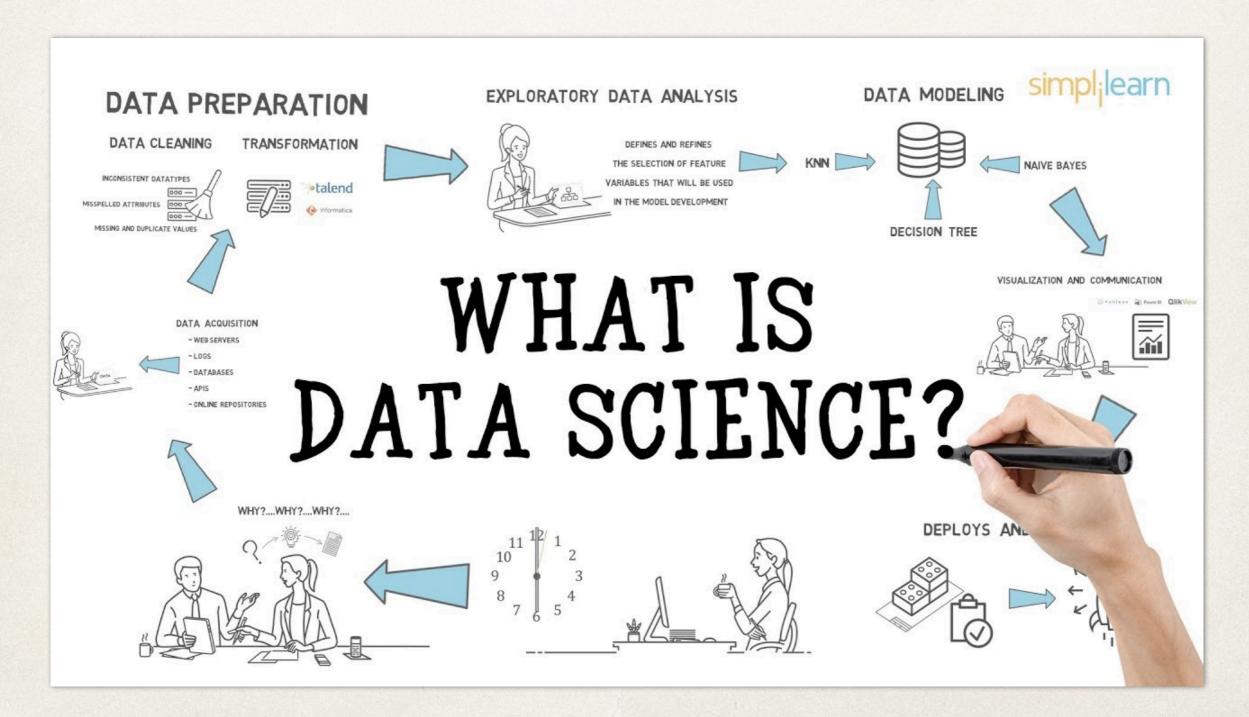
## Hands-on materials

Valentin Kuznetsov, Cornell University

SOSC 2019

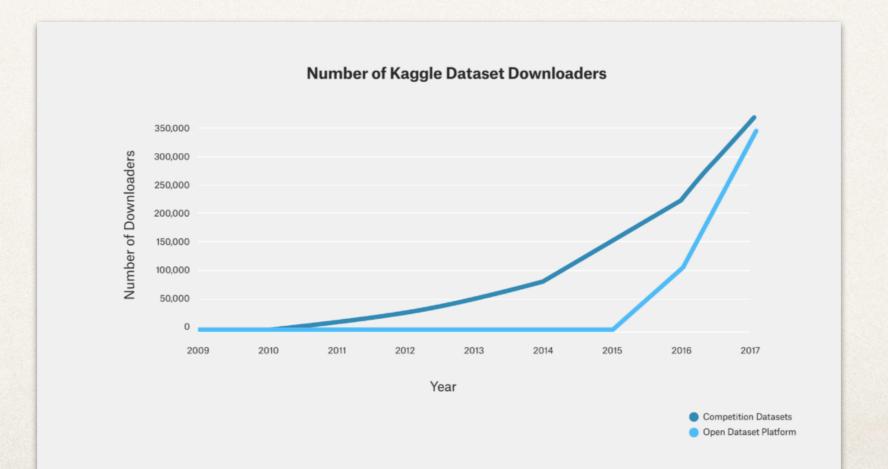

## Who am I?

- Theoretical Physicists (neutrino oscillations) at Irkutsk Univ & JINR
- Particle Physicists (tracking, silicon detectors) at CERN
- PhD in Physics (theory + experiment) at JINR
- Computing in HEP at JINR, CERN, Fermilab, Cornell
  - HEP experiments: NOMAD, D0, Cleo-c, CMS
- Data Scientists at Cornell University
  - Data management, data discovery, services
  - BigData, Analytics, Monitoring, Machine Learning

# Topics

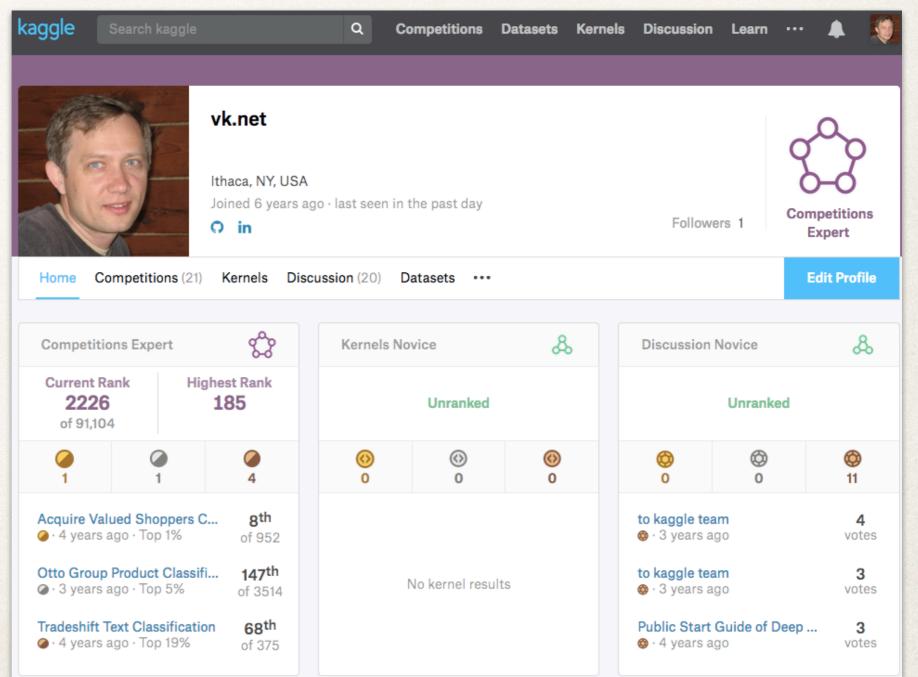
- Introduction
  - DataScience, DataScientists and Kaggle
- Day 1: setting up Data Science environment
- Day 2: dive into ML models
- Day 3: how to become a DataScientist (coverage of kaggle competition)
- Day 4: Image classification, training on GPUs/TPUs

# Data Science




## Data Scientist






- It is open platform for Data Scientist to compete over published datasets
- In 2017: 120K DataScientists compete in 44 competitions, a total prize sum was \$4.75M+, 600K new users joined, 1.3M total users



# My kaggle profile


- My goal is to learn ML/ DL/AI and not prizes
  - my main source of DataScience
- I competed alone in my free time apart from regular job, teachings, student projects, family, etc.
  - turns out it is much tougher to compete alone since amount of info, data, training, ideas significantly increases
  - I was mostly active around 2015



