
Containers, their composition
and orchestration

Davide Salomoni
davide@infn.it

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International license

mailto:davide@infn.it

Why this lecture?

• In the first days of the school, we have seen that working with
“intelligent systems” requires a significant number of skills in several
topics (well beyond the “machine learning” area).

• We said that Clouds can help us to find and use computing and
storage resources that we need for a variety of tasks, be they
scientific or not.

• So far, we just used pre-packaged Cloud resources, in a variety of
forms (e.g. web services, virtual machines, distributed storage). This is
often OK in simple cases.

• In this and in the following lectures of today, we are going to see and
explore ways to customize Cloud resources for more complex tasks.

SOSC 2019 Containers 2

Agenda

• In this lecture we are going to cover:
• Virtualization (we spoke several times already about “Virtual Machines”: what

are them, really?)
• Containers, their properties, their pros and cons.
• How to embed your applications into containers and automatize the process

of creating complex containers.
• How to combine multiple containers into a so-called application stacks.
• How to orchestrate containers across multiple nodes and scale their number

up and down.

SOSC 2019 Containers 3

Virtualization

• Informally, a Virtual Machine
(VM) is a “virtual copy of a real
machine”.

• But what is “Virtualization” in
general?

• It is the creation of a virtual
version of something: an Operating
System, a storage device, a network
resource: pretty much almost
anything can be made virtual.

• This is done through an abstraction,
that hides and simplifies the details
underneath.

SOSC 2019 Containers 4

Going virtual

SOSC 2019 Containers 5

Source: http://bit.ly/2IVk6e5

http://bit.ly/2IVk6e5

Virtualization with Linux KVM

• KVM is a kernel module to implement virtualization in Linux (there are
other ways to handle virtualization in Linux, but we won’t discuss
them).

SOSC 2019 Containers 6

Source: https://red.ht/2IUxJdr

https://red.ht/2IUxJdr

Beyond Virtual Machines

• Virtual Machines (VMs)
carry a significant
overhead with them à
let’s introduce Docker
Containers.

SOSC 2019 Containers 7

Source: http://bit.ly/2IVk6e5

http://bit.ly/2IVk6e5

Containers are «lightweight VMs»

SOSC 2019 Containers 8

Source: http://goo.gl/4jh8cX

http://goo.gl/4jh8cX

“Lightweight”, in practice

• Containers require less resources: they start faster and run faster
than VMs, and you can fit many more containers in a given hardware
than VMs.

• Very important: they provide enormous simplifications to software
development and deployment processes, because they allow to
simply encapsulate applications in a controlled and extensible way.

SOSC 2019 Containers 9

SOSC 2019 Containers 10

SOSC 2019 Containers 11

Intermodal Shipping Container
Ecosystem

SOSC 2019 Containers 12

OK, not everything always goes as
planned…

SOSC 2019 Containers 13

Docker Containers

SOSC 2019 Containers 14

Docker features

• Docker is an open source engine for the easy creation of lightweight,
portable, self-sufficient containers from any application.

• The same container that a developer builds and tests on a laptop can
run at scale, in production, on VMs, private, public clouds and more.

• Main features:
• versioning (git-like)
• component re-use
• sharing (with public

repositories)

SOSC 2019 Containers 15

SOSC 2019 Containers 16

Note that a Docker Engine must be
installed in the hosts

Hands-on preparation (1)
• In the hands-on exercises, we will be working with 2 VMs.

• One of the two will have both a public and a private IP address. We shall call it VM1.
• The second one will have a private IP address only (on the same subnet of the

private IP address of the first VM). This IP address is of the form 172.16.x.y. This is
the VM called sosc19-XXp (note the ‘p’ at the end). We shall call it VM2.

• Open a terminal shell with two tabs, or two terminal shells, and open an
ssh connection in each of them to the VM with the public IP address (since
it’s the only one reachable from the Internet), i.e. “VM1”.

• Use the VM and the username that was assigned to you.
• i.e. ssh soscuserXX@<public IP address>

• From one of the two shells, connect to the VM with the private IP address
(i.e. “VM2”).

• i.e. ssh soscuserXX@<private IP address>

• You should now be connected to both VM1 and VM2.
• Check with the ifconfig command that VM1 has 2 IP addresses and VM2 only 1

(plus the loopback address, which is always 127.0.0.1).
SOSC 2019 Containers 17

Hands-on preparation (2)
• To make it more clear which VM we are working on, we will change

the Linux prompt.
• By default, the prompt is something like “soscuserXX@sosc19-XX:~$ ”. Let’s set

it to “soscuserXX@sosc-19-XX(VM1):~$ “. To do this, you need to modify the
file called .bashrc (note the dot at the beginning of the file) in your home
directory.

• On VM1, add the following string at the end of .bashrc, using your preferred
editor (e.g. vim or nano):

PS1="\[\033[01;32m\]\u@\h(VM1)\[\033[00m\]:\[\033[01;34m\]\w\[\033[00m\]\$ "

• If you want to understand what this means in detail, see
https://www.ostechnix.com/hide-modify-usernamelocalhost-part-terminal/

• Activate the change, running source .bashrc (or logging out and then back
in).

• Do the same on VM2, changing VM1 to VM2 in the PS1 value above.

SOSC 2019 Containers 18

https://www.ostechnix.com/hide-modify-usernamelocalhost-part-terminal/

Hands-on: the Docker daemon
• A computer daemon is a program that runs as a background process

(versus, for example, a program that is run by an interactive user).
• In order to use docker on a machine, that machine must have the

Docker engine (or the Docker daemon) installed and running. By
default, this daemon is not normally installed.

• Is it installed on VM1? How can you check?

• Install the Docker daemon on VM1 with the command
ubuntu@VM1:~$ sudo apt install docker.io

• Check that Docker is properly installed with the command
ubuntu@VM1:~$ docker --version
It should return something like
Docker version 18.09.5, build e8ff056

SOSC 2019 Containers 19

Docker needs root access
• When we installed Docker, we had to write
sudo apt install docker.io

• This is because, in order to install a program on a global basis on a
system, we need root privileges. However, we need to have root
privileges also when we execute any docker command, such as
docker info (checking the docker version is an exception).

