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• Importance of unpolarized functions 

• Some challenges extracting unpolarized 
functions from SIDIS 

• Signals of non-perturbative dominance 

• Testing the kinematics where factorization 
theorems hold.

Outlook



TMD physics, rich phenomenology. 

Gateway to 3D structure of hadrons
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Scale dependence?

Q^2 = 13 GeV^2

Simple 
gaussian picture

Kang, Prokudin, Sun, Yuan 

Phys.Rev. D93 (2016) no.1, 014009 
arXiv:1505.05589 [hep-ph] JLAB-THY-15-2044 

Picture within 
QCD-factorization

Predictions for BES III

(1) & (2)

(3)
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e+e- double ratios (Collins function)
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Ingredients for extraction of Collins function.

Unpolarized TMDFF

Ratio

Double 
Ratio

. . .

Collins TMDFF

Unpolarized 
TMDFF 
&TMDPDF

TMD Transversity 
& Collins function

 Ratio

e+e- → π π X SIDIS

Input needed : Unpolarized functions 
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(1) & (2) Sivers asymmetry in SIDISSIDIS Sivers Asymmetry

Unpolarized  
Functions 

 needed as input 
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Slide by Filippo Delcarro (JLAB) 
 -QCD evolution 2019-

Differences partly due to  
different assumptions on 
unpolarized  functions, 
not necessarily from type of  
picture, i.e.  
Gaussian Ansatz 
CSS 
SCET…



How well can we extract unpolarized  
TMDs from SIDIS data? 

(challenges)



Theoretical Framework: Factorization theorems

14

Fourier Transform of:

pQCD

Input (extraction from collinear cross section)

Non-perturbative functions to extract from data.

(TMD region)



17

〈��〉=��� ����
〈�〉=�����

�

�

�

�

��

�
��
�
��
��
���
���
���

��� ��� ���
���[���]

〈��〉=��� ����
〈�〉=����

��� ��� ���
���[���]

〈��〉=�� ����
〈�〉=�����

��� ��� ���
���[���]

〈��〉=�� ����
〈�〉=�����

�

�

�

�

��

�
��
�
��
��
���
���
���

〈��〉=�� ����
〈�〉=�����

��� ��� ���
���[���]

〈��〉=�� ����
〈�〉=�����

〈��〉=��� ����
〈�〉=�����

�

�

�

�

��

�
��
�
��
��
���
���
���

〈��〉=�� ����
〈�〉=�����

��� ��� ���
���[���]

〈��〉=�� ����
〈�〉=�����

〈��〉=��� ����
〈�〉=�����

〈��〉=�� ����
〈�〉=�����

��� ��� ���
���[���]

〈��〉=�� ����
〈�〉=�����

〈��〉=��� ����
〈�〉=�����

〈��〉=�� ����
〈�〉=�����

�

�

�

�

��

�
��
�
��
��
���
���
���

〈��〉=��� ����
〈�〉=�����

��� ��� ���
���[���]

〈��〉=�� ����
〈�〉=�����

〈�〉=���� (������=�)
〈�〉=���� (������=�)
〈�〉=���� (������=�)
〈�〉=���� (������=�)
〈�〉=���� (������=�)
〈�〉=���� (������=�)
〈�〉=���� (������=�)

FIG. 5: Compass multiplicities for production of negative hadrons (⇡�) o↵ a deuteron for di↵erent hxi, hzi, and hQ2i bins as
a function of the transverse momentum of the detected hadron PhT . Multiplicities are normalized to the first bin in PhT for
each hzi value (see (41)). For clarity, each hzi bin has been shifted by an o↵set indicated in the legend.

B. Transverse momentum dependence at 1 GeV

The variables ⇠min and ⇠max delimit the range in ⇠T where transverse momentum resummation is computed per-
turbatively. The g2 parameter enters the nonperturbative Sudakov exponent and quantifies the amount of transverse

Example:  
extraction from global fit  
(2013 COMPASS data)

Bacchetta, Delcarro, Pisano, Radici, Signori 
JHEP 1706 (2017) 081 
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(TMD region)

Approximately follows the behaviour of Generalized Parton Model e.g.

Note however this is not an exact correspondence (and 
NO TMD evolution here) 
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(TMD region)

Approximately follows the behaviour of Generalized Parton Model e.g.

Note however this is not an exact correspondence (and 
NO TMD evolution here) 

Some issues with unpolarized 
TMDs extraction(SIDIS)
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Fourier Transform of:

pQCD

Input (extraction from collinear cross section)

Non-perturbative functions to extract from data.

