Describing Unpolarized SIDIS data at order α_{s}

UNIVERSITÀ
DEGLI STUDI
DI TORINO

J Osvaldo Gonzalez-Hernandez
 University of Turin

Sar WorS 2019

Outlook

- Importance of unpolarized functions
- Some challenges extracting unpolarized functions from SIDIS
- Signals of non-perturbative dominance
- Testing the kinematics where factorization theorems hold.

TMD physics, rich phenomenology.

Gateway to 3D structure of hadrons

$\mathbf{e}^{+} \mathbf{e}^{-}$double ratios (Collins function)

$\mathrm{Q}^{\wedge} 2=13 \mathrm{GeV}$ ^2

Predictions for BES III

Simple gaussian picture

Picture within QCD-factorization

Kang, Prokudin, Sun, Yuan
Phys.Rev. D93 (2016) no.1, 014009
arXiv:1505.05589 [hep-ph] JLAB-THY-15-2044

Input needed : Unpolarized functions

$$
\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \pi \pi X
$$

SIDIS

Unpolarized TMDFF Collins TMDFF
 $\frac{d \sigma^{e^{+} e^{-} \rightarrow h_{1} h_{2} X}}{d z_{1} d z_{2} d^{2} \boldsymbol{P}_{1 T} d \cos \theta_{2}}=\frac{3 \pi \alpha^{2}}{2 s}\left\{D_{h_{1} h_{2}}+N_{h_{1} h_{2}} \cos 2 \phi_{1}\right\}$

$$
P_{0}^{U, L, C}=\frac{N^{U, L, C}}{D^{U, L, C}}
$$

$$
D^{U}=D_{\pi^{+} \pi^{-}}+D_{\pi^{-} \pi^{+}} \quad N^{U}=N_{\pi^{+} \pi^{-}}+N_{\pi^{-} \pi^{+}}
$$

$$
D^{L}=D_{\pi^{+} \pi^{+}}+D_{\pi^{-} \pi^{-}} \quad N^{L}=N_{\pi^{+} \pi^{+}}+N_{\pi^{-} \pi^{-}}
$$

$$
D^{C}=D^{U}+D^{L} \quad N^{C}=N^{U}+N^{L}
$$

$$
\frac{A_{0}^{U}}{A_{0}^{L(C)}} \equiv 1+\cos \left(2 \phi_{1}\right) A_{0}^{U L(C)} \quad \begin{array}{ll}
\text { Double } \\
\text { Ratio }
\end{array}
$$

$$
\begin{aligned}
& \frac{d \sigma^{\ell\left(S_{\ell}\right)+p(S) \rightarrow \ell^{\prime} h x}}{d x_{B} d Q^{2} d z_{h} d^{2} \boldsymbol{P}_{T} d \phi_{S}}= \\
& \frac{2 \alpha^{2}}{Q^{4}}\left\{\frac{1+(1-y)^{2}}{2} F_{U U}+\cdots \cdot\right. \\
& +S_{T}(1-y)\left(\sin \left(\phi_{h}+\phi_{S}\right) F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}\right\} . \\
& \begin{array}{|l|l}
A_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)} \\
\text { Ratio } & F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)} \\
F_{U U}
\end{array} \\
& \text { Unpolarized } \\
& \text { TMDFF } \\
& \text { \&TMDPDF } \\
& \text { TMD Transversity } \\
& \text { \& Collins function }
\end{aligned}
$$

SIDIS Sivers Asymmetry

Unpolarized Functions needed as input

Results comparison

Differences partly due to different assumptions on unpolarized functions, not necessarily from type of picture, i.e.
Gaussian Ansatz CSS SCET...