# Kaggle Competitions

| kaggle  | Search kaggle                                                                   | ۹             | Competitions       | Datasets       | Kernels       | Discussio   | on Lea   | rn ••• 🌲                          | ۲      |
|---------|---------------------------------------------------------------------------------|---------------|--------------------|----------------|---------------|-------------|----------|-----------------------------------|--------|
| Compe   | titions                                                                         |               |                    |                |               | Docum       | entation | 🎓 InC                             | lass   |
| General | InClass                                                                         |               |                    | AI             | l Categories  | ÷           | Sort by  | Prize                             | -<br>Q |
| 298 Com | petitions                                                                       |               |                    |                |               |             |          |                                   |        |
|         | Passenger Screening<br>Improve the accuracy of the Featured · 9 months ago      | he Departme   | ent of Homeland S  | -              | -             | ion algori  | t        | <b>\$1,500,000</b><br>518 teams   |        |
| Zillo   | Zillow Prize: Zillow's H<br>Can you improve the algo<br>Featured · 8 months ago | rithm that cl | hanged the world   |                | e?            |             |          | <b>\$1,200,000</b><br>3,779 teams |        |
| sc sc   | Data Science Bowl 20<br>Can you improve lung car<br>Featured · a year ago · •   | ncer detectio |                    | y classificati | on            |             |          | <b>\$1,000,000</b><br>1,972 teams |        |
| -5      | Heritage Health Prize<br>Identify patients who will<br>Featured · 5 years ago   |               | to a hospital with | nin the next y | /ear using hi | storical cl |          | <b>\$500,000</b><br>1,353 teams   |        |

# Kaggle Competitions I did

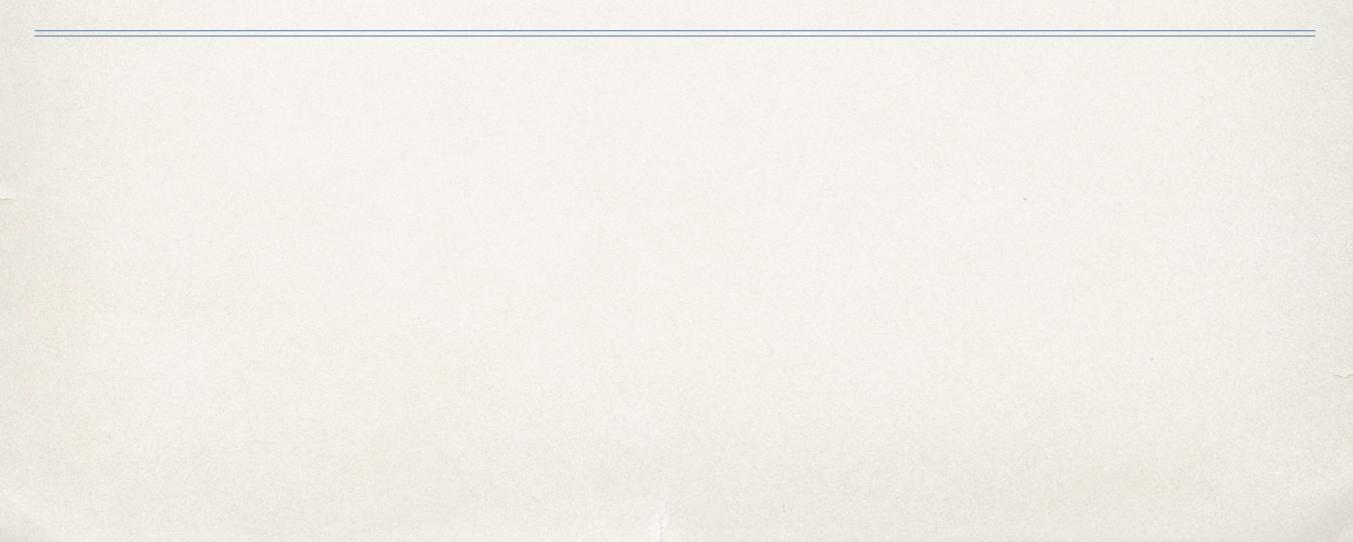


### Homesite dataset

- Using an anonymized database of information on customer and sales activity, including property and coverage information, Homesite is challenging you to predict which customers will purchase a given quote. Accurately predicting conversion would help Homesite better understand the impact of proposed pricing changes and maintain an ideal portfolio of customer segments.
- This dataset represents the activity of a large number of customers who are interested in buying policies from Homesite. Each QuoteNumber corresponds to a potential customer and the QuoteConversion\_Flag indicates whether the customer purchased a policy.
- The provided features are anonymized and provide a rich representation of the prospective customer and policy. They include specific coverage information, sales information, personal information, property information, and geographic information. Your task is to predict QuoteConversion\_Flag for each QuoteNumber in the test set.
- Train sample: 299 columns (28 categorical variables), 260K rows (200MB); test sample 174K rows (131MB)

