Describing Unpolarized SIDIS data at order αs

UNIVERSITÀ DEGLI STUDI DI TORINO

J Osvaldo Gonzalez-Hernandez University of Turin

Sar WorS 2019

Outlook

- Importance of unpolarized functions
- Some challenges extracting unpolarized functions from SIDIS
- Signals of non-perturbative dominance
- Testing the kinematics where factorization theorems hold.

TMD physics, rich phenomenology.

Gateway to 3D structure of hadrons

e⁺e⁻ double ratios (Collins function)

Q^2 = 13 GeV^2

Input needed : Unpolarized functions

SIDIS Sivers Asymmetry

Differences partly due to different assumptions on unpolarized functions, not necessarily from type of picture, i.e. Gaussian Ansatz CSS SCET...

Slide by Filippo Delcarro (JLAB) -QCD evolution 2019-

How well can we extract unpolarized TMDs from SIDIS data? (challenges)

Theoretical Framework: Factorization theorems

W (TMD region)

$$\sum_{q} \mathcal{H}_{q} \text{ F.T.} \left\{ \tilde{D}_{h/q}(z, z \boldsymbol{b}_{\perp}; Q) \ \tilde{f}_{q/P}(x, \boldsymbol{b}_{\perp}; Q) \right\}$$

Fourier Transform of:

$$\begin{split} \tilde{F}_{j}(x,b_{T},Q,\zeta_{F}) &= \left(\frac{\sqrt{\zeta_{F}}}{\mu_{b}}\right)^{\tilde{K}(b_{*},\mu_{b})} \sum_{j} \int_{x}^{1} \frac{d\hat{x}}{\hat{x}} \underbrace{\tilde{C}_{ji}^{in}(x/\hat{x},b_{*},\mu_{b},\mu_{b}^{2}) f_{i}(\hat{x},\mu_{b})}_{\times \exp\left\{\int_{\mu_{b}}^{Q} \frac{d\mu}{\mu} \left(\underline{\gamma_{F}(\mu;1)} - \ln\left(\frac{\sqrt{\zeta_{F}}}{\mu}\right) \underline{\gamma_{K}(\mu)}\right)\right\}} \\ &\times \exp\left\{-g_{P}(x,b_{T}) - g_{K}(b_{T})\ln\left(\frac{\sqrt{\zeta_{F}}}{\sqrt{\zeta_{F0}}}\right)\right\}, \end{split}$$

pQCD

Input (extraction from collinear cross section)

Non-perturbative functions to extract from data.

Bacchetta, Delcarro, Pisano, Radici, Signori JHEP 1706 (2017) 081

$$\begin{split} & \int_{u_{1}}^{Q^{2}} \underbrace{(24 \times 2 \times 0.30)}_{0.40 \times 2 \times (1.50)} \underbrace{(20 \times 2 \times 0.10)}_{u_{2}} \underbrace{(20 \times 0.1$$

Large (spurious) normalizations have to be introduced to described data

Large qT region cannot be described with modern Collinear PDF sets

Matching between small and large qT regions

Matching between small and large qT regions

Matching between small and large qT regions

Signals of non-perturbative dominance

Large differences due to non-perturbative effects. Here, model with mass parameter M/Q ~ 0.2

Testing the kinematics where factorization theorems hold

Different types of approximations

External momenta kinematics

 $P_{\rm B,b}^{-} \equiv \zeta k_{\rm f}^{-}$

 $\hat{z}_{\mathrm{N}} \equiv \frac{k_{\mathrm{f,b}}^{-}}{q_{\mathrm{b}}^{-}} = \frac{z_{\mathrm{N}}}{\zeta}$

 P_B

$$k^{2} = (k_{f} - q)^{2}$$

$$k^{2} = 0$$

$$k^{2} = 0$$

$$k^{2} = 0$$

$$k^{2} = 0$$

$$k^{2} \neq 0$$

Allows to distinguish handbag from real emission kinematics

 $k_{\rm X}^2 = (k_{\rm i} + q - k_{\rm f})^2$

 $k_X^2 = 0 \qquad \qquad k_X^2 \neq 0$

Higher order pQCD corrections in large qT cross section associated to larger values of virtuality spectator

Collinearity =
$$R_1 \equiv \frac{P_{\rm B} \cdot k_{\rm f}}{P_{\rm B} \cdot k_{\rm i}}$$

Transverse Hardness Ratio =
$$R_2 \equiv \frac{|k^2|}{Q^2}$$

Spectator Virtuality Ratio =
$$R_3 \equiv \frac{|k_X^2|}{Q^2}$$

The size of these ratios determine partonic configurations (factorization theorem) and map to kinematical regions of the observables

Collinearity =
$$R_1 \equiv \frac{P_{\rm B} \cdot k_{\rm f}}{P_{\rm B} \cdot k_{\rm i}}$$

Transverse Hardness Ratio =
$$R_2 \equiv \frac{|k^2|}{Q^2}$$

Spectator Virtuality Ratio =
$$R_3 \equiv \frac{|k_X^2|}{Q^2}$$

(caveat: Parton momenta have to be estimated, so this is just an example)

Final Remarks

- Some progress on TMD extraction from SIDIS (evolution)
- Currently, some results are counter-intuitive.
- Matching is quite important, it is a non-trivial component of the TMD formalism (otherwise must cut data)
- Must think of solutions to describe the data: Fixed order large qT region a good starting point.
- Does non-perturbative dominance compromises the validity of the formalism?
- Mapping (optimal) regions of applicability of factorization is crucial (like using R1,R2,R3 shown in this talk.)

Thanks