Slide by Filippo Delcarro (JLAB) -QCD evolution 2019-

How well can we extract unpolarized TMDs from SIDIS data?
(challenges)

Theoretical Framework: Factorization theorems

W (TMD region)

$$
\sum_{q} \mathcal{H}_{q} \text { F.T. }\left\{\tilde{D}_{h / q}\left(z, z \boldsymbol{b}_{\perp} ; Q\right) \tilde{f}_{q / P}\left(x, \boldsymbol{b}_{\perp} ; Q\right)\right\}
$$

Fourier Transform of:

$$
\begin{aligned}
\tilde{F}_{j}\left(x, b_{T}, Q, \zeta_{F}\right)= & \left.\left(\frac{\sqrt{\zeta_{F}}}{\mu_{b}}\right)^{\frac{\tilde{K}\left(b_{*}, \mu_{b}\right)}{\sum_{j}} \int_{x}^{1} \frac{d \hat{x}}{\hat{x}} \underline{\tilde{C}_{j i}^{i n}\left(x / \hat{x}, b_{*}, \mu_{b}, \mu_{b}^{2}\right)} \underline{f_{i}\left(\hat{x}, \mu_{b}\right)}} \begin{array}{rl}
& \times \exp \left\{\int_{\mu_{b}}^{Q} \frac{d \mu}{\mu}\left(\underline{\gamma_{F}(\mu ; 1)}-\ln \left(\frac{\sqrt{\zeta_{F}}}{\mu}\right) \underline{\gamma_{K}(\mu)}\right)\right\} \\
& \times \exp \left\{-\underline{\left.g_{P}\left(x, b_{T}\right)-g_{K}\left(b_{T}\right) \ln \left(\frac{\sqrt{\zeta_{F}}}{\sqrt{\zeta_{F 0}}}\right)\right\},}\right.
\end{array}=\underline{\underline{x}}\right)
\end{aligned}
$$

—— pQCD
_— Input (extraction from collinear cross section)
—— Non-perturbative functions to extract from data.

Example:

extraction from global fit (2013 COMPASS data)

$\langle z\rangle=0.23$ (offset=6)
(z $\mathrm{z}=0.28$ (offset=5)
$\langle\mathrm{z}=0.33$ (offset=4
$\langle\mathrm{z}=0.38$ (offset=3)
$\langle\mathrm{z}\rangle=0.45$ (offset= $=2)$
$\langle z\rangle=0.55$ (offset=1)
$\langle z\rangle=0.65$ (offset=0)

Bacchetta, Delcarro, Pisano, Radici, Signori JHEP 1706 (2017) 081

Some issues with unpolarized TMDs extraction(SIDIS),

$$
\mathcal{O}\left(\alpha_{s}^{0}\right)
$$

$$
\tilde{F}_{j}=f\left(x, \mu_{b}\right) \exp \left\{g_{P}\left(x, b_{T}\right)-g_{K}\left(b_{T}\right) \ln \left(\frac{Q}{Q_{0}}\right)\right\}
$$

Some challenges:

Large (spurious) normalizations have to be introduced to described data

A bit counter-intuitive

Some challenges:

Large qT region cannot be described with modern Collinear PDF sets

Some challenges:

Matching between small and large qT regions

Matching region $\mathbf{q T} \sim \mathbf{Q}$

Some challenges:

Matching between small and large qT regions

Some challenges:

Matching between small and large qT regions

Matching region $\mathbf{q T} \sim \mathbf{Q}$

Signals of non-perturbative dominance

Formalism only Here TMD term describes justified up to data at values

$$
\mathrm{qT}>\mathbf{Q}
$$

Corrections extend TMD term up to $\mathrm{qT} \sim \mathrm{Q}$

One of the issues

with the matching can be
traced to large differences Between TMD (W) and asymptotic term at