• If you don’t use sudo before a docker command:

ubuntu@VM1:~$ docker info
Got permission denied while trying to connect to the Docker daemon
socket at unix:///var/run/docker.sock: Get
http://%2Fvar%2Frun%2Fdocker.sock/v1.39/info: dial unix
/var/run/docker.sock: connect: permission denied

SOSC 2019 Containers 20

docker commands without sudo

• To avoid specifying sudo before each docker command, we’ll add our
username to the docker Unix group:
ubuntu@VM1:~$ sudo usermod -aG docker ${USER}

• Log out from and then log back in to VM1 in order to apply this. From
now on, we can omit the sudo command before docker:
ubuntu@VM1:~$ docker info
Containers: 0
Running: 0
Paused: 0
Stopped: 0

[…]

SOSC 2019 Containers 21

The first docker commands
• By default, the “container

image registry” on the left is
the service running at
https://hub.docker.com
(called “Docker Hub”). It
stores more than 100,000
container images.

• To pull a container image
from Docker Hub, use the
command “docker pull”.

• To run a container, use the
command “docker run”.

SOSC 2019 Containers 22

https://hub.docker.com/

Search, pull, run and push
• Try these commands on VM1:

• Search for a container image at Docker Hub:
• docker search ubuntu (or e.g. docker search rhel – what would this do?)

• Fetch (pull) a Docker image (in this case, an Ubuntu container):
• docker pull ubuntu

• Execute (run) a docker container:
• Run the “echo” command inside a container and then exit:

• docker run ubuntu echo "hello from the container"
hello from the container

• Run a container in interactive mode:
• docker run –i –t ubuntu /bin/bash

• Ship (push) a Docker image to a Docker repository (by default, Docker Hub) – skip
these commands for the time being, we’ll say more about this later on:

• docker login
• docker push USER/my-image

SOSC 2019 Containers 23

How efficient is docker?
ubuntu@VM1:~$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
ubuntu latest 7698f282e524 7 days ago 69.9MB

à the latest Ubuntu image takes about 70MB of disk space as a container. If
you had just to download a full Ubuntu (server) distribution, it would be
more in the range of 900MB.

ubuntu@VM1:~$ time docker run ubuntu echo “hello from the container”
hello from the container

real 0m0.988s
user 0m0.039s
sys 0m0.015s

à The total time it takes on this system (not a really powerful one) to start a
container, execute a command inside it and exit from the container is about
a second. How long would it take if we used a full VM?

SOSC 2019 Containers 24

How to extend a docker container (1)
• Suppose you need to run a command inside a container, but that command

is not installed in the image you pulled from Docker Hub. For example, you
would like to use the ping command but by default it is not available:

• ubuntu@VM1:~$ docker run ubuntu ping www.google.com
docker: Error response from daemon: OCI runtime create failed:
container_linux.go:345: starting container process caused "exec: \"ping\":
executable file not found in $PATH": unknown.

• We can install it ourselves; it is in the package iputils-ping:
• ubuntu@VM1:~$ docker run ubuntu /bin/bash -c "apt update; apt -y install
iputils-ping"

• But it still doesn’t work!?
• ubuntu@VM1:~$ docker run ubuntu ping www.google.com
docker: Error response from daemon: OCI runtime create failed:
container_linux.go:345: starting container process caused "exec: \"ping\":
executable file not found in $PATH": unknown.

• Who can explain this? The ping command was successfully installed!

SOSC 2019 Containers 25

http://www.google.com/
http://www.google.com/

How to extend a docker container (2)
• Whenever you issue a docker run <container> command, a new container

is started, based on the original container image.
• Check it yourself with the docker ps -a command.

• If you modify a container and then want to reuse it (which is often the
case!), you need to save the container, creating a new image.

• So, install what you need to install (e.g. the iputils-ping package, using
the same command as before) , and then issue a commit command like
docker commit xxxx ubuntu_with_ping

• This locally commits a container, creating an image with the name
ubuntu_with_ping (or any other name you like). Take xxxx from the
container ID shown by the docker ps –a output.

• Do it now.

SOSC 2019 Containers 26

How to extend a docker container (3)
• Verify that the ping command inside our new image is now working:

• ubuntu@VM1:~$ docker run ubuntu_with_ping ping -c 3 www.google.com
PING www.google.com (216.58.216.100) 56(84) bytes of data.
64 bytes from ord30s22-in-f100.1e100.net (216.58.216.100): icmp_seq=1 ttl=43 time=18.5 ms
64 bytes from ord30s22-in-f100.1e100.net (216.58.216.100): icmp_seq=2 ttl=43 time=18.5 ms
64 bytes from ord30s22-in-f100.1e100.net (216.58.216.100): icmp_seq=3 ttl=43 time=18.5 ms

--- www.google.com ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2003ms
rtt min/avg/max/mdev = 18.501/18.539/18.586/0.035 ms

• To recap: we have an original image (called “ubuntu”), downloaded from
Docker Hub, and a new image (called “ubuntu_with_ping”), created by us
extending the “ubuntu” image (i.e. installing some packages). Let’s check:

• ubuntu@VM1:~$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
ubuntu_with_ping latest 3e7a8818665f 11 minutes ago 97.2MB
ubuntu latest 7698f282e524 7 days ago 69.9MB

SOSC 2019 Containers 27

http://www.google.com/

Cleaning up container space
• When you don’t need some containers anymore, it’s wise to check

and clean up some disk space. This is done with the docker system
commands:

• Check disk space used by containers with docker system df:
• ubuntu@VM1:~$ docker system df

TYPE TOTAL ACTIVE SIZE RECLAIMABLE
Images 2 2 97.22MB 69.86MB (71%)
Containers 4 0 27.36MB 27.36MB (100%)
Local Volumes 0 0 0B 0B
Build Cache 0 0 0B 0B

• Reclaim disk space with docker system prune, then check again:
• ubuntu@VM1:~$ docker system df

TYPE TOTAL ACTIVE SIZE RECLAIMABLE
Images 2 0 97.22MB 97.22MB (100%)
Containers 0 0 0B 0B
Local Volumes 0 0 0B 0B
Build Cache 0 0 0B 0B