(TMD region)
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(TMD region)

Approximately follows the behaviour of Generalized Parton Model e.g.

Note however this is not an exact correspondence (and 
NO TMD evolution here) 



Some challenges: 

Large (spurious) normalizations have to be 
introduced to described data 

A bit counter-intuitive   



Some challenges: 

Large qT region cannot be described with modern  
Collinear PDF sets  
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FIG. 4: Cross section as a function of pT , data and cuts as in Figure 3.

however the di�erence between LO and NLO decreases as pT increases.
The uncertainty due to the choice of a fragmentation functions set is also quite noticeable, this fact driven by the

di�erent gluon content of the two sets considered here. Low Q
2 bins seem to prefer KKP set, which have a larger

gluon-fragmentation content, whereas for larger Q
2 both sets agree with the data within errors. LO estimates show

a much smaller sensitivity on the choice of fragmentation functions, since gluon fragmentation does not contribute
signi�cantly to the cross section at this order.
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As mentioned, the dependence of the cross section in the choice for the renormalization and factorization scale is

FIG. 3. Fig. 4 from [24]. The di↵erential cross section was integrated over x, z and bins of Q with H1 cuts, calculated with
both leading order and next-to-leading order, and compared with ⇡

0 production data from [23]. Here pT corresponds to our
PH,T – see Eq. (1). Note the large correction from O
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FIG. 4: Cross section as a function of pT , data and cuts as in Figure 3.

however the di�erence between LO and NLO decreases as pT increases.
The uncertainty due to the choice of a fragmentation functions set is also quite noticeable, this fact driven by the

di�erent gluon content of the two sets considered here. Low Q
2 bins seem to prefer KKP set, which have a larger

gluon-fragmentation content, whereas for larger Q
2 both sets agree with the data within errors. LO estimates show

a much smaller sensitivity on the choice of fragmentation functions, since gluon fragmentation does not contribute
signi�cantly to the cross section at this order.
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both leading order and next-to-leading order, and compared with ⇡
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fixes the bT scale of the transition between perturbative and non-perturbative regimes,

the distributions obtained from growing values of bmax die faster in bT , because the non-

perturbative contribution sets in at larger and larger values of bT .

3.3 Y term matching

It should now be clear that a successful matching heavily depends on the subtle inter-

play between perturbative and non-perturbative contributions to the total cross section,

and that finding a kinematical range in which the resummed cross section W matches its

asymptotic counterpart d�ASY , in the region qT ⇠ Q, cannot be taken for granted.

In Fig. 6 we show, in the three SIDIS configurations considered above, the NLO cross

section d�NLO (solid, red line), the asymptotic cross section d�ASY (dashed, green line)

and the NLL resummed cross section WNLL (dot-dashed, cyan line). The dotted blue line

represents the sum (WNLL + Y ), according to Eq. (2.19).

Clearly, in none of the kinematical configurations considered, WNLL matches d�ASY ,

they both change sign at very di↵erent values of qT . Moreover, the Y factor can be

very large compared to WNLL. Consequently, the total cross section WNLL + Y (dot-

ted, blue line) never matches the fixed order cross section d�NLO (solid, red line). At

low and intermediate energies, the main source of the matching failure is represented by

the non-perturbative contribution to the Sudakov factor. As we showed in Section 3.1,

the resummed term W of the cross section is totally dominated by the non-perturbative

input, even at large qT . Notice that, in the kinematical configurations of the COMPASS

experiment, the matching cannot be achieved simply by adding higher order corrections

to the perturbative calculation of the Y term, as proposed in Ref. [8], as WNLL is heavily

dependent on the non-perturbative input.

Interestingly, the cross section does not match the NLO result even at the highest

energies considered,
p
s = 1 TeV and Q2 = 5000 GeV2: further comments will be addressed

in the following subsection.
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fixes the bT scale of the transition between perturbative and non-perturbative regimes,

the distributions obtained from growing values of bmax die faster in bT , because the non-

perturbative contribution sets in at larger and larger values of bT .

3.3 Y term matching

It should now be clear that a successful matching heavily depends on the subtle inter-

play between perturbative and non-perturbative contributions to the total cross section,

and that finding a kinematical range in which the resummed cross section W matches its

asymptotic counterpart d�ASY , in the region qT ⇠ Q, cannot be taken for granted.

