SPARC (Phase1) main Scientific Goal is to drive a SASE-FEL to saturation @ 500 nm But...

There are now several (conceived, untested) operating modes for SASE-FEL's

Chirped FEL pulses for selection of single spikes and/or smaller bandwith

Slice manipulation in the electron bunch for shorter pulses

What can we do with the anticipated hardware for Phase1 that may be relevant to future X-ray FEL's ?

What are the key issues for Phase2, before LCLS/TESLA-FEL come into operation (2008/?) RF Deflector is the key to perform critical experiments

Approaches for the generation of femtosecond x-ray pulses

Zhirong Huang (SLAC-LCLS)

Single Molecule Imaging with Intense fs X-ray

C Pulse t=-50fs t=0fs t=50fs

<mark>≻→</mark>

R. Neutze et al. Nature, 2000

INF

Introduction

Femtosecond (fs) x-ray pulses are keys to exploring ultra-fast science at a future light source facility

In typical XFEL designs based on SASE the photon pulse is similar in duration to the electron bunch, limited to 100~200 fs due to short-bunch collective effects

Great interests to push SASE pulse length down to
 ~10 fs and even below 1 fs

A recent LCLS task force studied upgrade possibilities, including short-pulse approaches

Optical manipulations of

a frequency-chirped SASE

X-ray Pulse Compression

Energy-chirped e-beam produces a frequency-chirped radiation $2\gamma^2 \omega_{11}$

X-ray Pulse Slicing

Instead of compression, use a monochromator to select a slice of the chirped SASE

No Crucial role played by SPARC in this field

Most critical issue: monochromator (easy in the visible, tough in the XUV)

Electron Bunch Manipulations

Spatially Chirped Bunch

- No additional hardware for LCLS
- RF deflector before BC2 less jitter
- Beam size < 0.5 mm in linac
 → FWHM x-ray pulse ~ 30

Where else can we access fs time?

Large x-z correlation inside a bunch compressor chicane

Slotted-spoiler Scheme

P. Emma et al. submitted to PRL, 2003 (Mo-P-51)

Slice selection @ SPARC using a slit and RF Deflector, with and without clipping

Bunch transverse distribution* at the screen location FO

Slice selection @ SPARC using a slit and RF Deflector, with and without clipping

Slice selection using velocity bunching

The longitudinal phase space rotation applied by velocity bunching typically produces a current spike when the process approches full compression

Weak velocity bunching

Strong velocity bunching

PRELIMINARY LAYOUT

In Perspective...

SPARC is well suited to make first (innovative) experiments to test, in a scaled down system, newly conceived modes of operation of X-ray FEL's

Competitors: BNL-DUV (higher beam emittances), TTF-FEL (?)

SPARC-MI 2003 Activity 1) DAZZLER Acquired and ready for tests 2) Software for Laser Pulse Shaping Developped and Tested @ UCLA and Elettra (p.o. for LCM ready) 3) 3 Cell Model for RF Compressor built and characterized (design for 9 Cell ready) 4) RETAR code tested

FUNDIN G REQUESTS for SPARC-Milano 2004 Activities

F.Alessandria, A. Bacci, I. Boscolo, F.Broggi, S.Cialdi, C.DeMartinis, D.Giove, C. Maroli, V. Petrillo, M.Rome', L. Serafini INFN-Milano and LASA (4.15 FTE)

1) LASER-CAT

Tets on DA ZZLER and LCM Phase Mask

2) COMPR-RF (Phase2)

Construction of a 9 cell prototype for RF compressor

3) THEORY

Upgrade of RETAR for modeling CTR effects, Study of Ve locity Bunching (full optimization for SPARC) and comparison to ongoing experiments @ LLNL, NERL and BNL

2003 FUND INGS

	INT	EST	CONS	INV	TECHN. (my)
LASER-CAT			14*	72	0.25 1)
COMPR-RF			3		0.25 ^{a)}
THEORY			1	3	0
Total	25(19)	25(21)	18 (18)	110 (75)	0.5
					0.0

TOTAL 178 + 31 k€ research contract (2 years) *Spent as of today

2004 REQUESTS

	INT	EST	CONS	INV	TECHN. (my)
LASER-CAT			10	10	1.25 2)
COMPR-RF			15	46	1.5 ^{b)}
THEORY			2	5	0
Total	30+8(TS	25	27	61	2.75
	+LNF)				

TOTAL 151

Laser-cat : autocorrelator (10 k€), 2 months TS+LNF

Compr-rf: coupler 10 k€, spectrum analyzer 11 k€, 9 cell copper model 20 k€

Mechanical Design of the slow-wave high group velocity RF cell for RF Compressor

Aluminum Model (3 cells) Built and Measured

Thermal Analysis

SPARC Review - Sept. 23rd 2003

i Fisica Nucleare

Misure termiche

Il forno (per piccole strutture) termostatato con fluttuazioni di 0.1°C ha consentito la caratterizzazione del modello in alluminio. In particolare :

•misura preliminare della sensibilità termica della velocità di fase nell'intervallo 25°C-45°C

I risultati delle misure sono in buon accordo con i valori attesi (errore massimo entro il 15%).

9 Cell Model with 3% group velocity (0.1 °C stability)

• Preliminary measurements showed that is possible to stabilize to 0.3 °C a short model (3 cells) with 3% group velocity (corresponds to 0.1% stability in phase velocity)

- Build and Measure a 6% group velocity 9 Cell Model (with couplers) to improve temperature stability (hence phase velocity control) and/or relaxing demands
- Temperature stability tests on the 3 m SLAC section presently at LASA (under vacuum, flanges applied) on loan from UCLA

2003	Travels abroad
S. Cialdi @ UCLA	7
LS @ DESY for JRP	1
IB @ CERN for JRP	1
CONFERENCES: PAC, FEL, ORION	12
Total	21