SOSC 2019 Containers 28

Removing unused images
• Besides containers, you can also remove images that you don’t need anymore with
docker rmi <image>:

ubuntu@VM1:~$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
ubuntu_with_ping latest 3e7a8818665f 29 minutes ago 97.2MB
ubuntu latest 7698f282e524 7 days ago 69.9MB

ubuntu@VM1:~$ docker rmi ubuntu_with_ping
Untagged: ubuntu_with_ping:latest
Deleted: sha256:3e7a8818665fc7eb1be20e8d633431ad8c0bdfba05d6d11d40edd32a915708bb
Deleted: sha256:a4c24b3590e4e95c30d4d0e82d3f769cde94436a5dd473b4e7ec7bd4682ce1b7

ubuntu@VM1:~$ docker rmi ubuntu
Untagged: ubuntu:latest
Untagged: ubuntu@sha256:f08638ec7ddc90065187e7eabdfac3c96e5ff0f6b2f1762cf31a4f49b53000a5
Deleted: sha256:7698f282e5242af2b9d2291458d4e425c75b25b0008c1e058d66b717b4c06fa9
Deleted: sha256:027b23fdf3957673017df55aa29d754121aee8a7ed5cc2898856f898e9220d2c
Deleted: sha256:0dfbdc7dee936a74958b05bc62776d5310abb129cfde4302b7bcdf0392561496
Deleted: sha256:02571d034293cb241c078d7ecbf7a84b83a5df2508f11a91de26ec38eb6122f1

ubuntu@VM1:~$ docker system df
TYPE TOTAL ACTIVE SIZE RECLAIMABLE
Images 0 0 0B 0B
Containers 0 0 0B 0B
Local Volumes 0 0 0B 0B
Build Cache 0 0 0B 0B

SOSC 2019 Containers 29

Pushing images to Docker Hub (1)

• We have already seen the command docker push <image>. This writes
an image to Docker Hub.

• In order to issue that command, you first need to have an account on
Docker Hub: go to https://hub.docker.com and sign up (or sign in, if
you already have an account there) – it’s free.

• Do it now.
• Click on Create Repository, make it public (careful: everybody will be

be able to see the images you upload there!) and give it a name, for
example sosc19 (only lowercase is allowed), a description, and click
on “Create”. This will create your public repository, called e.g.
“sosc19”.

SOSC 2019 Containers 30

https://hub.docker.com/

Pushing images to Docker Hub (2)
• To push an image (for example the ubuntu_with_ping image we created

earlier – create it again if you deleted it) to your new repository, we must
give a tag to the image and specify our Docker Hub username and
repository as part of the image name.

• The full image name should be <username>/<repository>:<tag>.
• In my case, the first part (username/repository) should be “dsalomoni/sosc19”.

As tag, you can put any string; let’s set it to “ubuntu_with_ping_1.0”.
• In order to assign this tag to our existing image, find out its “image id” with the
docker images command:

• ubuntu@VM1:~$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
ubuntu_with_ping latest 7c45b9ad4de6 45 minutes ago 97.2MB
ubuntu latest 7698f282e524 7 days ago 69.9MB

• ubuntu@VM1:~$ docker tag 7c45b9ad4de6 dsalomoni/bdp2:ubuntu_with_ping_1.0
• ubuntu@VM1:~$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
ubuntu_with_ping latest 7c45b9ad4de6 About an hour ago 97.2MB
dsalomoni/sosc19 ubuntu_with_ping_1.0 7c45b9ad4de6 About an hour ago 97.2MB
ubuntu latest 7698f282e524 7 days ago 69.9MB

SOSC 2019 Containers 31

Images before
the new tag

Images after
the new tag

Pushing images to Docker Hub (3)
• Now login to Docker Hub with your username and password:

• ubuntu@VM1:~$ docker login
Login with your Docker ID to push and pull images from Docker
Hub. If you don't have a Docker ID, head over to
https://hub.docker.com to create one.
Username: dsalomoni
Password:
WARNING! Your password will be stored unencrypted in
/home/ubuntu/.docker/config.json.
Configure a credential helper to remove this warning. See
https://docs.docker.com/engine/reference/commandline/login/#cre
dentials-store

Login Succeeded

• Finally, we can push our image to Docker Hub:
• ubuntu@VM1:~$ docker push dsalomoni/sosc19:ubuntu_with_ping_1.0

SOSC 2019 Containers 32

We’ll disregard
this warning here.

For more info,
see the URL in
the message.

https://docs.docker.com/engine/reference/commandline/login/

Verifying our Docker Hub repository

• Go to Docker Hub (https://hub.docker.com/), login with your
username, click on the “sosc19” repository, and then on “Public
View” and on the tab “Tags”. You should see something like this:

SOSC 2019 Containers 33

https://hub.docker.com/

Handling multiple commands
• If you have several commands to apply to a container (for example,

you want to install many applications), you could run the container in
interactive mode as shown earlier (use the “-i” switch), and then issue
the various commands at the prompt once you are in the container.

• For example, when you are running a container interactively, you could issue
a sequence of commands such as
apt update
apt install –y wget unzip
wget <some_file>
unzip <some_other file>
…

• Once you exit from the container, remember to commit the container,
or your modifications to the container will be lost (like in our “ping”
example earlier).

SOSC 2019 Containers 34

Dockerfiles
• Rather than modifying a container “by hand”, i.e. connecting interactively

and then installing packages one by one as previously shown, it is often
much more convenient to put all the required commands in a text file
(called by default Dockerfile), and then build an image executing these
commands.

• As an example, through the following Dockerfile we create an image
starting from an Ubuntu image, installing a web server (through the
apache2 package) and telling the image to serve a simple html page
(index.html), which we copy from our system:

$ cat Dockerfile
FROM ubuntu
RUN apt update
RUN apt install -y apache2
COPY index.html /var/www/html/
EXPOSE 80
CMD ["apachectl", "-D", "FOREGROUND"]

SOSC 2019 Containers 35

This Dockerfile:
• Starts from the Ubuntu container
• Updates all installed packages
• Installs the apache2 web server
• Copies an index.html file from our system
• Exposes port 80 (the standard web port)
• Starts the apache2 web server through the

"apachectl" command

The index.html file

• This is the index.html file we used in the previous Dockerfile. It will just
show a greeting message:

• ubuntu@VM1:~$ cat index.html
<!DOCTYPE html>
<html>
<h1>Hello from a web server running inside a container!</h1>
This is an exercise for SOSC19.
</html>

• Create both the previous Dockerfile and the index.html file in your
home directory on VM1.