### Homesite leaderboard

| 2       -       Frenchies       0.97018         3       -1       New Model Army   CAD & QuY       0.97001         4       -1       Gilberto   Leustagos   Stanislav       0.96988         5       -       The Northern Hemisphere       0.96983         6       -1       victor, clustifier & adam       0.96981         7       -1       monkeys rising       0.96961         8       -       A Few with NO Clue       0.96959         9       -2       Daniel FG       0.96959         10       -1       VinaKago       0.96792         100       -11       BMX       0.96792         101       -23       Overfitters       0.96792         102       -101       vk.net       0.96792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |                    |                                  |                 |         |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------|----------------------------------|-----------------|---------|-----------|
| 3       -1       New Model Army   CAD & QuY       Image: Comparison of the compa         | 1   | _                  | KazAnova   Faron   clobber       |                 | 0.97024 | 1st place |
| 4       -1       Gilberto   Leustagos   Stanislav       0.96988         5       -       The Northern Hemisphere       0.96983         6       +1       victor, clustifier & adam       0.96968         7       -1       monkeys rising       0.96961         8       -       A Few with NO Clue       0.96959         9       +2       Daniel FG       0.96959         10       -1       VinaKago       0.96973         101       +23       Overfitters       0.96792         102       +101       vk.net       0.96792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2   | _                  | Frenchies                        | 🔊 🖓 🔔           | 0.97018 | -         |
| 5       -       The Northern Hemisphere       Image: Second Sec         | 3   | ▲1                 | New Model Army   CAD & QuY       |                 | 0.97001 |           |
| 6       -1       victor, clustifier & adam       Image: Section of the section of t         | 4   | <b>±</b> 1         | Gilberto   Leustagos   Stanislav |                 | 0.96988 |           |
| 7       1       monkeys rising       0.96961         8       -       A Few with NO Clue       0.96950         9       -2       Daniel FG       0.96959         10       -1       VinaKago       0.96956         100       -11       BMX       0.96793         101       -23       Overfitters       0.96792         102       -101       vk.net       0.96792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5   | _                  | The Northern Hemisphere          |                 | 0.96983 |           |
| 8       -       A Few with NO Clue       Image: Section of the secti         | 6   | .▲1                | victor, clustifier & adam        | -               | 0.96968 |           |
| 9       2       Daniel FG       0.96959         10       1       VinaKago       Image:                                                               | 7   | <b>±</b> 1         | monkeys rising                   |                 | 0.96961 |           |
| 10       -1       VinaKago       Image: I          | 8   | _                  | A Few with NO Clue               |                 | 0.96960 |           |
| 100 - 11       BMX $100 - 11$ BMX $100 - 11$ $0.96793$ $101 - 23$ Overfitters $0.96792$ $0.96792$ $0.96792$ $102 - 101$ vk.net $0.96792$ $0.96792$ $-0.49%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9   | <b>▲</b> 2         | Daniel FG                        |                 | 0.96959 |           |
| 101 ▲ 23       Overfitters       Image: Constraint of the second | 10  | <b>+</b> 1         | VinaKago                         | <b>@ ** *</b> * | 0.96956 |           |
| 102 ▲ 101 vk.net 0.96792 -0.49%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100 | <b>▼</b> 11        | BMX                              |                 | 0.96793 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 101 | <b>▲</b> 23        | Overfitters                      |                 | 0.96792 |           |
| All Zeros Benchmark 0.50000 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 102 | <mark>▲</mark> 101 | vk.net                           |                 | 0.96792 | -0.49%    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •   |                    | All Zeros Benchmark              |                 | 0.50000 | 11        |


# SOSC Mini-Kaggle

| Home                                    | Dashboards: Pub    | lic <u>Private</u> |        |  |
|-----------------------------------------|--------------------|--------------------|--------|--|
| MINI-KAGGLE SUBMISSION PAGE             |                    |                    |        |  |
| Submission name                         |                    |                    |        |  |
| Use distinguished name                  |                    |                    |        |  |
| File name<br>Choose File No file chosen |                    |                    |        |  |
|                                         |                    |                    | Submit |  |
|                                         |                    |                    |        |  |
| ©                                       | Valentin Kuznetsov | 2019               |        |  |
| -                                       |                    |                    |        |  |

