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Part I

Introduction
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Bohm’s interpretation of QM
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Bohm’s Quantum 

Potential

Napoli, 29/04/2019

Where this

nonlocal

potential

comes from?



Bohm’s Quantum Potential comes from 

Geometry 

Napoli, 29/04/2019

• Schrödinger equation assumes Euclidean space

• Euclidean space has 

o Euclidean metric for vector length

o No change in vector length in a parallel transport

• Assume instead

Give up this!

2 2 ( )      d d       r r a a H. Weyl (1919)

It is in the nature of a metric space to have this parallel 

transport law

H. Weyl, Space,Time,Matter, Dover, 1952 



Bohm’s Quantum Potential comes from 

Geometry 

• If δℓ = −2ℓϕ∙dr in a parallel transport the 3D space with 

Euclidean metric acquires a nonzero Weyl scalar curvature  

• Assume ϕ to be a gradient

Napoli, 29/04/2019
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Quantum 

potential



Geometric formulation of QM in 

Euclidean-Weyl space

Napoli, 29/04/2019

 
2 21

2
WV

S

t m

S
S

m
R

t






 



  
  

 











Now ρ has a geometrical meaning: it fixes the parallel 

transport law of vectors in the 3D physical space.

Weyl curvature



Conclusions (part I)

• Alternatives

– 3D physical space is Euclidean. QM is not deterministic. ρ has a 
statistical interpretation (standard).

– 3D physical space is Euclidean. QM is deterministic but with 
nonlocal quantum potential. ρ is like a fluid density.

– Believe in Weyl’s statement 

– 3D physical space has Euclidean metric only. QM is 

deterministic and local. ρ has a geometric interpretation.

Napoli, 29/04/2019

It is in the nature of any metric space to have a 

not trivial parallel transport

H. Weyl, Space,Time,Matter, Dover, 1952 



Part II

The Conformal Quantum 

Geometrodynamics

(CQG)

Napoli, 29/04/2019



Weyl’s geometry (N-dimensions)

• Two fundamental forms

• A quadratic form (metric)

• A linear form (parallel transport)

Napoli, 29/04/2019
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• Weyl’s connections

• Weyl’s scalar curvature

• The Weyl space is curved even if the metric is 

“flat” (in Riemann sense, i.e. RR = 0)
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It is in the nature of a metric space to be furnished 

with these affine connections 

H. Weyl, Space,Time,Matter, Dover, 1952 

Weyl’s geometry (N-dimensions)



Weyl’s geometry (N-dimensions)

• Assume the Weyl connection integrable

• k covariant derivative w.r.t. gij

• gij is used to lower/raise the indices

Napoli, 29/04/2019
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Weyl Rieman



Weyl’s gauge invariance

• The Weyl connections are invariant under Weyl’s gauge 
transformations

• Tensors T transforms simply under Weyl’s gauge if

• Examples:  w(gij) = 1, w(RW) = −1, w(ρ) = − (N − 2)/2, and i

does not transform simply.

A quantum day, Napoli (Italy)
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Conformal 

transformation

( )w TT T w(T) Weyl’s weigth

12July, 9 th 2013 



Are the CQG equations Weyl

invariant?

Napoli, 29/04/2019
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W = −1W = 0

W = +1 W = 0

No



Relativistic CQG

Napoli, 29/04/2019

2 2 2 0     diag( 1,1,1,1)
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2 2

2

m c
 Klein-Gordon equation

W(m2) = −1 !?

Weyl invariance is hidden



• Gauge invariant action principle:  δI = 0

• Variation w.r.t. gμν leads to incompatible field 
equations unless m = 0

Napoli, 29/04/2019

Relativistic CQG
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Variation w.r.t. ρ

Variation w.r.t. S



Napoli, 29/04/2019

Extended gravity in (4+K)-D
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  Space-like extra coordinates

γαβ is the metric of a homogeneous space (e.g. a group G)

The constant Riemann curvature RR of γαβ plays role of mass
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Weyl curvature

Riemann curvature

Weyl gauge invariance 

is manifest

Weyl gauge invariance 

is hidden

Klein-Gordon

Field equations in (4+K)-D



• The relativistic QM is Weyl gauge-invariant

• Only gauge-invariant quantities have an objective 
physical meaning, e.g. the phase action S and the 
current vector density

• ρ = |Ψ|2 is not Weyl-gauge invariant. It has no 
objective physical meaning.