In Fig. 6 we show, in the three SIDIS configurations considered above, the NLO cross

section d�NLO (solid, red line), the asymptotic cross section d�ASY (dashed, green line)

and the NLL resummed cross section WNLL (dot-dashed, cyan line). The dotted blue line

represents the sum (WNLL + Y ), according to Eq. (2.19).

Clearly, in none of the kinematical configurations considered, WNLL matches d�ASY ,

they both change sign at very di↵erent values of qT . Moreover, the Y factor can be

very large compared to WNLL. Consequently, the total cross section WNLL + Y (dot-

ted, blue line) never matches the fixed order cross section d�NLO (solid, red line). At

low and intermediate energies, the main source of the matching failure is represented by

the non-perturbative contribution to the Sudakov factor. As we showed in Section 3.1,

the resummed term W of the cross section is totally dominated by the non-perturbative

input, even at large qT . Notice that, in the kinematical configurations of the COMPASS

experiment, the matching cannot be achieved simply by adding higher order corrections

to the perturbative calculation of the Y term, as proposed in Ref. [8], as WNLL is heavily

dependent on the non-perturbative input.

Interestingly, the cross section does not match the NLO result even at the highest

energies considered,
p
s = 1 TeV and Q2 = 5000 GeV2: further comments will be addressed
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fixes the bT scale of the transition between perturbative and non-perturbative regimes,

the distributions obtained from growing values of bmax die faster in bT , because the non-

perturbative contribution sets in at larger and larger values of bT .

3.3 Y term matching

It should now be clear that a successful matching heavily depends on the subtle inter-

play between perturbative and non-perturbative contributions to the total cross section,

and that finding a kinematical range in which the resummed cross section W matches its

asymptotic counterpart d�ASY , in the region qT ⇠ Q, cannot be taken for granted.

In Fig. 6 we show, in the three SIDIS configurations considered above, the NLO cross

section d�NLO (solid, red line), the asymptotic cross section d�ASY (dashed, green line)

and the NLL resummed cross section WNLL (dot-dashed, cyan line). The dotted blue line

represents the sum (WNLL + Y ), according to Eq. (2.19).

Clearly, in none of the kinematical configurations considered, WNLL matches d�ASY ,

they both change sign at very di↵erent values of qT . Moreover, the Y factor can be

very large compared to WNLL. Consequently, the total cross section WNLL + Y (dot-

ted, blue line) never matches the fixed order cross section d�NLO (solid, red line). At

low and intermediate energies, the main source of the matching failure is represented by

the non-perturbative contribution to the Sudakov factor. As we showed in Section 3.1,

the resummed term W of the cross section is totally dominated by the non-perturbative

input, even at large qT . Notice that, in the kinematical configurations of the COMPASS

experiment, the matching cannot be achieved simply by adding higher order corrections

to the perturbative calculation of the Y term, as proposed in Ref. [8], as WNLL is heavily

dependent on the non-perturbative input.

Interestingly, the cross section does not match the NLO result even at the highest

energies considered,
p
s = 1 TeV and Q2 = 5000 GeV2: further comments will be addressed
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that quantities like |k2

i
| and |k2

f
| are small, and much of the discussion in this section will

be about addressing the question of what is meant by “small.” So to summarize, “partonic"
dashed lines represent the flow of a momentum with small invariant energy. In practical
situations, they will often turn out to refer to actual quark and/or gluon lines, but they do
not need to generally.

The partonic subprocess in Fig. 3 is marked off in a blue box. A black dot indicates the
parton we associate with an observed hadron. The momentum ki is the incoming struck
parton momentum, and there is at least one hadronizing parton kf . The kX momentum
labels the total momentum of all other unobserved partons combined. Outside the box
in Fig. 3, the position of the hadron implies a current region picture, though an analo-
gous picture of course applies to the target region case. We ask questions about partonic
regions in the context of the steps needed to factorize graphical structure in a manner
consistent with particular partonic pictures. Our general view of factorization is based on
that of Collins [11, 33] and collaborators, though the same statements apply to most other
approaches.

We are interested in the kinematics of the ki + q ! kf + kX subprocess and how
closely it matches the overall P + q ! PB + X process under very general assumptions.
Specific realizations of the partonic subprocess, each of which can contribute to a different
kinematical region, are shown in Fig. 4. We will analyze the subprocess in the Breit frame
and write
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Hats always indicate a partonic kinematical variable, whereas ⇠ and ⇣ are momentum
fractions (see below). We will write the transverse momentum as

kf,b,T = �ẑNqT + �kT . (8.2)
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Figure 4: Examples of hard kinematics. Graph (a) represents handbag kinematics. Graph
(b) is 2 ! 2 kinematics, which can represent, for instance, the first non-vanishing contribu-
tion when we specialize to massless pQCD graphs at large transverse momentum. Graph
(c) is 2 ! 3 kinematics. We remark that in general, in Graphs (a), (b) and(c) the dashed
lines may represent groups of particles, such as those making up a gauge link.