SOSC 2019 Containers 36

Build images via Dockerfiles
• Once we have a Dockerfile, we can create (”build”) an image and name it

for example “web_server” with the command
docker build –t web_server .
• Note: the . at the end the line above is important!

• We can now run our new container in the background (flag –d) simply with
docker run –d –p 8080:80 web_server

• The -p 8080:80 part redirects port 80 on the container (the port we
exposed in the Dockerfile) to port 8080 on the host system (that is, VM1).

• If you forget the –d flag, you won’t be able to interrupt your container
interactively, and you will have to issue docker stop <id> from another
shell.

• Check that everything works opening in a browser the page
http://<VM1_ip_address>:8080/

• Try it now!

SOSC 2019 Containers 37

http://localhost:8080/

Check that our web server is running

• Check with:
ubuntu@VM1:~$ docker ps
CONTAINER
ID IMAGE COMMAND CREATED STATUS PORT
S NAMES
f9dc164be001 web_server "apachectl -D FOREGR…" 12 minutes ago Up 12
minutes 0.0.0.0:8080->80/tcp laughing_pare

• Stop the container with:
ubuntu@VM1:~$ docker stop f9dc164be001

• You can now type docker run –d –p 8080:80 web_server any time
you want to instantiate a new web server.

• What happens if you type docker run –d –p 8081:80 web_server ?

SOSC 2019 Containers 38

Containers are ephemeral
• An important point to remember is that any data that is created within a running

container is only available within the container, and only when the container is
running.

• Let’s prove this. Run a container using the Ubuntu image in interactive mode:
docker run -i -t ubuntu /bin/bash

• Once in the container, create a file and verify it is there:
root@2000824922fb:/# touch my_new_file # this creates an empty file in the container file system
root@2000824922fb:/# ls
bin boot dev etc home lib lib64 media mnt my_new_file opt proc root run sbin srv sys
tmp usr var

root@2000824922fb:/#

• Now exit from the container. Run it again with the same command as above
(docker run -i -t ubuntu /bin/bash).

• Is the file still there? (it should not!)
• It is not there because every time you do docker run above you start a new Ubuntu

container.

SOSC 2019 Containers 39

Connect a container to a host file
system

• So, what if we want to retain data within a container?
• We can map a directory that is available on the host (the system where we

run the docker command, e.g. VM1), to a directory that is available on the
container. This is done with the docker flag -v, like this:
docker run -v /host/directory:/container/directory <other docker arguments>

• For example:
• Create a directory in the scratch space /scratch and name it with your username with
mkdir /scratch/`whoami` (note the inverted ticks!)

• Create a file in that directory with touch /scratch/`whoami`/a_newer_file and check
it is there with ls /scratch/`whoami`

• Now map that directory to the directory /cointainer_data on the container:
docker run -v /scratch/`whoami`/:/container_data -i -t ubuntu /bin/bash

• Now, when you are within the container, if you write ls /container_data you
should see the file you just created. Do it now.

SOSC 2019 Containers 40

Connect a container to a Docker
volume (1)

• In the previous slide, we mapped a directory that was
available on the host to a directory on the container.

• But what if we want to copy or move our docker
container to a different host, with a different directory
structure? Or perhaps with a different operating system?
Remember that Docker promises to be system-
independent.

• We can (and should generally prefer to) use Docker
volumes.

• Docker volumes are persistent, but are not tied to the
specific filesystem of the host, and are completely
managed by Docker itself.

SOSC 2019 Containers 41

We’ll see what a tmpfs
mount is later on

Connect a container to a Docker
volume (2)

• You can create a new Docker volume with the command
docker volume create some-volume
• Try these self-explanatory commands:
docker volume ls
docker volume inspect some-volume
docker volume rm some-volume

• You can also start a container with a volume which does not exist yet with
the -v flag. It will be automatically created:
docker run -i -t --name myname -v some-volume2:/app ubuntu /bin/bash
• Notice that we also introduced here the flag --name to give an explicit name (here:
myname) to a container. Check what happened with docker ps –a.

• What do you see with the command df –h issued within the container?
• In this case, check the volume with the command docker inspect myname and look

for the Mounts section. Try it now: what do you see?

SOSC 2019 Containers 42

Removing docker volumes

• As we said, Docker volumes are directly managed by Docker, in some
Docker-specific area (see the docker inspect command we used
earlier to know more). They use up space in the local file system.

• When you do not need a docker volume anymore, it is wise to reclaim
its space:
docker volume rm <volume_name>

• Can you remove a volume which is being used by a container? Try.

• More in general, you can remove all unused docker volumes with
docker volume prune

• Note that the docker system prune command we showed previously does
not remove volumes!

SOSC 2019 Containers 43

tmpfs mounts
• If you are running Docker on Linux (this is the case for us

here), there is a third option to mount a volume on a
container: the so-called tmpfs mount option.

• When you create a container with a tmpfs mount, the
container can create files outside the container’s writable
layer, directly into the host system memory (RAM).

• This is a temporary volume, i.e. it will be automatically
removed once the container exits. It is useful for example if
you have sensitive data that you do not want to store
neither in the container nor in a dedicated volume (be it
filesystem-based or docker-based).

• An example of mounting the /app directory of a container
under a tmpfs mount (whatever you write in that directory
will only be stored in RAM):
docker run -it --name mytmp --tmpfs /app ubuntu /bin/bash

SOSC 2019 Containers 44

Hands-on: create your image
• The assignment is to take one of Python programs you wrote here at

SOSC and incapsulate it into a Docker image, using a Dockerfile to
build it. Note: any output should be written e.g. to a text file
somewhere on VM1, i.e. not left on the container.

