Weyl differential geometry and Quantum Mechanics: spin 1/2, EPR and spin statistics from geometry

Enrico Santamato - Francesco De Martini

Part I

Introduction

Bohm's interpretation of QM

$$
\begin{aligned}
& i \hbar \frac{\partial \psi}{\partial t}=-\frac{1}{2 m} \nabla^{2} \psi+V(\mathbf{r}) \psi \\
& \psi=\sqrt{\rho} e^{i \frac{S}{\hbar}} \quad \rho=|\psi|^{2} \\
& -\frac{\partial \rho}{\partial t}=\nabla \cdot\left(\rho \frac{\nabla S}{m}\right) \\
& -\frac{\partial S}{\partial t}=\frac{1}{2 m}(\nabla S)^{2}+V(\mathbf{r}, t)+Q_{B}(\mathbf{r}, t) \quad \text { H-J equation } \\
& Q(\mathbf{r}, t)=-\frac{\hbar^{2}}{2 m}\left[\frac{\nabla^{2} \rho}{2 \rho}-\left(\frac{\nabla \rho}{2 \rho}\right)^{2}\right] \\
& \text { Bohm's Quantum } \\
& \text { Potential } \\
& \text { PHYSICAL REVIEW }
\end{aligned}
$$

A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables. II

Bohm's Quantum Potential comes from Geometry

- Schrödinger equation assumes Euclidean space
- Euclidean space has
- Euclidean metric for vector length

It is in the nature of a metric space to have this parallel transport law
H. Weyl, Space,Time, Matter, Dover, 1952

$$
\delta \ell=-2 \ell d \phi=-2 \ell \phi(\mathbf{r}) \cdot d \mathbf{r} \quad \ell=\sqrt{\mathbf{a} \cdot \mathbf{a}}
$$

H. Weyl (1919)

Bohm's Quantum Potential comes from Geometry

- If $\delta \ell=-2 \ell \phi \cdot \mathrm{~d} \mathbf{r}$ in a parallel transport the 3D space with Euclidean metric acquires a nonzero Weyl scalar curvature

$$
R_{W}=-4 \nabla \cdot \phi-2 \phi \cdot \phi
$$

- Assume ϕ to be a gradient

$$
\begin{gathered}
\phi=\nabla(\ln \rho)=\frac{\nabla \rho}{\rho} \\
\left.-\left(\frac{\nabla \rho}{4 \rho}\right)^{2}\right]=\gamma^{-2} Q_{B} \quad \gamma=\frac{\hbar}{4 \sqrt{m}}
\end{gathered}
$$

Geometric formulation of QM in Euclidean-Weyl space

Now ρ has a geometrical meaning: it fixes the parallel transport law of vectors in the 3D physical space.

Conclusions (part I)

- Alternatives
- 3D physical space is Euclidean. QM is not deterministic. ρ has a statistical interpretation (standard).
- 3D physical space is Euclidean. QM is deterministic but with nonlocal quantum potential. ρ is like a fluid density.
- Believe in Weyl's statement

It is in the nature of any metric space to have a not trivial parallel transport
H. Weyl, Space,Time,Matter, Dover, 1952

- 3D physical space has Euclidean metric only. QM is deterministic and local. ρ has a geometric interpretation.

Part II

The Conformal Quantum Geometrodynamics

(CQG)

Weyl's geometry (N-dimensions)

- Two fundamental forms
- A quadratic form (metric)

$$
d s^{2}=g_{i j}(q) d q^{i} d q^{j}
$$

- A linear form (parallel transport)

$$
\delta \ell=-\ell d \phi=-\ell \phi_{i}(q) d q^{i} \quad \ell=\sqrt{g_{i j}(q) a^{i}(q) a^{j}(q)}
$$

Weyl's geometry (N-dimensions)

- Weyl's connections

$$
\Gamma_{j k}^{i}=-\left\{\begin{array}{c}
i \\
j k
\end{array}\right\}+\delta_{j}^{i} \phi_{k}+\delta_{k}^{i} \phi_{j}-g_{j k} \phi^{i} \quad\left(\Gamma_{j k}^{i}=\Gamma_{k j}^{i}\right)
$$