In the hadron frame, Eq. (5.6) gives

kf,H,T = �kT + Power Suppressed , (8.3)

so �kT is good for characterizing an intrinsic relative transverse momentum in the large Q

limit; in Eq. (8.1) intrinsic transverse momentum is �kT when qT = 0. For nearly on-shell
partons,

|k2

i |, |k2

f
|= O

�
m

2
�

. (8.4)

In the limit where m ⌧ Q and xBj, zh, qT are fixed, the outgoing parton is exactly aligned
with the observed hadron so long as
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. (8.5)

We have defined the Breit frame momentum fractions and Breit frame x̂N, ẑN analogous to
xN and xBj:
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is calculable from momentum conservation,
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. (8.7)
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xN and xBj:

k
+

i
⌘ ⇠P

+

b
, P

�
B,b ⌘ ⇣k

�
f

, x̂N ⌘ �
q
+

b

k
+

i,b

=
xN

⇠
, ẑN ⌘
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On top of these, other approximations are normally needed. For instance, in the current
region kf is aligned with the final state hadron and
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, ẑN ⌘

k
�
f,b

q
�
b

=
zN

⇣
. (8.6)

For fixed x̂N, ẑN and q
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that quantities like |k2

i
| and |k2

f
| are small, and much of the discussion in this section will

be about addressing the question of what is meant by “small.” So to summarize, “partonic"
dashed lines represent the flow of a momentum with small invariant energy. In practical
situations, they will often turn out to refer to actual quark and/or gluon lines, but they do
not need to generally.

The partonic subprocess in Fig. 3 is marked off in a blue box. A black dot indicates the
parton we associate with an observed hadron. The momentum ki is the incoming struck
parton momentum, and there is at least one hadronizing parton kf . The kX momentum
labels the total momentum of all other unobserved partons combined. Outside the box
in Fig. 3, the position of the hadron implies a current region picture, though an analo-
gous picture of course applies to the target region case. We ask questions about partonic
regions in the context of the steps needed to factorize graphical structure in a manner
consistent with particular partonic pictures. Our general view of factorization is based on
that of Collins [11, 33] and collaborators, though the same statements apply to most other
approaches.

We are interested in the kinematics of the ki + q ! kf + kX subprocess and how
closely it matches the overall P + q ! PB + X process under very general assumptions.
Specific realizations of the partonic subprocess, each of which can contribute to a different
kinematical region, are shown in Fig. 4. We will analyze the subprocess in the Breit frame
and write
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Hats always indicate a partonic kinematical variable, whereas ⇠ and ⇣ are momentum
fractions (see below). We will write the transverse momentum as

kf,b,T = �ẑNqT + �kT . (8.2)
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and consider regions of Q where R0 is less than a certain numerical size for a given set of
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The most basic of partonic approximations is that the masses and off-shellness of par-

tons is small relative to the hard scale:
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On top of these, other approximations are normally needed. For instance, in the current
region kf is aligned with the final state hadron and

kf · PB ! 0 . (8.13)

Beyond these, still further approximations apply to different specific partonic subprocesses.
First, in the 2 ! 1 process of Fig. 4(a), ki ! k, and the 1/Q

2-suppressed terms in equations
like Eqs. (8.9)–(8.11) are dropped. For a hard 2 ! 2 process shown in Fig. 4(b), |k2|⇠ Q
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B,T, only
certain ki and kf are consistent with any given picture in Fig. 4.

For example, say we wish to interpret a particular SIDIS region with a partonic con-
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and consider regions of Q where R0 is less than a certain numerical size for a given set of
estimates for k

2

i
and k

2

f
. Next, since scattering is assumed to be in the current region in

Fig. 4(a), the ratio
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must also be small. See Ref. [34] for more discussion – R1 corresponds to R from that
reference. The expression for R1 in terms of the variables in Eq. (5.1) and Eq. (8.1) is
straightforward, but slightly cumbersome and not instructive, so we will not write it ex-
plicitly here.