- \* During the school you will try to build your best model and submit it to our local mini-kaggle server
- ✤ We'll use Homesite (subset) dataset which is split into public (70%) and private (30%) ones
- \* Your submission will be evaluated on both using AUC score but only public score will be visible to you
- \* At the end of the school we'll release private scores and name a winner

ssh -L 8888:kaggle:8888 soscuser01@193.204.89.102

#### Before we start



## Nodes

| •  | v<br>→ → 100 | গ 👻 💿 View     | only 🚽       |                  |   |
|----|--------------|----------------|--------------|------------------|---|
| Č. | VM NAME      |                |              |                  |   |
|    | А            | В              | С            | D                | E |
|    | VM NAME      | PUBLIC IP      | PRIVATE IP   | Enabled username |   |
|    | sosc19-01    | 193.204.89.102 | 172.16.0.63  | soscuser01       |   |
|    | sosc19-01p   |                | 172.16.0.65  | soscuser01       |   |
|    | sosc19-02    | 193.204.89.103 | 172.16.0.66  | soscuser02       |   |
|    | sosc19-02p   |                | 172.16.0.67  | soscuser02       |   |
|    | sosc19-03    | 193.204.89.108 | 172.16.0.69  | soscuser03       |   |
|    | sosc19-03p   |                | 172.16.0.68  | soscuser03       |   |
|    | sosc19-04    | 193.204.89.70  | 172.16.0.76  | soscuser04       |   |
|    | sosc19-04p   |                | 172.16.0.77  | soscuser04       |   |
| )  | sosc19-05    | 193.204.89.119 | 172.16.0.70  | soscuser05       |   |
| 1  | sosc19-05p   |                | 172.16.0.78  | soscuser05       |   |
| 2  | sosc19-06    | 193.204.89.120 | 172.16.0.71  | soscuser06       |   |
| 3  | sosc19-06p   |                | 172.16.0.79  | soscuser06       |   |
| 4  | sosc19-07    | 193.204.89.121 | 172.16.0.72  | soscuser07       |   |
| 5  | sosc19-07p   |                | 172.16.0.80  | soscuser07       |   |
| 6  | sosc19-08    | 193.204.89.123 | 172.16.0.74  | soscuser08       |   |
| 7  | sosc19-08p   |                | 172.16.0.81  | soscuser08       |   |
| 3  | sosc19-09    | 193.204.89.122 | 172.16.0.73  | soscuser09       |   |
| э  | sosc19-09p   |                | 172.16.0.82  | soscuser09       |   |
| )  | sosc19-10    | 193.204.89.124 | 172.16.0.75  | soscuser10       |   |
| 1  | sosc19-10p   |                | 172.16.0.83  | soscuser10       |   |
| 2  | sosc19-11    | 193.204.89.79  | 172.16.0.84  | soscuser11       |   |
| 3  | sosc19-11p   |                | 172.16.0.103 | soscuser11       |   |
| 4  | sosc19-12    | 193.204.89.93  | 172.16.0.93  | soscuser12       |   |
| 5  | sosc19-12p   |                | 172.16.0.94  | soscuser12       |   |
| 6  | sosc19-13    | 193.204.89.80  | 172.16.0.85  | soscuser13       |   |
|    | 40.40        |                | 470 40 0 05  | 40               |   |

#### Link

### School datasets



- Iris dataset will be used in ML introduction Hands-on
- Homesite dataset from kaggle will be used in our mini-kaggle competition
  - you must sign-up to kaggle and agree with competition rules
- MNIST dataset will be used for image classifications
- HEP image dataset may be used as a challenge
- You may look-up and download datasets <u>here</u>

# Request TPU quota

Dear TFRC team, could you please provide me an access to TPU resources on your platform as a part of SOSC 2019 school [1]. The TPU HandsOn session of the school will be carry on by Valentin Kuznetsov from Cornell University.

