N_d, \beta_d, \langle k_{\perp}^2 \rangle_S$
- 2. " α fit": N_u , α_u , β_u , N_d , α_d , β_d , $\langle k_{\perp}^2 \rangle_S$

- 1. "reference fit": $N_u, \beta_u, N_d, \beta_d, \langle k_{\perp}^2 \rangle_S$
- 2. " α fit": N_u , α_u , β_u , N_d , α_d , β_d , $\langle k_{\perp}^2 \rangle_S$
- 3. "reference fit" + collinear twist-3 evolution

- 1. "reference fit": $N_u, \beta_u, N_d, \beta_d, \langle k_{\perp}^2 \rangle_S$
- 2. " α fit": N_u , α_u , β_u , N_d , α_d , β_d , $\langle k_{\perp}^2 \rangle_S$
- 3. "reference fit" + collinear twist-3 evolution
- 4. "reference fit" + Q^2 -dependence of Sivers width: $\langle k_{\perp}^2 \rangle_S = g_1 + g_2 \log \frac{Q^2}{Q_0^2}$

- 1. "reference fit": N_u , β_u , N_d , β_d , $\langle k_{\perp}^2 \rangle_S$
- 2. " α fit": N_u , α_u , β_u , N_d , α_d , β_d , $\langle k_{\perp}^2 \rangle_S$
- 3. "reference fit" + collinear twist-3 evolution
- 4. "reference fit" + Q^2 -dependence of Sivers width: $\langle k_{\perp}^2 \rangle_S = g_1 + g_2 \log \frac{Q^2}{Q_0^2}$

Sivers fit - widths

We used two different pair of widths as extracted from SIDIS multiplicities [Anselmino et al., JHEP04 (2014) 005]

- HERMES: $\langle k_{\perp}^2 \rangle = 0.57 \,\text{GeV}^2$, $\langle p_{\perp}^2 \rangle = 0.12 \,\text{GeV}^2$
- COMPASS: $\langle k_{\perp}^2 \rangle = 0.60 \, {
 m GeV}^2$, $\langle p_{\perp}^2 \rangle = 0.20 \, {
 m GeV}^2$

Left: HERMES widths for both HERMES and COMPASS Right: corrispondent widths for HERMES and COMPASS

Sivers fit - reference fit (I)

Baseline:
$$\alpha_u = \alpha_d = 0 \Longrightarrow \Delta^N f_{q/p^{\uparrow}}^{(1)}(x) = N_q (1-x)^{\beta_q}$$

$\chi^2_{ m tot} = 212.8$	n. of points $= 220$	
$\chi^2_{ m dof}=0.99$	n. of free parameters $= 5$	
$\Delta \chi^2 = 11.3$		
HERMES, JLab	$\langle k_{\perp}^2 angle = 0.57 { m GeV}^2$	$\langle p_{\perp}^2 angle = 0.12 { m GeV}^2$
COMPASS	$\langle k_{\perp}^2 angle = 0.60 { m GeV}^2$	$\langle p_{\perp}^2 angle = 0.20 { m GeV}^2$
$N_u = 0.40 \pm 0.09$	$eta_{u}=$ 5.43 \pm 1.59	
$N_d = -0.63 \pm 0.23$	$eta_d=6.45\pm3.64$	
$\langle k_{\perp}^2 angle_{S} = 0.30 \pm 0.15 \mathrm{GeV}^2$		

Sivers fit - reference fit (I)

Baseline:
$$\alpha_u = \alpha_d = 0 \Longrightarrow \Delta^N f_{q/p^{\uparrow}}^{(1)}(x) = N_q (1-x)^{\beta_q}$$

$\chi^2_{ m tot} = 212.8$	n. of points $= 220$	
$\chi^2_{ m dof}=0.99$	n. of free parameters $= 5$	
$\Delta \chi^2 = 11.3$		
HERMES, JLab	$\langle k_{\perp}^2 angle = 0.57 { m GeV}^2$	$\langle p_{\perp}^2 angle = 0.12 { m GeV}^2$
COMPASS	$\langle k_{\perp}^2 angle = 0.60 { m GeV}^2$	$\langle p_{\perp}^2 angle = 0.20 { m GeV}^2$
$N_u = 0.40 \pm 0.09$	$eta_u = 5.43 \pm 1.59$	
$N_d = -0.63 \pm 0.23$	$eta_d=6.45\pm3.64$	
$\langle k_{\perp}^2 angle_{S} = 0.30 \pm 0.15 \mathrm{GeV}^2$		

Sivers fit - reference fit (II)

