
SOSC19, Bologna 18.09.2019spiga@infn.it

Cloud Computing resources
abstraction in Function as a Service

environment

Daniele Spiga INFN-PG
spiga@infn.it

SOSC19, Bologna 18.09.2019spiga@infn.it

Outline
❏ Introduction to cloud computing evolution

❏ A new “as a Service”: Function as a Service (FaaS)
❏ FaaS & Serverless

❏ FaaS architecture
❏ Basic concepts and features
❏ What make it attractive

❏ Data Pre-Processing with FaaS frameworks

❏ Summary and challenges

2

SOSC19, Bologna 18.09.2019spiga@infn.it

Intro

3

SOSC19, Bologna 18.09.2019spiga@infn.it

Cloud: quick reminder

• Infrastructure (IaaS → Infrastructure as a Service)

• IaaS, the basic building blocks of a data center:
• Storage I want to store data, lots of data, at low cost
• Compute Give me a machine where I can host my services or run my

applications
• Network Create a “Software-Defined Network” infrastructure for me

→ No need to know details, no need to contacts administrators to install
something

https://csrc.nist.gov/publications/detail/sp/800-145/final

4

SOSC19, Bologna 18.09.2019spiga@infn.it

Cloud definition (cont)
• Platform (PaaS → Platform as a Service)

• PaaS, a computing platform providing you with several
building blocks or components that you can request
programmatically or statically. For example:

• A cluster of systems with operating system and an
entire execution environment installed and
configured.

• A web server (or a clusters) with database(s),
virtual storage, load balancers…

What matters at the
end…

are the applications.

5

• Software (SaaS → Software as a Service)
• With SaaS, you are directly given access to some

application software. You don't have to worry about
the installation, setup and running of the application.
You typically access SaaS apps via a web browser.

• For example: gmail, social media such as
• Facebook, Twitter, etc.

SOSC19, Bologna 18.09.2019spiga@infn.it

Do we need something else?

While cloud environments made it convenient to build large-scale applications, there is still the downside
of manual administration and operational interventions, such as:

- Are the latest security fixes installed?"

- "When should we scale down/up?"

- "How many more servers do we need?

Ideally we would avoid all those administrative tasks, and we would like to simply focus on
applications and related business value.

And thus yes: There is a digital transformation driven by the need for greater agility and scalability
- You saw containers as building blocks for Microservices as evolution of monolithic.
- We’ll see now what come later

6

SOSC19, Bologna 18.09.2019spiga@infn.it

Containers
“Wouldn’t it be nice if one could pack the application, with all its dependencies, into a dedicated
box and run it anywhere? No matter what software dependencies the host system has installed,
or where and what the host system actually is?”

- Yes it is and that is the idea of containerization allows all of this.

Also, we know that containers are key pillars of microservices

Microservices architecture emerged as a key method of providing development teams with flexibility
and other benefits, such as the ability to deliver applications at warp speed using infrastructure as a
service (IaaS) and platform as a service (PaaS) environments.

7

SOSC19, Bologna 18.09.2019spiga@infn.it

Where we are so far…

Bare Metal

PaaS Container Orchestrators

IaaS

C
lo

ud
 C

om
pu

tin
g

In
fr

as
tr

uc
tu

re

8

SOSC19, Bologna 18.09.2019spiga@infn.it

Do we need something else?
So, is it all done?

- probably no, we need something else...

Wouldn’t be nice if we could
- divide our work into smaller pieces
- let the platform worry about manageability and autoscaling

Great Ideally, but it’s hard for the platform to scale and manage the services
- So the suggestion might be to make them stateless and smaller

What is then something smaller than a “piece of application” running in a container?

9

SOSC19, Bologna 18.09.2019spiga@infn.it

With respect containers, the basic idea of functions is to take the step further by making
an application more granular to the level of functions (and events).

Developers: difference here is to focus
 on a single function or module rather
 than a service with a large surface
 area like in the application runtime.