Name: <PUT YOUR NAME HERE> Institute: <PUT YOUR INSTITUTE HERE, e.g. INFN Bologna> Research domin: <PUT YOUR RESEARCH DOMAIN HERE, e.g. High Energy Physics> Research interests: <PLEASE PROVIDE SHORT DESCRIPTION OF YOUR RESEARCH AREA>

Best regards, <YOUR NAME HERE>

[1] https://web.infn.it/SOSC19

#### Hands-on session I

#### Setting up Data Science Environment <u>Materials</u>

#### Hands-on session II

Working with basic ML models <u>Materials</u>

#### Hands-on session III

#### How to become a Data Scientists <u>Materials</u>

# Recipe

- Node/environment setup
  - introduction to Anaconda
- Data exploration
  - introduction to R
- System limitations
  - issues with python, R and others
- Data preprocessing
  - \* intro to Python tools, common format, data scaling, normalization, working with NAs, etc.
- Training and modeling
- Reaching the limit
  - one-hot-encoding, leave-one-out encoding, word embeddings, ensembles, stacking, etc.

# Embeddings recipe

- Identify categorical variables and order them
- Define embedded matrix and cardinality of categorical variable
- Perform one-hot-encoding
- Train Neural Network model
- Extract NN weights (embeddings matrix)
- Plug embeddings matrix into regular ML model instead of categorical variable
- Train ML model with embeddings matrices

# One-hot-encoding

- It is a technique to handle
   "categorical" data
- It represents categorical column as vector of words
- You need to define word vector for full set of data (train + test datasets)
- Issues with NULL or missing data
  - delete rows with missing data
  - impute data for missing values

"One-Hot" refers to a state in electrical engineering where all of the bits in a circuit are 0, except a single bit with a value of 1 (it is said to be "hot").

Parisword VRome=
$$[1, 0, 0, 0, 0, 0, 0, 0, ..., 0]$$
Paris= $[0, 1, 0, 0, 0, 0, 0, ..., 0]$ Italy= $[0, 0, 1, 0, 0, 0, ..., 0]$ France= $[0, 0, 0, 1, 0, 0, ..., 0]$ 

<u>Ref</u>

22

### Leave-one-out encoding

- Use mean of all values within the same category except given row
- Add random noise
- Replace categorical value with leave-one-out times noise
- The test categorical values always represented as mean and no noise
- This technique may complement one-hot encoding

| Split | UserID | Y | mean_y | random | new_Y |
|-------|--------|---|--------|--------|-------|
| Train | A1     | 0 |        |        |       |
| Train | A1     | 1 |        |        |       |
| Train | A1     | 1 |        |        |       |
| Train | A1     | 0 |        |        |       |
| Test  | A1     | - |        |        |       |
| Test  | A1     | - |        |        |       |
| Train | A2     | 0 |        |        |       |

We'll show how to add new categorial encoding features: mean\_y: average value for given user random: random factor for given user new\_Y: new encoding feature for given user

# Word embedding

- A way to capture multi-dimensional relationships between categories
  - e.g. cats/dogs can be called as puppies/ kitten which represent their internal age
  - you define a dimension of word vector up-front
  - it projects categorical variables into another phase space, e.g. days may be sunny or rainy, season or off season; all of these features are hidden from original data representation
- Use NN or other ML algorithms to train the model to find best representation of embedded variables

| real\hidder | Dog Age Cat                |
|-------------|----------------------------|
| puppy       | [0.9, 1.0, 0.0]            |
| dog         | [1.0, 0.2, 0.0]            |
| kitten      | [0.0, 0.1, 0.9]            |
| cat         | [0.0, 1.0, 1.0]            |
|             | puppy<br>dog<br>kitten cat |

# Stacking

- Split original dataset into 3 datasets: A, B, C
- For A and B we know the ground thruth
- We train various ML algorithms on dataset A
- We make predictions of our ML models on datasets B and C and we create new datasets B1 and C1 that only contains predictions, so if we run 10 algorithms we'll have 10 columns in B1 and C1 datasets
- We train new Meta ML algorithm using dataset B1
- We make predictions using Meta ML model on dataset C1

Consider datasets A, B, C. Target variable (y) is known for A, B.