- Weyl's scalar curvature

$$
R_{W}=R_{R}+(n-1)\left[\frac{2}{\sqrt{g}} \partial_{i}\left(\sqrt{g} g^{i j} \phi_{j}\right)-(n-2) g^{i j} \phi_{i} \phi_{j}\right]
$$

- 9 It is in the nature of a metric space to be furnished with these affine connections
H. Weyl, Space,Time, Matter, Dover, 1952

Weyl's geometry (N-dimensions)

- Assume the Weyl connection integrable

$$
\phi_{i}=\frac{1}{N-2} \partial_{i}(\ln \rho)=\frac{1}{N-2} \frac{\partial_{i} \rho}{\rho}
$$

- ∇_{k} covariant derivative w.r.t. $g_{i j}$
- $g_{i j}$ is used to lower/raise the indices

Weyl's gauge invariance

- The Weyl connections are invariant under Weyl's gauge transformations

$$
\begin{aligned}
& g_{i j} \rightarrow \lambda g_{i j} \\
& \phi_{i} \rightarrow \phi_{i}+\frac{\partial_{i} \lambda}{2 \lambda}=\phi_{i}+\frac{1}{2} \partial_{i} \ln \lambda \\
& \rho \rightarrow \lambda^{-\frac{N-2}{2}} \rho
\end{aligned}
$$

- Tensors T transforms simply under Weyl's gauge if

$$
T \rightarrow \lambda^{w(T)} T
$$

$$
w(T) \text { Weyl's weigth }
$$

- Examples: $w\left(g_{i j}\right)=1, w\left(R_{W}\right)=-1, w(\rho)=-(N-2) / 2$, and ϕ_{i} does not transform simply.

Are the CQG equations Weyl invariant?

Relativistic CQG

$$
\begin{array}{ll}
\begin{array}{ll}
g^{\mu \nu} & \frac{\partial S}{\partial x^{\mu}} \frac{\partial S}{\partial x^{\nu}}+\gamma^{2} R_{W}+m^{2} c^{2}=0
\end{array} g_{\mu \nu}=\operatorname{diag}(-1,1,1,1) \\
\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{\mu}}\left(\sqrt{g} \rho g^{\mu \nu} \frac{\partial S}{\partial x^{\nu}}\right)=0 & W\left(m^{2}\right)=-1!?
\end{array}
$$

$$
\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{\mu}}\left(\sqrt{g} g^{\mu \nu} \frac{\partial \psi}{\partial x^{\nu}}\right)=\not \mathbb{Z}_{\mathbb{R}}+\frac{m^{2} c^{2}}{\hbar^{2}} \psi
$$

Klein-Gordon equation

Weyl invariance is hidden

Relativistic CQG

- Gauge invariant action principle: $\delta I=0$

$$
I=\int \rho\left(g^{\mu \nu} \frac{\partial S}{\partial x^{\mu}} \frac{\partial S}{\partial x^{\nu}}+\gamma^{2} R_{W}+m^{2} c^{2}\right) \sqrt{g} d^{4} x
$$

$$
\begin{array}{|ll|}
\hline g^{\mu \nu} \frac{\partial S}{\partial x^{\mu}} \frac{\partial S}{\partial x^{\nu}}+\gamma^{2} R_{W}+m^{2} c^{2}=0 & \text { Variation w.r.t. } \rho \\
\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{\mu}}\left(\sqrt{g} \rho g^{\mu \nu} \frac{\partial S}{\partial x^{\nu}}\right)=0 & \text { Variation w.r.t. } S \\
\hline
\end{array}
$$

- Variation w.r.t. $g^{\mu \nu}$ leads to incompatible field equations unless $m=0$

Extended gravity in $(4+K)$-D

$$
I=\int \rho\left(g^{i j} \frac{\partial S}{\partial q^{i}} \frac{\partial S}{\partial q^{j}}+\gamma^{2} R_{W}\right) \sqrt{g} d^{N} q-\text { Gauge invariant action }
$$

$\gamma_{\alpha \beta}$ is the metric of a homogeneous space (e.g. a group G)
The constant Riemann curvature R_{R} of $\gamma_{\alpha \beta}$ plays role of mass