Sar Wors 2019 11 / 23

Low-x uncertainties:
$$\Delta^{N} f^{(1)}_{q/p^{\uparrow}}(x) = N_{q} \, x^{lpha_{q}} (1-x)^{eta_{q}}$$

$\chi^2_{tot} = 211.5$ $\chi^2_{dof} = 0.99$ $\Delta \chi^2 = 14.3$	n. of points = 220 n. of free parameters = 7	
HERMES, JLab COMPASS	$\langle k_{\perp}^2 angle = 0.57 \mathrm{GeV}^2$ $\langle k_{\perp}^2 angle = 0.60 \mathrm{GeV}^2$	$egin{aligned} \langle p_{\perp}^2 angle &= 0.12 \mathrm{GeV}^2 \ \langle p_{\perp}^2 angle &= 0.20 \mathrm{GeV}^2 \end{aligned}$
$N_u = 0.40 \pm 0.09$ $N_d = -0.63 \pm 0.23$ $\langle k_{\perp}^2 \rangle_S = 0.30 \pm 0.15 \text{GeV}^2$	$egin{aligned} eta_u &= 5.93 \pm 3.86 \ eta_d &= 5.71 \pm 7.43 \end{aligned}$	$lpha_u = 0.073 \pm 0.46$ $lpha_d = -0.075 \pm 0.83$

Low-x uncertainties:
$$\Delta^{N} f^{(1)}_{q/p^{\uparrow}}(x) = N_{q} \, x^{lpha_{q}} (1-x)^{eta_{q}}$$

$\chi^2_{ m tot} = 211.5$ $\chi^2_{ m dof} = 0.99$	n. of points = 220 n. of free parameters = 7	
$\Delta \chi^2 = 14.3$		
HERMES, JLab	$\langle k_{\perp}^2 angle = 0.57{ m GeV}^2$	$\langle p_{\perp}^2 angle = 0.12 { m GeV}^2$
COMPASS	$\langle k_{\perp}^2 angle = 0.60 { m GeV}^2$	$\langle p_{\perp}^2 angle = 0.20 \mathrm{GeV}^2$
$N_u = 0.40 \pm 0.09$	$eta_u = 5.93 \pm 3.86$	$lpha_u=$ 0.073 \pm 0.46
$N_d = -0.63 \pm 0.23$	$\beta_d = 5.71 \pm 7.43$	$lpha_{d}=-0.075\pm0.83$
$\langle k_{\perp}^2 angle_{S} = 0.30 \pm 0.15 \mathrm{GeV}^2$		

Low-x uncertainties:
$$\Delta^{N} f^{(1)}_{q/p^{\uparrow}}(x) = N_{q} \, x^{lpha_{q}} (1-x)^{eta_{q}}$$

$\chi^2_{ m tot}=211.5$	n. of points $= 220$	
$\chi^2_{ m dof} = 0.99$	n. of free parameters $= 7$	
$\Delta \chi^2 = 14.3$		
HERMES, JLab	$\langle k_{\perp}^2 angle = 0.57 { m GeV}^2$	$\langle p_{\perp}^2 angle = 0.12 { m GeV}^2$
COMPASS	$\langle k_{\perp}^2 angle = 0.60 { m GeV}^2$	$\langle p_{\perp}^2 angle = 0.20 { m GeV}^2$
$N_u=0.40\pm0.09$	$eta_{u}=$ 5.93 \pm 3.86	$lpha_{u}=$ 0.073 \pm 0.46
$N_d = -0.63 \pm 0.23$	$eta_d = 5.71 \pm 7.43$	$lpha_{d}=-0.075\pm0.83$
$\langle k_{\perp}^2 angle_{S} = 0.30 \pm 0.15 \mathrm{GeV}^2$		

Sivers fit - " α -fit" (II)

Sar Wors 2019 13 / 23

Sivers fit - results (I)

Sivers fit - results (II)

Sar Wors 2019 15 / 23

Sivers fit - results (III)

Sar Wors 2019 16 / 23

Sivers fit - uncertainties

- Sivers function is largely unconstrained where there is no data
- model dependence has an important effect outside the bounds of experimental information
- future measurements at low-x (COMPASS, EIC) and at large-x (JLab12) will help to deepen the knowledge on the Sivers function

Sivers fit - collinear twist-3 evolution

Reference fit: $\Delta^N f_{q/p^{\uparrow}}^{(1)}(x) = N_q (1-x)^{\beta_q}$

- Sivers first moment is proportional to collinear twist-3 quark gluon correlation function T_{q,F}(x, x)
- Q^2 -evolution kernels for $T_{q,F}(x,x)$ are known \Rightarrow test Q^2 -dependence of Sivers function

