SuperB Readout R&D

M. Bellato INFN Padova

Readout Column

The (usual) problem

- Merge many inputs (front-end data sources) to one selected output (a server in the EVB farm)
- Then, change the output according to a strategy
- N:1 traffic shaping across a switch is natural and often the preferred choice

Event Building Network

Buffering in the readout

Comparison of Serial Links

	Dedicated Point-to-Point	Manually Switched Point-to-Point	Memory Mapped Fabric	Packet Switched Fabric
Software Reconfigurable Paths	No	Yes	Yes	Yes
Self-Routing Packets	No	No	No	Yes
Automatic Path Re-Routing	No	No	No	Yes
Packet Overhead Required	Low	Low	Med	High
Payload Data Efficiency	High	High	Med	Low
Software Driver Complexity	Low	Low	Med	High
FPGA Interface Complexity	Low	Low	Med	High
Protocol Transparent	Yes	Yes	No	No
Protocols Supported	Aurora VITA 49 PCIe SRIO	Aurora VITA 49 PCIe SRIO	PCle	SRIO Ethernet

Prospective use of standards

Case study: the Agata Readout – 3 AdvancedTca/MicroTCA Serial Backplanes

Case study: the Agata Readout – 4 Frontend Readout Card

Agata Readout Card

Case study: the Agata Readout – 5 Event builder I/F

G-ethernet Rationale

- Ubiquitous, low cost, long life, vast ecosystem
- Scalable to thousands of nodes
- Can feed the EVB directly from readout cards
- Well established for 1Gigathernet
- 10Gethernet not yet well established in the backplane
- Need of TCP offloading engines (TOE's)
- Need to account for latency across switches

TCP/IP offloading - 1

- 2 flavours:
 - Full state offload (chimney)
 - Complex
 - > 70% cpu savings
 - Stateless offload
 - Mainly Receive side scaling and checksum computation
 - ~ 20% cpu savings
- Usually implemented with custom processor(s) in VLSI
- Low acceptance by the Linux community
- All major telecom chipmakers have NIC's with TOE
- We need an R&D phase to test TOEs in event building

COTS: 1/10 Gethernet switches

- ✓ Atca ethernet switches are readily available
- ✓ Mixed operation of 1Ge and 10Ge in the same card
 - ✓ Useful in aggregation : 10 x1Ge -> 1x 10Ge
 - ✓ Typical in large EVBs

ROM Block Diagram

Legacy TCP

10Gethernet line rate is obtained (through TCP) with a ~10GHz CPU @ 100% load

INFN

TCP + RDMA

Standard implementation

TCP Offload

Why TCP?

- ✓ Reliable (flow control)
- ✓ Congestion avoidance
- ✓ Switchable
- ✓ Scalable and low cost
- ✓ Efficient (not when driven by software)
- ✓ Transport layer for RDMA applications
- ✓ R&D will be devoted to build a TCP Offload Engine (TOE) with RDMA support

Hardware Setup

- 2. 10 GE switch
- 3. Processor farm with 10GE adpaters
- 4. Event builder based on RDMA on processor farm

Conclusions

- Proposal for a Readout board based on a modular approach
 - Adherence to standards as much as possible
- R&D on readout protocol based on RDMA and offloaded TCP