#### Hands-on session IV

Image Classification on GPUs <u>Materials</u>

# Training on GPUs/TPUs

- Using fast.ai, see fastai\_example.py
  - requires minimal learning curve; produces top-world results out of the box
- Using PyTorch, see pytorch\_examples.py
  - flexible Python-like interface building your NN/DL networks; dynamic data-model
- Using TensorFlow, see keras\_dn.py
  - industry standard and plenty of usage in production; static-graphs model; scalability and inference deployment
- Using TF on TPUs, see keras\_tpu\_101.py, keras\_dn\_tpu.py
  - next level of scalability on dedicated hardware

## fast.ai



#### Welcome to fastai

The fastai library simplifies training fast and accurate neural nets using modern best practices. It's based on research in to deep learning best practices undertaken at fast.ai, including "out of the box" support for vision, text, tabular, and collab (collaborative filtering) models. If you're looking for the source code, head over to the fastai repo on GitHub. For brief examples, see the examples folder; detailed examples are provided in the full documentation (see the sidebar). For example, here's how to train an MNIST model using resnet18 (from the vision example):

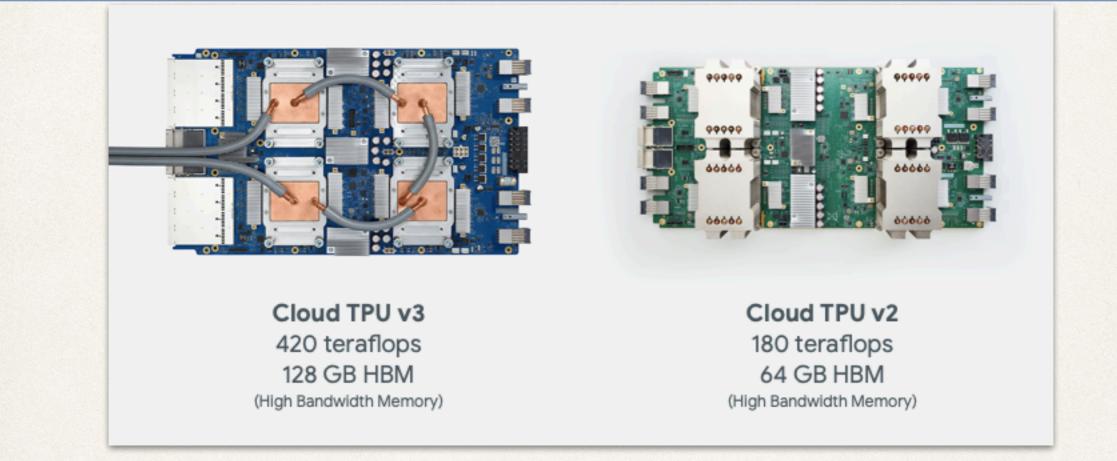
```
path = untar_data(URLs.MNIST_SAMPLE)
data = ImageDataBunch.from_folder(path)
learn = cnn_learner(data, models.resnet18, metrics=accuracy)
learn.fit(1)
```

Total time: 00:09

| epoch | train_loss | valid_loss | accuracy |
|-------|------------|------------|----------|
| 1     | 0.128580   | 0.082647   | 0.973503 |

# PyTorch vs TensorFlow

#### dynamic vs static graph definitions


- RNNs implementation: with static graphs the input sequence length will stay constant, i.e. TF has limited support for dynamic inputs
- debugging: in PyTorch you can stop and inspect your model using python debugger, e.g. pdb, while for TF you need a special tool which will evaluate expressions
- visualization: TF has awesome TensorBoard tool which can be used to visualize network, inspect hyper-parameters, etc.
- deployment: TF supports multiple languages, can be deployed as gRPC server, support mobile, etc.
   While for PyTorch we may use python web framework, e.g. Flask, and develop specialized REST APIs
- data parallelism: PyTorch smoothly parallelize over data batches (declarative data parallelism), while TF allows to tune/run every operation on dedicated device. Both allows to run on multiple GPUs, but TF can run on TPUs
- framework (PyTorch) vs data-library (TF)

### Hands-on session V

Image Classification on TPUs <u>Materials</u>

### TPUs





TPUs are dedicated hardware developed by Google which is fine-tuned for various ML and Deep Learning tasks. It is designed for matrix multiplications along with vector processor. Its specs are represented in terms of Matrix Multiple Unit (MXU) and Vector Processing Unit (VPU). The former operates in 16-32 bit floats while latter handlers float32 and int32 computations.

In Goolge data centers TPUs are grouped in TPU pods which consist of 512 TPU v2 cores connected through HPC interconnect.