• Born’s statistical interpretation of ρ = |Ψ|2 has no 
objective physical meaning

• The current density ji is Weyl invariant and has 
objective physical meaning (count rate in particle 
detectors)

Napoli, 29/04/2019

Conclusions (part II)

i ij

igj S g 



• The CQG is local?

• Assume space M4G in (4+K)-D

• Pass to the gauge where ρ = 1

Napoli, 29/04/2019

Conclusions (part II)
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 Gauge invariant Klein-Gordon

De Broglie-

Bohm nonlocal

pilot wave
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“Gravitational” 

action of the 

scalar field S

New metric



Part III

Spin 1/2

Napoli, 29/04/2019



• Spin degrees of freedom: the six Euler angles of the Lorentz group SO(3,1)

• Space M4SO(3,1) in 10-D. Coordinates qi = {xμ,yα} = {xμ, λθα}

Napoli, 29/04/2019
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E. Santamato and F. De Martini, 

Found. Phys. 43, 631 (2013)

Dirac equation
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Dirac equation
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E. Santamato and F. De Martini, 

Found. Phys. 43, 631 (2013)



• Because the CQG is deterministic and complete the 
riddle of EPR paradoxes is automatically solved

• E, Santamato, F. De Martini, “Solving the nonlocality riddle by conformal 
quantum geometrodynamics”,  J, Phys. Conf. Ser., 442, 012059 (2013) 

• F. De Martini and E.Santamato “Interpretation of Quantum Nonlocality by 
Conformal Quantum Geometrodynamics”, Int. J. Th. Ph.,53,3308 (2014)

• F. De Martini and E.Santamato,” Nonlocality, No-Signalling and Bell's 
Theorem investigated by Weyl's Conformal Differential Geometry”, 
Physica Scripta, T163, 014015 (2014)

• F. De Martini and E.Santamato, “Violation of the Bell Inequalities by Weyl
Conformal Quantum Geometrodynamics A Re-Interpretation of Quantum 
Nonlocality”, J. Adv. Phys., 4, 272 (2015)
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EPR paradoxes
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Spin statistics



• In SO(3,1) use Euler angles yα = {α,β,γ,φ,θ,χ}.

• The H-J the continuity equations of the CQG in (4+6)-D do 
not contain γ (γ is ignorable)

• The helicity s is strictly constant

• From the harmonic expansion above  we see that s = 1/2 for 
the spin 1/2. 

• For general spin, the harmonic expansion in SO(3,1) yields s
integer or half-integer.  

Napoli, 29/04/2019

Spin statistics
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s = intrinsic helicity
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Spin statistics
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Two identical particles

Because s > 0, the rotation of γ must be always 

counterclockwise! 



• The H-J and continuity equations require

• Because ρ(q1,q2) = ρ(q2,q1) we have also

• Because the rotation of γ1 and γ2 must be 
counterclockwise, the exchange of γ1 and γ2 introduces 
a factor (−1)2s in front of ψs

• The exchange of the other coordinates introduces no 
factor 

Napoli, 29/04/2019

Spin statistics
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Spin statistics
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Comparison with

yields

EOP



• Extend the space to SU(2)U(1)SO(3,1) to 

include Weinberg’s quantum model of leptons 

• Introduce gauge Yang-Mills fields

• Introduce Higgs field to provide masses

• Apply Weyl’s conformal symmetry to quantum 

field theory

• Study gravitational and cosmological implications

Napoli, 29/04/2019

Perspectives



• Weyl’s geometry and symmetry shed new light on 
Quantum Mechanics 

• The statistical Born’s interpretation of |ψ|2 has no 
objective physical meaning and should be replaced by a 
geometrical interpretation

• When the CQG is applied to a particle with spin, a new 
conserved quantity appears: the particle “helicity”

• EPR and other QM paradoxes are automatically solved, 
because the CQG is deterministic and complete

• The spin-statistic connection can be obtained for any 
spin exploiting symmetry consideration only

Napoli, 29/04/2019

Conclusions