Functions

We’ve gone from monoliths to microservices to functions

10

SOSC19, Bologna 18.09.2019spiga@infn.it

Function as a Service (FaaS)
Extending the as a service model already presented we can define FaaS (Function as a
Service) as

- the ability to take a function and run it somewhere in the cloud

Or maybe as
- the “compute” part of the serverless stack where you bring your own code.

The function contains a bespoke logic block. It is then called via some kind of registry like an
API gateway, or it is scheduled or triggered by a cloud-related event (i.e., data written to
Data Storage).

In other words: FaaS is a form of serverless computing, where you execute certain
functions of your application in a abstracted computing environment.

11

SOSC19, Bologna 18.09.2019spiga@infn.it

Defining Server-less
Does server-less means no servers?

No, it is about deployment & operations model and means worry-less about server
operations and management,

No servers to manage Just code to develop and execute

Runs code only on-demand on a per-request basis over transparent & dynamically
provisioned resources

12

SOSC19, Bologna 18.09.2019spiga@infn.it

Serverless vs FaaS
Let’s consider serverless as an amalgamation of two distinct points as follows:

❏ MBaaS, aka Mobile Backend-as-a-Service:
 The use of 3rd party
 services/applications (in the cloud)
 to handle the server-side logic
 and state.

❏ FaaS, Functions-as-a-Service: the use of 3rd party stateless compute containers to
handle the server-side logic. These containers are event-triggered and may last for only one
invocation i.e. ephemeral.

At its core, serverless computing provides runtimes to execute code, which is also known as
function as a service (FaaS) platforms.

13

https://en.wikipedia.org/wiki/Function_as_a_service

SOSC19, Bologna 18.09.2019spiga@infn.it

Ok, but in the end
What is serverless? Or better how we intend it in this lecture?

A cloud-native platform

for
short-running, stateless computation

and
event-driven applications

which
scales up and down instantly and automatically

and
(charges for actual usage at a millisecond granularity)

14

SOSC19, Bologna 18.09.2019spiga@infn.it

Where this positions ?

Bare Metal

PaaS Container Orchestrators

IaaS

Serverless

C
lo

ud
 C

om
pu

tin
g

In
fr

as
tr

uc
tu

re

15

SOSC19, Bologna 18.09.2019spiga@infn.it

Cloud computing: server-less vs server-aware

If your PaaS can efficiently start instances in 20ms that run for half a second, then call it
serverless.” - Adrian Cockroft (2016)

16

SOSC19, Bologna 18.09.2019spiga@infn.it

Wrapping-up

Pre-Cloud Cloud

17

SOSC19, Bologna 18.09.2019spiga@infn.it

Gaining attention…

FaaS

FaaS

VS

PaaS

18

G
oo

gl
e

Tr
en

ds

SOSC19, Bologna 18.09.2019spiga@infn.it

A final question is
But still, there will be space for both microservices and FaaS to co-exist?

This high-level flow remains the same as the traditional approach. The key difference is that, in case
of a function, the container is created and destroyed by algorithms used in FaaS platforms and the
operational team have no control over that.

19

SOSC19, Bologna 18.09.2019spiga@infn.it

FaaS Architecture: Basic Concepts

Events:
In the context of functions are things
that happen within your computing
environment, that you might want to
take action on.

Triggers:
is what must be associate with functions
so that they will execute when an event
is fired.

Data: When an event triggers the execution of your Cloud Function, data
associated with the event is passed via the function's parameters

20

Cloud Computing Infrastructure

SOSC19, Bologna 18.09.2019spiga@infn.it

Triggers
A trigger defines how a function is invoked and a function must have exactly one trigger.

- Triggers have associated data, which is often provided as the payload of the function.