Large differences due

 to non-perturbative effects. Here, model with mass parameter M/Q ~ 0.2

Testing the kinematics where factorization theorems hold

Different types of approximations

External momenta kinematics

Partonic kinematics

$$
\begin{aligned}
& \xrightarrow{P} k_{\mathrm{f}_{\mathrm{f}}^{\mathrm{b}}=\left(\frac{\mathbf{k}_{\mathrm{f}, \mathrm{~b}, \mathrm{~T}}^{2}+k_{\mathrm{f}}^{2}}{\sqrt{2} \hat{\mathrm{z}}_{\mathrm{N}} Q}, \frac{\hat{z}_{\mathrm{N}} Q}{\sqrt{2}}, \mathbf{k}_{\mathrm{f}, \mathrm{~b}, \mathrm{~T}}\right)}^{\left.P_{\hat{x}_{\mathrm{N}} \sqrt{2}}^{P_{\mathrm{B}}}, \frac{\hat{x}_{\mathrm{N}}\left(k_{\mathrm{i}}^{2}+\mathbf{k}_{\mathrm{i}, \mathrm{~b}, \mathrm{~T}}^{2}\right)}{\sqrt{2} Q}, \mathbf{k}_{\mathrm{i}, \mathrm{~b}, \mathrm{~T}}\right)} \\
& \hat{x}_{\mathrm{N}} \equiv-\frac{q_{\mathrm{b}}^{+}}{k_{\mathrm{i}, \mathrm{~b}}^{+}}=\frac{x_{\mathrm{N}}}{\xi} \\
& P_{\mathrm{B}, \mathrm{~b}}^{-} \equiv \zeta k_{\mathrm{f}}^{-} \\
& \hat{z}_{\mathrm{N}} \equiv \frac{k_{\mathrm{f}, \mathrm{~b}}^{-}}{q_{\mathrm{b}}^{-}}=\frac{z_{\mathrm{N}}}{\zeta}
\end{aligned}
$$

(a)

$$
k \equiv k_{\mathrm{f}}-q
$$

$$
k^{2}=\left(k_{f}-q\right)^{2}
$$

$k^{2} \neq 0$

Allows to distinguish handbag from real emission kinematics

$$
k_{\mathrm{X}}^{2}=\left(k_{\mathrm{i}}+q-k_{\mathrm{f}}\right)^{2}
$$

$$
k_{X}^{2}=0
$$

$$
k_{X}^{2} \neq 0
$$

Higher order pQCD corrections in large qT cross section associated to larger values of virtuality spectator

$$
\begin{gathered}
k_{\mathrm{X}}^{2}=\left(k_{\mathrm{i}}+q-k_{\mathrm{f}}\right)^{2} \\
k \equiv k_{\mathrm{f}}-q
\end{gathered}
$$

$$
\text { Collinearity }=R_{1} \equiv \frac{P_{\mathrm{B}} \cdot k_{\mathrm{f}}}{P_{\mathrm{B}} \cdot k_{\mathrm{i}}}
$$

Transverse Hardness Ratio $=R_{2} \equiv \frac{\left|k^{2}\right|}{Q^{2}}$
Spectator Virtuality Ratio $=R_{3} \equiv \frac{\left|k_{\mathrm{X}}^{2}\right|}{Q^{2}}$

The size of these ratios determine partonic

 configurations (factorization theorem) and map to kinematical regions of the observables$$
\text { Collinearity }=R_{1} \equiv \frac{P_{\mathrm{B}} \cdot k_{\mathrm{f}}}{P_{\mathrm{B}} \cdot k_{\mathrm{i}}}
$$

Transverse Hardness Ratio $=R_{2} \equiv \frac{\left|k^{2}\right|}{Q^{2}}$
Spectator Virtuality Ratio $=R_{3} \equiv \frac{\left|k_{\mathrm{X}}^{2}\right|}{Q^{2}}$
(caveat: Parton momenta have to be estimated, so this is just an example)

(caveat: Parton momenta have to be estimated, so this is just an example)

Final Remarks

- Some progress on TMD extraction from SIDIS (evolution)
- Currently, some results are counter-intuitive.
- Matching is quite important, it is a non-trivial component of the TMD formalism (otherwise must cut data)
- Must think of solutions to describe the data: Fixed order large qT region a good starting point.
- Does non-perturbative dominance compromises the validity of the formalism?
- Mapping (optimal) regions of applicability of factorization is crucial (like using R1,R2,R3 shown in this talk.)

Thanks