• Verify that your image works as expected with docker run.
• You should then push this image to Docker Hub in your public

repository.
• This is something you should do on your own.
• Hint: before building the final image, test it interactively to see how it

goes.

SOSC 2019 Containers 45

Detour: using the tar command
• In Linux, tar (for “tape archive”: this tells you how old this command is) is one of the most useful

commands to package several files or directories into a single file, often called tarball. It can be
combined with the gzip tool to also compress the archived file (with this option, it is similar to the
Windows zip and unzip tools).

• Typical extensions:
• .tarà uncompressed archive file using tar
• .zipà compressed archive file using zip
• .gzà file (it can be an archive or not) compressed using gzip
• .tar.gz or .tgzà a compressed archive file using tar

• Examples of some useful tar commands (see e.g. https://www.howtoforge.com/tutorial/linux-tar-
command/ for more information):

• Create an archive file called my_devstuff.tar with the directory /home/davide/devstuff/ and its content:
tar -cvf my_devstuff.tar /home/davide/devstuff/ # my_devstuff.tar will be created in the current directory
tar -xvf my_devstuff.tar # extract my_devstuff.tar in the current directory
tar -xvf my_devstuff.tar -C /home/davide/newdir # extract my_devstuff in another directory

• The same archive as above, but compressed:
tar -cvzf my_devstuff.tar.gz /home/davide/devstuff/ # note the z flag to enable compression
tar -xvf my_devstuff.tar.gz # note that the uncompress command is the same as above

• List the content of an archive file, compressed or not:
tar -tf <tar_filename>

SOSC 2019 Containers 46

https://www.howtoforge.com/tutorial/linux-tar-command/

Copy an image somewhere else
• So far, we have pushed our images to Docker Hub, in a public

repository. But what if we wanted to copy our images to another
system, without going through Docker Hub?

• Docker allows us to export an image to a tar file specifying its name
(you can later compress it, if you want to save some space):
docker save –o my_exported_image.tar my_local_image

• You can then copy the tar file (my_exported_image.tar) to another
system via e.g. scp, and then import it to a docker image on that
system:
docker load –i my_exported_image.tar

SOSC 2019 Containers 47

Copy a Docker volume somewhere else
• Recall that Docker volumes are independent of the local file system structure, and

are managed directly by the Docker engine.
• In order to transfer a docker volume to another host, you must first back it up to a

tar file using the --volumes-from flag. This flag must be applied to an existing
container (even if not running) which mounted the volume you want to back up,
with a command similar to the following one:
docker run --rm --volumes-from EXISTING_CONTAINER -v /tmp:/backup ubuntu tar cvf
/backup/backup.tar /app
• This command backs up a volume that was mounted by the EXISTING_CONTAINER under the

directory /app into the file backup.tar in the /tmp directory of the local system.
• At this point, you can simply transfer the tar file to another machine and restore it to

another running container.
• For example, once you have the tar in the /tmp directory of another machine, you

can do:
docker run -it -v /app --name myname2 ubuntu /bin/bash (this runs myname2 interactively)
(in another shell) docker run --rm --volumes-from myname2 -v /tmp:/backup ubuntu bash -
c "cd /app && tar xvf /backup/backup.tar --strip 1"

SOSC 2019 Containers 48

Hands-on: copy your image to your
laptop and run it

• You should now copy the image you created on VM1 in the previous
assignment to your own laptop.

• You should then load and run it locally. There are a couple of cases
here:

1. If you have Docker already installed on your laptop, you can load and run
the image immediately.

2. If you do not have Docker installed on your laptop, install it.
• Windows: https://docs.docker.com/docker-for-windows/install/
• Linux: see the previous slides if you have a Ubuntu—like (e.g. Debian) Linux distribution.

If you have RedHat, see https://docs.docker.com/install/linux/docker-ce/centos/
• MacOS: https://docs.docker.com/docker-for-mac/

SOSC 2019 Containers 49

https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/docker-for-mac/

Doing local development

• Now that you have Docker installed on your laptop, try out the
commands you issued on VM1 (which is running on a Cloud) locally.

• In general, it is very handy to do local developments with docker
locally, i.e. on your laptop (and in many cases this also applies to
relatively complex environments, as we will see). Once we are happy
with the results, we can move to Cloud resources for production or
more scalable workloads.

SOSC 2019 Containers 50

Application stacks: docker-compose
• We have seen how easy it is to create and run a Docker container,

pulling images from Docker Hub. We then learned how to extend an
image, either manually adding packages to it (and then committing
the changes), or writing a Dockerfile to automatize the process. We
now also know how to export an image to a tar file, for example
because we want to share it without using Docker Hub, or to save it
for backup purposes.

• We will now move on to consider how to create “application stacks”:
that is, how to create multiple containers linked together to provide a
multi-container service, all on a single VM.

• This is done via the docker-compose command.

SOSC 2019 Containers 51

A scenario for docker-compose
• docker-compose works by parsing a text file, written in the YAML

language (see https://yaml.org for more info). This file, which is
normally called docker-compose.yml, defines how our application
stack is structured.

• We will now use docker-compose to create and launch an
application stack made of two connected containers, both running on
VM1:

1. A MySQL database. It won’t be accessible from the Internet.
2. A WordPress instance. It will be accessible from the Internet. WordPress

(https://wordpress.org) is a very popular (open source) software used to
create websites or blogs.

SOSC 2019 Containers 52

https://yaml.org/
https://wordpress.org/

Our app stack architecture

SOSC 2019 Containers 53

App-specific
private network

(backend)

Database for
WordPressWordPress

Web server
Internet

VM1

App-specific
public network

(frontend)

version: '3'

services:

database:

image: mysql:5.7

environment:

- MYSQL_USER=wordpress

- MYSQL_PASSWORD=testsosc

- MYSQL_DATABASE=wordpress

- MYSQL_RANDOM_ROOT_PASSWORD=true

networks:

- backend

wordpress:

image: wordpress:4.9.8

depends_on:

- database

environment:

- WORDPRESS_DB_HOST=database

- WORDPRESS_DB_USER=wordpress

- WORDPRESS_DB_PASSWORD=testsosc

ports:

- 8080:80

networks:

- backend

- frontend

networks:

backend:

frontend:

SOSC 2019 Containers 54

docker-compose.yml
This builds the container for the database,

with only the “backend” network

This builds the container for WordPress,
with both the “backend” and “frontend” networks

Port 8080 on the host (VM1)
is mapped to port 80 on the

container

“Obvious” note: although this is just for a demo,
do not use the passwords shown in this screen!