Triggers might be:

- changes to data in a database,
- files added to a storage system
- Any cloud event basically can be a trigger

- a new virtual machine instance being created
- Cron, to implement scheduled processing
- Any HTTP (cli, browser)

Several FaaS FW allows also to concatenate functions whose trigger theirself

21

SOSC19, Bologna 18.09.2019spiga@infn.it

Example

22

In the Amazon world, serverless computing is called AWS Lambda.
This is how it works (picture from Amazon):

A simple AWS Lambda example:

Hands-on will provide more
details

SOSC19, Bologna 18.09.2019spiga@infn.it

Binding of triggers to functions
Functions and triggers are bound to each other on a many-to-one basis.

- You cannot bind the same function to more than a single trigger at a time.
- however, have the same trigger cause multiple functions to execute by simply deploying two

different functions with the same trigger.

Binding to a function is a way of declaratively connecting another resource to the function; bindings
may be connected as input bindings, output bindings, or both.

It is possible to mix and match different bindings to suit your needs. Bindings are optional and a
function might have one or multiple input and/or output bindings.

Triggers and bindings let you avoid hardcoding access to other services. Your function receives
data (for example, the content of a queue message) in function parameters. You send data (for
example, to create a queue message) by using the return value of the function.

FIX ME

23

SOSC19, Bologna 18.09.2019spiga@infn.it

Computing infrastructure perspectives

❏ Ephemeral: platform waits requests and
triggers function on demand, which “lives” the time
to deliver the result: your code is not always-on,
waiting calls!

 ❏ Dynamic scalability & resilience provided
by the platform: more calls, more instances

❏ if you are on public cloud: Extremely fine
grained pay-per-use… per-call costs

24

SOSC19, Bologna 18.09.2019spiga@infn.it

Finally about operations perspectives
Traditionally (DevOps):

- The development team tests their program in an isolated development environment for
quality assurance (QA)

- if requirements are met
- The operations team deploys and maintains the program from that point on

- Each group assume some of the responsibilities of the other team

It become now intuitive that serverless paradigm is a way to evolve towards NoOps (no
operations)

- the concept that an IT environment can become so automated and abstracted from the
underlying infrastructure that there is no need for a dedicated team to manage software
in-house.

(However, in the real life a completely automated deployment, monitoring and management of
applications and the infrastructure on which they run is probably still a dream)

25

SOSC19, Bologna 18.09.2019spiga@infn.it

What all of this is good for

Microservices

Mobile Backends

IoT

Modest Stream Processing

Bots, ML Inferencing

good for
short-running
stateless
event-driven

 not good for
long-running
stateful
number crunching

Databases

Deep Learning Training

Heavy-Duty Stream Analytics

Numerical Simulationf(x)

Service integration

Video Streaming

26

SOSC19, Bologna 18.09.2019spiga@infn.it

Example Use cases
● Executing logic in response to database changes (insert, update, trigger, delete).
● Performing analytics on IoT sensor input messages, for example, as Message Queuing

Telemetry Transport (MQTT) messages.
● Handling stream processing (analyzing or modifying data in motion).
● Managing single time extract, transform, and load jobs that require a great deal of

processing for a short time.
● Providing cognitive computing via a chat bot interface (asynchronous, but correlated).
● Scheduling tasks performed for a short time (e.g., cron or batch style invocations).
● Serving machine learning and AI models (retrieving one or more data elements such as

tables or images and matching against a pre-learned data model to identify text, faces,
anomalies, etc.).

● Continuous integration pipelines that provision resources for build jobs on-demand, instead of
keeping a pool of build slave hosts waiting for jobs to be dispatched.

27

SOSC19, Bologna 18.09.2019spiga@infn.it

Putting (almost) everything together

Bare Metal

PaaS Container Orchestrators

IaaS

Serverless

28

SOSC19, Bologna 18.09.2019spiga@infn.it

But….

29

SOSC19, Bologna 18.09.2019spiga@infn.it

In the end we want to process data...