Field equations in $(4+K)-\mathrm{D}$

$$
\begin{aligned}
& \nabla_{k} S \nabla^{k} S+\gamma^{2} R_{W}=0 \\
& \nabla_{k} j^{k}=\nabla_{k}\left(\rho \nabla^{k} S\right)=0
\end{aligned}
$$

Weyl curvature

Weyl gauge invariance is manifest

$$
\begin{aligned}
& \Psi=\sqrt{\rho} e^{\frac{i S}{h}} \\
& \nabla_{\mu} \nabla^{\mu} \Psi+\nabla_{\alpha} \nabla^{\alpha} \Psi=\nabla_{i} \nabla^{i} \Psi=\gamma^{2} R_{R} \Psi
\end{aligned}
$$

Riemann curvature

$$
\begin{aligned}
& \Psi=\psi(x) \phi(\alpha) \\
& \nabla_{\alpha} \nabla^{\alpha} \phi=-k^{2} \phi \\
& \nabla{ }_{\mu} \nabla^{\mu} \psi=\left(\gamma^{2} R_{R}+k^{2}\right) \psi=\frac{m^{2} c^{2}}{\hbar^{2}} \psi
\end{aligned}
$$

Weyl gauge invariance is hidden

Klein-Gordon

Conclusions (part II)

- The relativistic QM is Weyl gauge-invariant
- Only gauge-invariant quantities have an objective physical meaning, e.g. the phase action S and the current vector density $j^{i}=\rho g^{i j} \partial_{i} S \sqrt{g}$
- $\rho=|\Psi|^{2}$ is not Weyl-gauge invariant. It has no objective physical meaning.
- Born's statistical interpretation of $\rho=|\Psi|^{2}$ has no objective physical meaning
- The current density j^{i} is Weyl invariant and has objective physical meaning (count rate in particle detectors)

Conclusions (part II)

- The CQG is local?
- Assume space $M_{4} \times G$ in (4+K)-D

$$
R_{W}=R_{G}+\gamma^{-2} Q_{B} \quad Q_{B}(\mathbf{r}, t)=-\left[\frac{\nabla^{2} \rho}{2 \rho}-\left(\frac{\nabla \rho}{2 \rho}\right)^{2}\right] \quad \rho=|\psi|^{2}
$$

$I=\int \rho\left(g^{i j} \frac{\partial S}{\partial q^{i}} \frac{\partial S}{\partial q^{j}}+\gamma^{2} R_{W}\right) \sqrt{g} d^{N} q \quad \Rightarrow$ Gauge invariant Klein-Gordon

- Pass to the gauge where $\rho=1$

New metric
"Gravitational" action of the scalar field S

Part III

Spin 1/2

Dirac equation

- Spin degrees of freedom: the six Euler angles of the Lorentz group $\operatorname{SO}(3,1)$
- Space $M_{4} \times$ SO(3,1) in 10-D. Coordinates $q^{i}=\left\{x^{\mu}, y^{\alpha}\right\}=\left\{x^{\mu}, \lambda \theta^{\alpha}\right\}$

$$
\begin{aligned}
& I=\int \rho\left[g^{i j}\left(\frac{\partial S}{\partial q^{i}}-\frac{e}{c} A_{i}\right)\left(\frac{\partial S}{\partial q^{i}}-\frac{e}{c} A_{j}\right)+\hbar^{2} \xi^{2} R_{W}\right] \sqrt{g g_{S O(3,1)}} d^{N} q \\
& \left.\left.A_{i}=\left\{A_{\mu}, A_{\alpha}\right)\right\}=\left\{A_{\mu}, \xi_{\alpha}^{r}(y) A_{r}(x)\right)\right\} \quad A_{r}=-\{\mathbf{E}(x), \mathbf{H}(x)\}
\end{aligned}
$$

$$
\text { Klein-Gordon }(4+N) \text {-D } \quad g^{i j}\left[\left(-i \hbar \nabla_{i}-\frac{e}{c} A_{i}\right)\left(-i \hbar \nabla_{j}-\frac{e}{c} A_{j}\right) \psi\right]+\hbar^{2} \xi^{2} R_{R}
$$

Found Phys 43 pp. 631-641 (2013)
DOI 10.1007/s10701-013-9703-y
DOI 10.1007/s10701-013-9703-y