Note that here we refer
to the other containerContainer image for mySQL

(from Docker Hub)

Container image for WordPress
(from Docker Hub)

Configuration variables
for the container software

Build & run the application stack
• Install docker-compose with

sudo apt install docker-compose

• On VM1, build the application stack:
docker-compose up –-build –-no-start

• Now start it:
docker-compose start

• If you now open a browser pointing to VM1’s public address on port
8080 (look at the previous docker-compose.yml), you should get the set
up page for WordPress on the right. Go on and set it up.

• Remember to verify that port 8080 is open in the inbound rules for VM1.

• Once WordPress is set up, you should see the default WordPress home
page, similar to the one on the right (which of course you can
graphically customize).

• Once the app stack is started, the running containers can be seen with
the usual docker ps command.

• The application stack can be stopped with:
docker-compose stop

• Try it yourself now.

SOSC 2019 Containers 55

Specifying volumes in docker-compose
• If you wish to use docker volumes, they can also be specified in the
docker-compose YAML file. For example:
version: ‘3’
volumes:

my_volume_1:
my_volume_2:

services:
application_1:

volumes:
- my_volume_1:/app1/dir

[…]
application_2:

volumes:
- my_volume_2:/app2/dir

[…]

SOSC 2019 Containers 56

This automatically creates the Docker volume
my_volume_1, mapping it to the directory

/app1/dir on the container

Limitations of docker-compose

• As seen, docker-compose is very handy to create combinations of
containers running on the same machine (VM1 in our case).

• It is best suitable if you don’t need automatic scaling of resources or
multi-server environments.

• For complex set ups, other tools such as Docker Swarm or Kubernetes
are more appropriate. We’ll cover them later on.

SOSC 2019 Containers 57

Some best practices for writing
containers

1. Put a single application per container. For example, do
not run an application and a database used by the
application in the same container.

2. Explicitly define the entry point in the container with the
CMD command in the Dockerfile.

3. If in a Dockerfile you have commands that change often,
put them at the bottom of the Dockerfile. This way, you
speed up the process of building the image out of the
Dockerfile.

4. Keep it small: use the smallest base image possible,
remove unnecessary tools, install only what is needed.

5. Properly tag your images, so that it is clear which version
of a software it refers to.

6. Do you really want / can you use a public image? Think
about possible vulnerabilities, but also about potential
license issues.

SOSC 2019 Containers 58

More (and more detailed) information available at
https://bit.ly/2Zr6Hyq

https://bit.ly/2Zr6Hyq

A few words on Docker security (1)

• As seen so far, if you want to run Docker containers, you need to have Docker
installed on your host system.

• If Docker is not installed, you can install it yourself, but you must have root
access.

• Once you have installed Docker, you can download and execute containers from
DockerHub or other sources.

• Careful, because this is a potentially big security threat: some containers that you download
might be compromised (e.g. include viruses or trojan)!

• How can you send passwords, certificates, encryption keys, etc. to tasks /
applications in a Docker swarm cluster? Do not embed them into the containers,
and do not store them e.g. in GitHub repositories!

• Docker has a “Secrets Management” feature, which is a standardized interface for accessing
secrets. See https://dockr.ly/2H4M5SU for details.

• Other resource orchestrations, such as Kubernetes, have similar solutions.

SOSC 2019 Containers 59

https://dockr.ly/2H4M5SU

A few words on Docker security (2)

• If the host where the Docker daemon is running gets compromised,
container isolation is gone. So, it is important to make sure that the host
system is properly secured (i.e. you should regularly update it!).

• On other hand, there could be exploits that make it possible for containers
to bypass isolation (remember that the Docker daemon requires root
privileges) and get access in privileged mode to the host system.

• Since you can so easily start up containers on a system, there is the
possibility of a Denial of Service attack, targeting to consume all resources
on the host system.

• Do not assume that containers should be immutable! They might contain
outdated software, that must be periodically patched and upgraded.

• For more details, see http://bit.ly/2kEpV16.

SOSC 2019 Containers 60

http://bit.ly/2kEpV16

A few problems with Docker

• There is no doubt that Docker containers are very handy and useful.
However, in general, the adoption (i.e. installation) of Docker is quite
slow in traditional clusters and in HPC centers.

• What happens is that often Docker itself is not installed in a given set of
computers. Therefore, one cannot run containers (unless one has got root
privileges and can therefore install Docker autonomously).

• This is often because the system administrators might believe that there could
be security concerns with Docker, or because it is another service to maintain,
or because it is too new… and so on.

SOSC 2019 Containers 61

udocker

• In the INDIGO-DataCloud project, we developed udocker: it’s a sort
of “userland docker”, i.e. a tool which runs contents of Docker images
without requiring any support from the kernel.

• There are no special dependencies, aside from python 2.7 and libc.
• In particular, udocker is intended to be run by unprivileged users.
• No special daemon is required. System-wide installation is possible

but entirely optional (each user can “install it” individually).
• It is freely available at https://github.com/indigo-dc/udocker

SOSC 2019 Containers 62

https://github.com/indigo-dc/udocker

The udocker architecture

• It is a single-file python script.
• It fetches public images from Docker Hub by default.

• It can also import image tarballs exported via docker save.
• It creates a container filesystem hierarchy in $HOME/.udocker
• It internally uses PRoot (see https://proot-me.github.io) for limited

sandboxing.
• Almost no CPU overhead.
• Negligible data I/O overhead.
• Sensible metadata I/O overhead.

• Other execution mechanisms than PRoot are available.

