The Scalar Era in the Early Universe Probing BSM Scalar Fields with Gravitational Waves.

Kai Schmitz

Postdoc at the *Dipartimento di Fisica e Astronomia "Galileo Galilei"* at the *Università degli Studi di Padova*, Padua, Italy

Based on ARXIV:1904.07870 [HEP-PH]. In collaboration with **Francesco d'Eramo (Padua)**.

Theoretical Physics Seminar | INFN Florence | Florence, Italy | 29 May 2019

Gravitational waves

2 Scalar era

- BSM applications
- 4 Conclusions

Gravitational waves

Scalar era

- BSM applications
- 4 Conclusions

Gravitational waves

[LIGO/Virgo | Gravitational-Wave Transient Catalog (GWTC) 1 | 1811.12907]

LIGO/Virgo observing run 3

[LIGO/Virgo | Nature 569, 15-16 (2019)]

Era of gravitational-wave astronomy

Ground

Sky

Cosmological gravitational-wave signals

Topological defects

[Cathal O'Connell | COSMOS Magazine 04/2018]

First-order phase transitions

[David Weir | 1705.01783]

Inflation

[NASA / WMAP Science Team]

→ This talk: Use the stochastic background of inflationary GWs to probe new particle physics

Primordial gravitational waves from inflation

[Ken'ichi, Saikawa, Satoshi Shirai | 1803.01038]

Tensor perturbations of the metric

$$ds^{2} = -dt^{2} + \frac{a^{2}}{a}(\delta_{ij} + h_{ij}) dx^{i} dx^{j}$$

- Stretched to super-horizon size during inflation, frozen till re-entry
- **EOM** for Fourier modes ($u = k\tau$)

$$\left[\left(\frac{d^2}{du^2} + \frac{2}{a} \frac{da}{du} \frac{d}{du} + 1 \right) h_k^{+,\times} = 0 \right]$$

Sub-horizon modes are redshifted according to $a(u) \rightarrow Logbook$ of the expansion history!

- Measure reheating temperature after inflation. [0802.2452, 0804.1827, 1110.4169, 1305.3392, ...]
- ▶ Determine equation of state during the QCD phase transition. [1010.4857, 1904.01046]
- Our work: Probe the presence of new scalar fields in the early Universe.

- Gravitational waves
- 2 Scalar era

- BSM applications
- 4 Conclusions

Scalar fields in the early Universe

Toy model of a scalar field ϕ with mass m_ϕ , decay rate Γ_ϕ , and initial field value $\phi_{\rm ini}$

Modulus field in string theory

Saxion in SUSY axion model

Flavon field in a flavor model

Modified expansion history:

- **1** Scalar field fixed at $\phi_{\rm ini}$ until $H \sim m_\phi \rightarrow {
 m Radiation}$ domination after inflation
- 2 Oscillations around potential minimum → Scalar-field domination / The Scalar Era
- **3** Scalar field decays at $t \sim 1/\Gamma_{\phi}$ into radiation \rightarrow Standard radiation domination

The scalar era

Klein-Gordan equation

$$\left[\frac{d^2}{dt^2} + \left(3H + \Gamma_{\phi}\right)\frac{d}{dt} + m_{\phi}^2\right]\phi = 0$$

Covariant energy conservation

$$\left[\frac{d}{dt} + 4\frac{g_{*,s}(\rho_R)}{g_{*,\rho}(\rho_R)}H\right]\rho_R = \Gamma_{\phi}\dot{\phi}^2$$

Friedmann equation for $H = \dot{a}/a$

$$H^{2} = \frac{1}{3 M_{\rm Pl}^{2}} \left(\frac{1}{2} \dot{\phi}^{2} + \frac{1}{2} m_{\phi}^{2} \phi^{2} + \rho_{R} \right)$$