Derivation of the Dirac Equation by Conformal Differential Geometry
E. Santamato and F. De Martini, Found. Phys. 43, 631 (2013)

Dirac equation

$$
\psi_{s}(x, y)=\sum_{p=-1 / 2}^{1 / 2} D^{(0,1 / 2)}\left(\Lambda^{-1}(y)\right)_{p}^{s} \psi_{L}^{p}(x)+D^{(1 / 2,0)}\left(\Lambda^{-1}(y)\right)_{p}^{s} \psi_{R}^{p}(x)
$$

$$
\Psi_{D}(x)=\left(\begin{array}{l}
\psi_{L}^{1 / 2}(x) \\
\psi_{L}^{-1 / 2}(x) \\
\psi_{R}^{1 / 2}(x) \\
\psi_{R}^{-1 / 2}(x)
\end{array}\right) \quad \text { Dirac's spinor }
$$

$$
\begin{aligned}
& \hat{D}_{+} \hat{D}_{-} \psi_{D}=\hat{D}_{-} \hat{D}_{+} \psi_{D}=0 \\
& \hat{D}_{ \pm}=\gamma^{\mu}\left(-i \hbar \partial_{\mu}-\frac{e}{c} A_{\mu}\right) \pm m \\
& m^{2}=\frac{\hbar^{2}}{2 c^{2} \lambda^{2}}\left(3+4 \xi^{2}\right)+o\left(F_{\mu \nu} F^{\mu \nu}\right)
\end{aligned}
$$

Found Phys 43 pp. 631-641 (2013)
DOI 10.1007/s10701-013-9703-y

Derivation of the Dirac Equation by Conformal Differential Geometry
E. Santamato and F. De Martini, Found. Phys. 43, 631 (2013)

Enrico Santamato • Francesco De Martini

EPR paradoxes

- Because the CQG is deterministic and complete the riddle of EPR paradoxes is automatically solved
- E, Santamato, F. De Martini, "Solving the nonlocality riddle by conformal quantum geometrodynamics", J, Phys. Conf. Ser., 442, 012059 (2013)
- F. De Martini and E.Santamato "Interpretation of Quantum Nonlocality by Conformal Quantum Geometrodynamics", Int. J. Th. Ph.,53,3308 (2014)
- F. De Martini and E.Santamato," Nonlocality, No-Signalling and Bell's Theorem investigated by Weyl's Conformal Differential Geometry", Physica Scripta, T163, 014015 (2014)
- F. De Martini and E.Santamato, "Violation of the Bell Inequalities by Weyl Conformal Quantum Geometrodynamics A Re-Interpretation of Quantum Nonlocality", J. Adv. Phys., 4, 272 (2015)

Spin statistics

Author's personal copy

Proof of the Spin Statistics Connection 2: Relativistic Theory

Enrico Santamato ${ }^{1}{ }_{(0)}$ • Francesco De Martini ${ }^{2}$

Spin statistics

- In $\mathrm{SO}(3,1)$ use Euler angles $y^{\alpha}=\{\alpha, \beta, \gamma, \varphi, \theta, \chi\}$.
- The H-J the continuity equations of the CQG in (4+6)-D do not contain γ (γ is ignorable)

$$
\begin{aligned}
& S=\hbar s \gamma+S_{0}(q) \quad s>0 \\
& \psi_{s}(x, y)=e^{i s \gamma} \Phi(z)
\end{aligned} \quad s=\text { intrinsic helicity }
$$

- The helicity s is strictly constant
- From the harmonic expansion above we see that $s=1 / 2$ for the spin 1/2.
- For general spin, the harmonic expansion in $\mathrm{SO}(3,1)$ yields s integer or half-integer.

Spin statistics

Single particle

$$
\begin{aligned}
& \psi_{s}(q)=\psi_{s}(x, y)=e^{i s \gamma} \sum_{p=-s}^{s} D^{(0, s)}\left(B^{-1}(z)\right)_{p}^{s} \psi_{L}^{p}(x)+D^{(s, 0)}\left(B^{-1}(z)\right)_{p}^{s} \psi_{R}^{p}(x) \\
& z=(\alpha, \beta, \phi, \theta, \chi) \quad B(z)=\operatorname{SO}(3,1) / \operatorname{SO}(2)
\end{aligned}
$$

Because $s>0$, the rotation of γ must be always counterclockwise!