SOSC 2019 Containers 63

https://proot-me.github.io/

udocker advantages

• Provides a docker-like command line interface.
• Supports a subset of docker commands: search, pull, import, export, load, create and run.
• Understands docker container metadata.
• Can be deployed by end users.
• Does not require privileges for installation.
• Does not require privileges for execution.
• Does not require compilation: just transfer the Python script and run.
• Encapsulates several execution methods.
• Includes the required tools already compiled to work across systems.
• Tested also with GPGPU and MPI applications.
• Runs on new and old Linux distributions, including CentOS 6, CentOS 7, Ubuntu 14, Ubuntu

16, Fedora, etc.

SOSC 2019 Containers 64

udocker limitations
• Images cannot be created by udocker.

• That is, you must use Docker on another system (where the Docker daemon is
installed) to build images! You use udocker to run already built images.

• Privileged OS operations (such as, for example, mount) are not
possible.

• Debugging inside containers does not work.
• udocker is not a privilege boundary! I.e., it does not enforce special

security measures: the udocker process runs with the privilege of the
current user.

• We don’t have time to test udocker here. However, you are
encouraged to download and test it with your existing containers (or
with containers pulled e.g. from DockerHub).

SOSC 2019 Containers 65

Container Orchestration

SOSC 2019 Containers 66

Microservices
• With Cloud-native applications, an analogy is often made about

seeing traditional apps as pets (each one is unique and
irreplaceable) vs. cloud apps as cows (there are many identical
instances of a functionally equivalent “item”).

• Microservices are a way to build applications as a collection of
(potentially many) small autonomous services vs. creating a big
service (or anyway a few fat ones), called sometimes monolith.

• At high level, microservices reflect at the architectural level a
culture of autonomy and responsibility in an organization: the
single microservice can be developed and managed independently
by different teams.

• In microservices architectures, the multiple, independent
processes communicate with each other through the network.

SOSC 2019 Containers 67

SOSC 2019 Containers 68

Application architectures

Monolithic Applications
• Do everything
• Single application
• You have to distribute the entire

application
• Single database
• Keep state in each application

instance
• Single stack with a single

technology

Microservices
• Each has a dedicated task
• Minimal services for each

function
• Can be distributed individually
• Each has its own database
• State is external
• Each microservice can adopt its

own preferred technology

SOSC 2019 Containers 69

Monoliths vs. microservices

Adapted from AWS

Container orchestration
• We saw how containers help us to easily create applications that are – as the

name says – self-contained.
• On the other hand, we also said that microservice architectures are based on

the composition of many independent (but communicating) services.
• Let’s combine these two points: containers can greatly help with the creation

of a microservice architecture. Actually, through docker-compose we already
learned how to create multiple containers linked together in Application
Stacks.

• However, docker-compose is limited to the composition of containers within
a single host. On the other hand, in general microservices are deployed across
multiple hosts.

• We therefore need to explore how to effectively orchestrate many containers
across several hosts. This is what we call container orchestration.

SOSC 2019 Containers 70

Docker Swarm (1)
• Docker Swarm is the traditional way of orchestrating containers with

Docker. Compared to other methods such as Kubernetes, it is
relatively simple to use. Its main features are:

• Cluster management is integrated with the Docker Engine: no other software
than docker is needed.

• Design is decentralized: this means that any node in a Docker Swarm can
assume any role at runtime.

• Scaling: the Swarm manager can automatically scale up and down services,
adding or removing tasks.

• Desired state reconciliation: if something happens to a Swarm cluster (e.g.
some containers crash), the Swarm manager will try to reconcile the state of
the cluster to its desired state (e.g. bringing up some more containers).

SOSC 2019 Containers 71

Docker Swarm (2)
• Docker Swarm features, continued:

• Multi-host networking: the Swarm manager can handle an overlay network
spanning your services.

• Service discovery: there is a DNS server embedded in each Swarm. The
Swarm manager discovers services and assigns to each of them a unique DNS
name.

• Load balancing: you can specify how to distribute services among nodes.
• Secure by default: the communication among all nodes in a Swarm cluster is

protected by the cryptographic protocol called TLS (Transport Layer Security).
• Rolling updates: if anything goes wrong, you can roll-back a task to a previous

version of the service.

SOSC 2019 Containers 72

Hands-on with Docker Swarm
• We’ll loosely follow https://docs.docker.com/engine/swarm/swarm-tutorial/.
• For this hands-on, we need two VMs with Docker installed.

• One of these machines (VM1) will be the manager of the Swarm cluster, the other
(VM2) will be called a worker.

• Important: make sure that Docker is installed on both VM1 and VM2. Check now and
take action if this is not the case.

• We need the IP addresses of the 2 machines involved, as well as the following
open ports for all of them, to allow communication among the nodes. This is
not an issue in our setup (where these ports are already open), but it may be
in other environments:

• TCP port 2377 for cluster management communications.
• TCP and UDP port 7946 for communication among nodes.
• UDP port 4789 for overlay network traffic.

SOSC 2019 Containers 73

https://docs.docker.com/engine/swarm/swarm-tutorial/

Docker Swarm hands-on: our use case

• To keep things nice and simple, we’ll use a Docker Hub container
called “nginx” (do you remember how to find it?). Nginx is a
commonly used web server (see https://nginx.org/en/), like Apache.

• We’ll create a Swarm service based on the nginx container and
deploy it in 5 instances, distributed across 2 VMs (VM1 and VM2).
VM2 will not be directly accessible from the Internet. So, in the end
we’ll have instantiated 5 web servers.

• We’ll then deploy a load balancer on VM1 (the manager). The load
balancer will be reachable via a public IP address. When people hit
this IP address, the load balancer will route our requests to one of the
nginx containers on VM1 or VM2.

SOSC 2019 Containers 74

https://nginx.org/en/

Docker Swarm: our architecture

SOSC 2019 Containers 75

VM2

(Swarm Manager)

nginx

nginx

nginx

Load Balancer

Internal network

Public network

HTTP query
Remote user

Swarm clusternginx

VM1

nginx

Create a Swarm cluster
• Login to the VM that should become the “Swarm manager”. This is VM1.
• On the manager, issue the command

• docker swarm init --advertise-addr <MANAGER-PRIVATE-IP>

• This initializes a Swarm cluster and tells the workers about the IP address of the Swarm
manager (which by default also becomes a worker).Note that this should be the
manager’s private IP address, not the public one.

