RF DEFLECTOR DESIGN

(D. Alesini, C. Vaccarezza)

SUMMARY

1) <u>Number of cells choice</u>:

- 1a) Shunt Impedance \Rightarrow Power;
- **1b)** Mode separation \Rightarrow Tuning;
- **1c)** Cavity length \Rightarrow Available space;
- **1d)** Surface peak electric field⇒Discharges;

2) <u>5 Cells RF deflector Design</u>:

2a) 2D study \Rightarrow field flatenss & sensitivities;

2b) 3D study ⇒coupler design, mode separation & tuning

- 3) <u>Power feeding system</u>
- 4) <u>Next steps</u>:
 - 4a) Prototype measur.: Field map ⇒ tuning;
 - 4b) Brazing tests @ LNF;
 - 4c) Final device on Cu_{OFHC};

1) Number of cells choice

- a) available transverse deflecting voltage for a given input power;
- b) available *space* in the SPARC transfer line;
- c) *mode separation* to avoid problems of mode overlapping;
- d) maximum acceptable *surface peak electric field* to avoid problems related to high field intensities, discharges and so on.

- a) it allows to operate with a *very low input power* $P_{RF} \leq 2MW$ obtaining contemporary *low peak surface* electric field and *resolution length of the order of* $\sim 25 \ \mu m$ at $P_{RF} = 2MW$.
- b) These parameters permit measurement of the longitudinal beam profile with good accuracy, even considering the possibility of *longitudinal compression factors of up to 20*.
- c) Moreover the operation at low input power (2MW) allows to *simplify the power line design* as discussed below.

2) 5 cells RF Deflector Design

-Sensitivities

f/ b1=8.6	f/ b2=10.8	f/ b3=9.7
[kHz/µm]	[kHz/µm]	[kHz/µm]

Errors in the cells machining of the order of 10⁻² mm give frequency errors of the order of 100 kHz and field errors of few percent.

2b) 3D Profile studies (HFSS)

• compare 2D-3D simulations

	2D MAFIA	3D HFSS
	(eigenmode)	(eigenmode)
Frequency [GHz]	2.85699	2.85467
Q	16800	16400
\mathbf{R}_{\perp} [M Ω]	2.47	2.43

• coupler design

mode separation

MODE	Excited by the coupler	∆f [MHz]
π Deflecting mode tilted polarity (90°)	NO	6.5
$_{\pi}$ mode polarities 0°	NO	5.4
$_{\pi}$ mode polarities 90°	NO	5
$\pi/2$ mode polarity 0°	YES	20

• tuning r=5mm h=1 mm f=550 kHz r h

3) Power feeding system

a) The 2 MW input power needed to feed the structure can be *split out from the first klystron* waveguide feed with a *10 dB directional coupler*

b) The *circulator and the directional coupler* shown assure that every reflected power from the deflector *does not interact with the power feeding the RF gun*.

c) Moreover the *high power switch* is included to allow the deflecting field to be completely *turned off*.

d) Because of the reduced power needed for the structure it is possible to simply employ a *waveguide system with air-fill*, thuis reducing the costs of the entire power feed system.

4) Next steps

4a) Prototype measurements (Oct. 2003)

Bead-pull measurement set up (Univ. of Rome "La Sapienza" Dip. Energetica)

4b) Brazing tests @ **LNF (Oct. 2003):** to invetsigate the effect of the brazing procedure on the resonant frequency of the cells

4c) Final device on Cu_{OFHC} (Jan. 2004) machined outside and brazed @ LNF

CONCLUSIONS

- a) The investigation of the RF deflector properties as a function of the number of cells has been done showing that the <u>5</u> cells choice fits the whole requirements;
- b) A <u>complete 2D and 3D study</u> of the RF deflector has been done in term of:

-field flattness optimization

-sensitivity calculations

-coupler design

-mode separation

-peak surface E field calculation

c) The <u>next steps</u> are:

-bead-pull measurements on an alluminum prototype
-brazing tests @ LNF
-final device realization (machined outside and brazed @ LNF)