The 2 ! 1 partonic kinematics only apply if k
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2 ⇡ 0, an approximation that fails if
transverse momentum is too large. So define another ratio,
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Note that this suggests qT from Eq. (5.3) as the most useful transverse momentum for
quantifying transverse momentum hardness relative to Q; if q
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be large (⇠ 1). However, then the ratio k
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unobserved parton, and its invariant mass must be small relative to hard scales to qualify
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Large R2, but small R3, corresponds to 2 ! 2 parton kinematics. Large R2 and large R3

corresponds to partonic scattering with three or more final state partons, such as Fig. 4(c).
To see that the size of R2, Eq. (8.17), reflects the importance of transverse momentum,

we repeat an argument very similar to that on page 4 of [35]. Note that Feynman graphs
corresponding to the inside of the box in Fig. 4 contain propagator denominators of the
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must also be small. See Ref. [34] for more discussion – R1 corresponds to R from that
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ẑNQ2
+

2qT · �kT
Q2

���� ⇡ (1� ẑN )+ ẑN
q
2

T

Q2
. (8.17)

Note that this suggests qT from Eq. (5.3) as the most useful transverse momentum for
quantifying transverse momentum hardness relative to Q; if q

2

T
/Q

2 ⇠ 1, then R2 ⇠ 1 for
both large and small ẑN while if q
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It will also be useful to define a momentum variable
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On top of these, other approximations are normally needed. For instance, in the current
region kf is aligned with the final state hadron and
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For example, say we wish to interpret a particular SIDIS region with a partonic con-
figuration like Fig. 4(a), corresponding to the current fragmentation region. For a partonic
description to hold at all, a minimum requirement is that ratios like Eq. (8.12) are very
small. So define a ratio
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and consider regions of Q where R0 is less than a certain numerical size for a given set of
estimates for k
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Fig. 4(a), the ratio
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must also be small. See Ref. [34] for more discussion – R1 corresponds to R from that
reference. The expression for R1 in terms of the variables in Eq. (5.1) and Eq. (8.1) is
straightforward, but slightly cumbersome and not instructive, so we will not write it ex-
plicitly here.

The 2 ! 1 partonic kinematics only apply if k
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2 ⇡ 0, an approximation that fails if
transverse momentum is too large. So define another ratio,
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R2 is small for 2 ! 1 partonic kinematics. From Eq. (8.1),
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Note that this suggests qT from Eq. (5.3) as the most useful transverse momentum for
quantifying transverse momentum hardness relative to Q; if q

2

T
/Q

2 ⇠ 1, then R2 ⇠ 1 for
both large and small ẑN while if q
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2 ⌧ 1 and ⇣ ⇠ zN (as in the current fragmentation
region with TMDs) then R2 ⌧ 1 (see also discussion in Ref. [35]).

If the SIDIS region corresponds to 2 ! 2 hard partonic kinematics, then R2 must
be large (⇠ 1). However, then the ratio k
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2 must be small since there is only one
unobserved parton, and its invariant mass must be small relative to hard scales to qualify
as a single massless parton. (See Fig. 4(b).) If k2 is a massless on-shell quark or gluon,
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Large R2, but small R3, corresponds to 2 ! 2 parton kinematics. Large R2 and large R3

corresponds to partonic scattering with three or more final state partons, such as Fig. 4(c).
To see that the size of R2, Eq. (8.17), reflects the importance of transverse momentum,

we repeat an argument very similar to that on page 4 of [35]. Note that Feynman graphs
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must also be small. See Ref. [34] for more discussion – R1 corresponds to R from that
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corresponds to partonic scattering with three or more final state partons, such as Fig. 4(c).
To see that the size of R2, Eq. (8.17), reflects the importance of transverse momentum,

we repeat an argument very similar to that on page 4 of [35]. Note that Feynman graphs
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The size of these ratios determine partonic 
configurations (factorization theorem) and map 

to kinematical regions of the observables 
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These quantities can help determine  
transition regions between kinematics 

where different factorization theorems apply



• Some progress on TMD extraction from SIDIS (evolution) 

• Currently, some results are counter-intuitive.  

• Matching is quite important, it is a non-trivial component 
of the TMD formalism (otherwise must cut data) 

• Must think of solutions to describe the data: Fixed order 
large qT region a good starting point. 

• Does non-perturbative dominance compromises the 
validity of the formalism?  

• Mapping (optimal) regions of applicability of factorization 
is crucial (like using R1,R2,R3 shown in this talk.)

Final Remarks



Thanks