• Docker answers confirming that the current node is now manager and gives us the
command to add a worker to the Swarm cluster. Note it down.

• Now log in to VM2, and issue the command reported above by the manager.
• It should be something like docker swarm join –token <token> <ip_addr>:2377

• On the manager, issue the command docker node ls to view the current
state of the Swarm cluster. It should show the manager and two workers, all in
the “active” state. There are no running services in the cluster yet.

SOSC 2019 Containers 76

Create a Swarm service

• We will now create a “service”. We have to define:
• How to name it – we’ll call it “web_swarm”.
• The container image it is based on (nginx, found on DockerHub).
• The port that can be used to contact the service.
• How many replicas of the service we want to deploy.

• This is the command we have to issue on the manager:
docker service create --replicas 5 -p 8082:80 --name web_swarm nginx

• With this command, we create 5 docker containers, each one based on the nginx
image. These containers will be automatically distributed across our Swarm cluster.
Each container will expose port 80, which will be mapped to port 8082 on a VM
host (VM1 or VM2).

SOSC 2019 Containers 77

Check the status of the Swarm service
• The status of our service can be checked on the manager with

docker service ls
• It may take some time before the service is shown as replicated 5 times, as

requested – just repeat the command until it shows 5/5 replicas.

• In order to see where (i.e. on which nodes) the service was
distributed by Swarm, issue this command on the manager:
docker service ps web_swarm

• Once you have the 5 web_swarm replicas running, log in to either
VM1 or VM2 and issue this command there:
docker ps

• You should see that one or more nginx containers are running on the node.

SOSC 2019 Containers 78

How to access the web_swarm service

• Remember that, so far, the nodes of the Swarm cluster are only
reachable via their private IP address. Therefore, we cannot directly
use a browser to reach the web servers.

• But internally they can be reached (look back at the architectural
diagram). So, log in e.g. to the manager and issue the command
curl http://<private_ip_address_of_VM1>:8082/ (or VM2)
• You should get an answer, with the default html page shown by a fresh nginx

installation.
• Note that you will get an answer even if there is no web_swarm container

running on VM1 (or VM2). How can you prove that?

SOSC 2019 Containers 79

Scaling up or down and draining
• When we created our service, we specified --replicas 5. If you

want to scale the service to a different number of replicas, just issue
this command on the manager:
docker service scale web_swarm=7

• What is happening? On the manager, check with
docker service ls
docker service ps web_swarm

• Now suppose that you want to remove the service web_swarm from
e.g. VM2 (because, for example, you want to shut it down for any
reason). This is called draining a node. Try this:
docker node update --availability drain <VM2>

• What is happening? Check with docker service ps web_swarm.
SOSC 2019 Containers 80

Load balancing the web servers

• We now want to create a load balancer on the manager node. Its
purpose is to expose a public IP address which will be reachable from
the Internet, and balance the queries to that IP address to the
web_swarm services that are deployed in the Swarm cluster.

• The same nginx container that we previously used to create web
servers can also be configured to act as load balancer. We just need to
have a suitable nginx configuration file.

• In this configuration file, we need to list the IP address (the private IP
addresses, in our use case!) of all the hosts participating to the Swarm cluster.

• That is, the private IP addresses of VM1 and VM2.

SOSC 2019 Containers 81

The nginx configuration for load
balancing

• On the manager, create a directory called swarm (or whatever) and create this file into it, calling it
nginx.conf:

worker_processes 1;
events { worker_connections 1024; }
http {

sendfile on;
upstream swarm_cluster {

server <manager_ip_addr>:8082;
server <VM1_ip_addr>:8082;
server <VM2_ip_addr>:8082;

}

server {
listen 80;
location / {

proxy_pass http://swarm_cluster;
}

}
log_format upstreamlog '[$time_local] from $remote_addr to $upstream_addr';
access_log /var/log/nginx/access.log upstreamlog;
}

SOSC 2019 Containers 82

Create and run the load balancer
• On the manager, create the following Dockerfile in the same directory

where you have put nginx.conf (e.g. swarm):
FROM nginx
COPY nginx.conf /etc/nginx/nginx.conf

• We can now build and then run our container with the load balancer
configuration with commands we already know:
docker build -t load_balancer .
docker run -p 8080:80 -d load_balancer

• If we now open http://<manager_public_ip>:8080/, we should get
a web page displayed. Try it out now.

• From which web_swarm node is the answer coming? In the nginx.conf file we
told the web server to log some information. Look at this information with the
following command:
docker logs -f <load_balancer container>

SOSC 2019 Containers 83

A few notes

• Docker Swarm services are persistent. If you shut down both nodes
and then start only the manager (i.e. VM1), you will see that the
manager brings up all replicas automatically on itself.

• The load balancer configuration, on the other hand, is a stand-alone container
and does not automatically restart.

• Remove a Swarm service with:
docker service rm <service_name>

• An interesting point is to combine Docker Swarm with custom Docker
images or with Docker Compose. This is left as an exercise.

SOSC 2019 Containers 84

Docker Swarm: our architecture

SOSC 2019 Containers 85

VM2

(Swarm Manager)

nginx

nginx

nginx

Load Balancer

Internal network

Public network

HTTP query
Remote user

Swarm clusternginx

VM1

nginx

Recap of our journey
• We covered basic concepts about Containers, comparing them to Virtual Machines.
• We installed Docker first on VM1 and saw how to run a container, list docker images and

extend them to create new images.
• We then saw how to push images to repositories on Docker Hub and simplified the

building of images via Dockerfiles.
• We created an image serving web pages. We then connected containers to external file

systems, to volumes and to tmpfs mounts. We also learned how to export and import
containers.

• We studied also how to combine multiple containers in an application stack with docker-
compose.

• We then discussed some Docker limitations, in particular with regard to security and
privileges, and introduced udocker as a way to work around them.

• We then moved on to discuss microservices and container orchestration, using Docker
Swarm as an example. As hands-on, we created a Swarm cluster load balancing multiple
web servers, distributed across multiple nodes.

• Our next step will be to consider further orchestration technologies and solutions, as well
as ways to automate and simplify the usage of distributed resources.

SOSC 2019 Containers 86