• $Q^2 = 3.5 \text{ GeV}^2$ is the experimental average value

- twist-3 evolution affects only x-dependent part of the Sivers function
- hint on visible signals of evolution in the data

3. Transversity function

tensor charge : separate flavors

2- global fit	Radici & Bacchetta, P.R.L. 120 (18) 192	001
3-TMD fit	Kang et al., P.R. D93 (16) 014009	* Q2=10
4- Torino	Anselmino et al., P.R. D87 (13) 094019	* Q ² =1
5- JAM fit	Lin et al., P.R.L. 120 (18) 152502	* Q ₀ ² =2
6- PNDME16	Bhattacharya et al., P.R. D94 (16) 054	1508
7- PNDME18	Gupta et al., arXiv:1808.07597	
8- ETMC17	Alexandrou et al., P.R. D95 (17) 11451 E. P.R. D96 (17) 09990	4; 06

incompatibility for up

compatibility for down but within large errors (except JAM)

isovector tensor charge $g_T = \delta u - \delta d$

- exploratory and preliminary study to fit simultaneously transversity and Collins function
- usual global fit (SIDIS $A_{UT}^{\sin(\phi_h+\phi_S)} + e^+e^- A_O^{UL(C)}$ data)
- test: relax automatic satisfaction of Soffer Bound for transversity
- transversity proportional to SB only at the initial scale, no bound on normalization

Tensor charge

- still incompatibility with lattice for up
- relaxing automatic satisfaction of SB gives compatibility with lattice for $g_{\mathcal{T}}$

4. Conclusions

Conclusions

- TMD physics is entering into a new era: more data (and more precise) will come
- in the meanwhile, since the amount of information we have is still not that large, the choices we make in phenomenological extraction can be crucial
- let's not forget what data is telling us now, it is very important for the future
- should we push the bounds?

Thank you

Backup

Sivers fit - impact of Q^2 binned data

- same measurements but different binning (Q²-binning, same as Drell-Yan)
- slight reduction on uncertainty bands
- increased degree of information with new binning
- more suitable for scale dependence studies

Sivers fit - COMPASS 2021 projection

- new run of SIDIS measurements proposed by COMPASS collaboration for the 2021 deuteron run
- projected error have no impact on u-quark
- uncertainty for *d*-quark is about a factor of 2 for x < 0.1

Sivers fit - P_T -dependent results

Sar Wors 2019 23 / 23

Sivers fit - TMD-like evolution (I)

Reference fit:
$$\Delta^N f^{(1)}_{q/p^{\uparrow}}(x) = N_q (1-x)^{\beta_q}$$
, with $\langle k_{\perp}^2
angle_S = g_1 + g_2 \log\left(rac{Q^2}{Q_0^2}
ight)$

$\chi^2_{ m tot}=212.8$	n. of points $= 220$	
$\chi^2_{ m dof}=$ 0.99	n. of free parameters $= 6$	
$\Delta \chi^2 = 12.9$		
HERMES, JLab	$\langle k_{\perp}^2 angle = 0.57 \mathrm{GeV}^2$	$\langle p_{\perp}^2 angle = 0.12 { m GeV}^2$
COMPASS	$\langle k_{\perp}^2 \rangle = 0.60 \mathrm{GeV}^2$	$\langle p_{\perp}^2 \rangle = 0.20 \mathrm{GeV}^2$
$N_u = 0.40 \pm 0.09$	$eta_u = 5.42 \pm 1.70$	
$N_d = -0.63 \pm 0.26$	$eta_d=6.45\pm3.89$	
$\langle k_{\perp}^2 angle_S = g_1 + g_2 \log \left(Q^2 / Q_0^2 ight)$		
$g_1 = 0.28 \pm 0.29 \text{ GeV}^2$	$g_2 = 0.01 \pm 0.20 \text{GeV}^2$	

Sivers fit - TMD-like evolution (II)

Sar Wors 2019 23 / 23

Sivers fit - TMD-like evolution (III)

- both parameters are affected by a rather large uncertainty and are strongly correlated
- current Sivers asymmetries will probably not constrain strongly g_K
- g₁ close to the reference fit value; g₂ very small but very large uncertainty ⇒ compatibility between Sivers asymmetries and extracted g_K values from other observables is likely to be achieved

Transversity fit - using SB

- relaxing SB does not change u_v transversity
- SB violation for d_v is not statistically significant

Transversity fit - no SB

- relaxing SB does not change u_v transversity
- SB violation for d_v is not statistically significant