Pseudo EOS parameter ω , such that $a \propto t^{2/3/(1+\omega)}$

- Solve coupled system of equations in order to determine modified expansion history.
- \triangleright Transfer function χ_k for the stochastic background of primordial GWs from inflation:

$$\Omega_{\text{GW}}^{0}(f) \simeq \frac{1}{12} \frac{k^2}{a_0^2 H_0^2} \left| \frac{\chi_k}{\chi_k} \right|^2 \mathcal{P}_{\text{tensor}}^{\text{inflation}}(k) , \quad f = \frac{k}{2\pi a_0}$$

Primordial gravitational-wave background

$$\mathcal{P}_{\text{tensor}}^{\text{inflation}} = r \, A_{\text{scalar}}^{\text{COBE}} \left(\frac{k}{k_{\text{CMB}}} \right)^{n_t}$$

Optimistic but viable and realistic ansatz; explore *maximal* reach of future GW experiments

- Maximal amplitude
 - \rightarrow Tensor-to-scalar ratio r = 0.07
- ▶ Blue spectrum
 - \rightarrow Tensor spectral index $n_t = 0.4$
- Consistent with all current bounds from CMB, LIGO/Virgo, BBN, etc.
- Must go beyond the consistency relation $n_t = -r/8$ of single-field slow-roll inflation.

Example: Axion inflation coupled to gauge fields

[1109.0022, 1110.3327, 1203.5849,1603.01287, 1707.07943, 1904.01488, ...]

[Juan Garcia-Bellido, Marco Peloso, Caner Unal | 1610.03763]

[Valerie Domcke, Francesco Muia, Mauro Pieroni, Lukas Witkowski | 1704.03464]

Consider cosmic inflation described by

$$-\mathcal{L} \supset 1/2 \left(\partial \mathbf{a} \right)^2 + V(\mathbf{a}) + 1/4 FF + \theta/4 F\tilde{F}, \quad \theta = \mathbf{a}/f$$

- PNGB of a spontaneously broken global symmetry. Flat potential protected by shift symmetry.
- Coupling of the CP-odd axion field to gauge fields via the CP-odd Chern-Simons density.
- Scalar and tensor perturbations receive (1) inflaton, (2) gauge-field, and (3) metric contributions.

Our strategy in the following: Assume a pure power-law background across all relevant frequencies.

Final gravitational-wave spectrum

Benchmark values ($\phi_{\rm ini} = 10^{18}\,{\rm GeV}$)

③
$$m_{\phi} = 10^6 \text{ GeV}, \Gamma_{\phi} = 10^0 \text{ GeV}$$

②
$$m_{\phi} = 10^1 \text{ GeV}, \Gamma_{\phi} = 10^{-8} \text{ GeV}$$

①
$$m_{\phi} = 10^{-4} \,\mathrm{GeV}, \, \Gamma_{\phi} = 10^{-16} \,\mathrm{GeV}$$

Experimental sensitivities

- Power-law-integrated sensitivity curves → visual representation
- SNRs computed based on strain noise power spectral densities

$$\mathrm{SNR}^{2} = N t_{\mathrm{obs}} \int_{f_{\mathrm{min}}}^{f_{\mathrm{max}}} df \left[\frac{\Omega_{\mathrm{signal}} \left(f \right)}{\Omega_{\mathrm{noise}} \left(f \right)} \right]^{2}$$

The scalar era imprints a characteristic step-like feature on the primordial GW background.

Experimental prospects

Signal-to-noise ratios (SNRs)

- 1 Total SNR based on full spectrum → Will an experiment be able to see at least some signal?
- 2 Reduced SNR after subtracting a power-law fit of the spectrum → Will an experiment be able to see a feature in the spectrum?

Each parameter points translates into an experimental fingerprint. Point ②:

- LISA, DECIGO, BBO will observe a departure from a power law.
- CE, IPTA, and SKA will detect a stochastic GW background.
- ET and HLVK will not observe any primordial GW signal.