Two identical particles

$$
\psi_{s}\left(q_{1}, q_{2}\right)=e^{i s\left(\gamma_{1}+\gamma_{2}\right)} \sum_{p_{1}, p_{2}=-s}^{s} D^{(0, s)}\left(B^{-1}\left(z_{1}\right)\right)_{p_{1}}^{s} D^{(0, s)}\left(B^{-1}\left(z_{2}\right)\right)_{p_{2}}^{s} \Phi_{p_{1}, p_{2}}\left(x_{1}, x_{2}\right)+\text { dotted terms }
$$

Spin statistics

- The H-J and continuity equations require

$$
S\left(q_{1}, q_{2}\right)=S\left(q_{2}, q_{1}\right)
$$

- Because $\rho\left(q_{1}, q_{2}\right)=\rho\left(q_{2}, q_{1}\right)$ we have also

$$
\psi_{s}\left(q_{1}, q_{2}\right)=\psi_{s}\left(q_{2}, q_{1}\right)
$$

- Because the rotation of γ_{1} and γ_{2} must be counterclockwise, the exchange of γ_{1} and γ_{2} introduces a factor $(-1)^{2 s}$ in front of ψ_{s}
- The exchange of the other coordinates introduces no factor

Spin statistics

$$
\begin{aligned}
\psi_{s}\left(q_{2}, q_{1}\right) & =(-1)^{2 s}\left[e^{i s\left(\gamma_{1}+\gamma_{2}\right)} \sum_{p_{1}, p_{2}=-s}^{s} D^{(0, s)}\left(B^{-1}\left(z_{2}\right)\right)_{p_{1}}^{s} D^{(0, s)}\left(B^{-1}\left(z_{1}\right)\right)_{p_{2}}^{s} \Phi_{p_{1}, p_{2}}\left(x_{2}, x_{1}\right)+\text { dotted terms }\right]= \\
& =(-1)^{2 s}\left[e^{i s\left(\gamma_{1}+\gamma_{2}\right)} \sum_{p_{1}, p_{2}=-s}^{s} D^{(0, s)}\left(B^{-1}\left(z_{2}\right)\right)_{p_{2}}^{s} D^{(0, s)}\left(B^{-1}\left(z_{1}\right)\right)_{p_{1}}^{s} \Phi_{p_{2}, p_{1}}\left(x_{2}, x_{1}\right)+\text { dotted terms }\right]
\end{aligned}
$$

Comparison with

$$
\psi_{s}\left(q_{1}, q_{2}\right)=e^{i s\left(\gamma_{1}+\gamma_{2}\right)} \sum_{p_{1}, p_{2}=-s}^{s} D^{(0, s)}\left(B^{-1}\left(z_{1}\right)\right)_{p_{1}}^{s} D^{(0, s)}\left(B^{-1}\left(z_{2}\right)\right)_{p_{2}}^{s} \Phi_{p_{1}, p_{2}}\left(x_{1}, x_{2}\right)+\text { dotted terms }
$$

yields

$$
\Phi_{p_{1}, p_{2}}\left(x_{1}, x_{2}\right)=(-1)^{2 s} \Phi_{p_{2}, p_{1}}\left(x_{2}, x_{1}\right)
$$

EOP

Perspectives

- Extend the space to $\mathrm{SU}(2) \times \mathrm{U}(1) \times \mathrm{SO}(3,1)$ to include Weinberg's quantum model of leptons
- Introduce gauge Yang-Mills fields
- Introduce Higgs field to provide masses
- Apply Weyl's conformal symmetry to quantum field theory
- Study gravitational and cosmological implications

Conclusions

- Weyl's geometry and symmetry shed new light on Quantum Mechanics
- The statistical Born's interpretation of $|\psi|^{2}$ has no objective physical meaning and should be replaced by a geometrical interpretation
- When the CQG is applied to a particle with spin, a new conserved quantity appears: the particle "helicity"
- EPR and other QM paradoxes are automatically solved, because the CQG is deterministic and complete
- The spin-statistic connection can be obtained for any spin exploiting symmetry consideration only