...Or most probably Big Data to implement Real-time Analytical

Reminder: when we are In the word of BigData:

- we know that we cannot define a fixed number of resources for our platform
- we never know that when the velocity/size of data can change.
- We know that dataset are “never” closed… keep growing cause data sources push data

continuously

A BigData computing platform must be able to tackle any these situations:

- Serverless architecture is A key element to provide solutions to these problems

30

SOSC19, Bologna 18.09.2019spiga@infn.it

Workflow example (serverless stream processing)

Data Sources push data continuously, so we need:

A unified Data Collection Layer is need to write it to Real-time

A real-time storage system ables to scale up and down depending on data rate
- To Stream collected data which can be further processed by Data Processing Engines.

A layer where to do some Data preprocessing (Data Cleaning, Data Validation, Data
Transformations etc).

- This is the layer where we also perform real-time analytics on incoming streaming data by
using the window of last 5 or 10 minutes..

- Data Processing Platform need to process any amount of data with consistent throughput

Data Serving Layer to write processed data for further user analysis

Data
Sources

Data
collection

Data Stream

Data
Processing

Data
Serving

31

SOSC19, Bologna 18.09.2019spiga@infn.it

Examples
Mobile and Internet-of-Things applications
FaaS is often adopted for Data Processing and Transformation Service in which continuously

consuming data from streams and perform the Data Cleaning, Transformations and Enrichment on

the data and store

Real-time Log Monitoring & Alerting
Real-time log monitoring can be enabled using FaaS in which one can keep on consuming the log

events Then, After doing some parsing of logs, one can monitoring the metrics and check for any

critical event and generate alerts to a notification platforms (e.g. Slack, Email, etc.)

32

SOSC19, Bologna 18.09.2019spiga@infn.it

Wrapping up:

How to build
analytics solutions in
public clouds

33

SOSC19, Bologna 18.09.2019spiga@infn.it

And what about using Open Source...
… and Private/Hybrid Clouds?

As a scientist I might want/need/must build my open source intelligent computing
infrastructure, possible customized, to execute my analytics to process my (detector) data…

No worry (at least not too much)

- There are several open source solutions available in the market which can be
adopted/customized/deployed in any cloud infrastructure

- And, of course, a key to the success in this respect is to learn how to code your
infrastructure reusing available components.

- Now we are referring to Infrastructure as a code… You will see this more this
afternoon

34

SOSC19, Bologna 18.09.2019spiga@infn.it

Recap of some key messages in this talk
- We tasted how/why the computing infrastructure has a central role while

building solutions for intelligent systems
- Data handling and management, processing and serving

- We discussed objectives and motivations for abstracting computing
infrastructures and knobs provided by emerging technologies

- Dev: allows to focus on application/business logic
- Ops: reduce the effort in maintaining complex system

- We discussed FaaS as a cloud computing framework
- Trying to relate FaaS and Serverless (sometime misnomer)

35

SOSC19, Bologna 18.09.2019spiga@infn.it

Some technologies (platforms for serverless)

36

Azure Functions

AWS
Lambda

Kubernetes

Google FunctionsRed-Hat
IBM Cloud Functions

SOSC19, Bologna 18.09.2019spiga@infn.it

One size fits all solutions?
No, generally speaking there is no a generic solutions which covers all the use
cases…

This is true in general and for FaaS frameworks in particular

- Open problems
- Research challenges
- Questions
- …

37

SOSC19, Bologna 18.09.2019spiga@infn.it

Challenges ahead of us: in a nutshell

• Can different cloud computing service models be mixed?
• Monitoring and debugging

• Debugging is much different if instead of having one artifact (a micro-service or
traditional monolithic app) developers need to deal with a myriad of smaller pieces
of code …

• Can legacy code be made running on serverless?
• Hybrid model?
• To what degree existing legacy code can be automatically or semi-automatically

decomposed into smaller-granularity pieces to take advantage of these new
economics?

• Is serverless fundamentally stateless?
• Can there be serverless services that have stateful support built-in

38