Very recent work related to our analysis

Yesterday on the arXiv

[Nicolás Bernal, Fazlollah Hajkarim | 1905.10410]

Today on the arXiv

[Daniel G. Figueroa, Erwin H. Tanin | 1905.11960]

Some differences to our work

- Exotic fluid with constant EOS → No field oscillations around the potential minimum.
- Generalization to stiff EOS, $1/3 < \omega < 1$. Must go beyond scalar field in harmonic potential.
- $lackbox{ No SNR analysis}
 ightarrow \text{Simplified parameter study based on sensitivity curves.}$
- Subset of GW experiments. No distinction, no correlation between "signals" and "features".

Gravitational waves

Scalar era

- BSM applications
- 4 Conclusions

Heavy modulus in 4D string compactification

$$m_{\phi} = 10^{10} \,\mathrm{GeV} \,, \; \Gamma_{\phi} = 10^{-7} \,\mathrm{GeV} \,, \; \phi_{\mathrm{ini}} = 10^{18} \,\mathrm{GeV}$$

Probe end of scalar era in GW experiments.

Generic properties

$$\Gamma_{\phi} \sim rac{m_{\phi}^3}{M_{
m Pl}^2} \,, \quad \phi_{
m ini} \sim M_{
m Pl} \,$$

Examples from the recent literature

- DM production during a scalar era driven by several moduli. [Rouzbeh Allahverdi, Jacek Osiński] 1812.10522]
 - Baryon cooling by milli-charged DM during a modulus-driven scalar era in order to explain the EDGES 21-cm signal. Mansi Dhuria 1 1812 119151

Scalar era driven by a flavon field

Baryogenesis from flavon decays

[Mu-Chun Chen, Sevda Ipek, Michael Ratz | 1903.06211]

$$m_{\phi} = 3 \,\mathrm{TeV}\,,\; \Gamma_{\phi} = 10^{-13} \,\mathrm{GeV}\,,\; \phi_{\mathrm{ini}} = 10^{16} \,\mathrm{GeV}$$

Probe entropy production in GW experiments.

Froggatt-Nielsen flavor model

$$\boxed{ \mathscr{L} \sim \left(\frac{\mathbf{v} + \mathbf{\phi}}{\Lambda} \right)^{n_{ij}} \mathbf{\bar{e}}_{R}^{i} \ell_{L}^{i} \mathbf{\tilde{H}}}$$

Primordial flavon asymmetry translates into LR asymmetry

$$\phi \to e_R \bar{\ell}_L H, \quad \phi^* \to \bar{e}_R \ell_L \tilde{H}$$

- e_R/\bar{e}_R do not equilibrate during flavon-driven scalar era
- 4 Electroweak sphalerons convert $\ell_L/\bar{\ell}_L$ asymmetry into a nonzero baryon asymmetry.

Gravitational waves

Scalar era

- BSM applications
- 4 Conclusions

Conclusions

A broad class of BSM models may be tested in upcoming GW experiments.

- String moduli, flavon fields, supersymmetric axion partners, ...
- Important implications for other relics such as dark matter and the baryon asymmetry.

The scalar era represents an important experimental benchmark scenario.

- Highlights the complementarity of future GW experiments across the entire spectrum.
- Evidence for SD would change our understanding of particle physics and cosmology.

Future directions

- ► Relax assumptions w.r.t. primordial spectrum, initial field value, scalar potential, ...
- ► Self-consisted embedding in an inflation model that generates a blue-tilted spectrum.

Conclusions

A broad class of BSM models may be tested in upcoming GW experiments.

- String moduli, flavon fields, supersymmetric axion partners, ...
- Important implications for other relics such as dark matter and the baryon asymmetry.

The scalar era represents an important experimental benchmark scenario.

- Highlights the complementarity of future GW experiments across the entire spectrum.
- Evidence for SD would change our understanding of particle physics and cosmology.

Future directions

- ► Relax assumptions w.r.t. primordial spectrum, initial field value, scalar potential, ...
- Self-consisted embedding in an inflation model that generates a blue-tilted spectrum.

Thank you for your attention!

Supplementary Material

Strain noise power spectral densities

