

## Status and discussion NA62 Italia Napoli, 17 April 2019

Matthew Moulson INFN Frascati

# A $K_L \rightarrow \pi^0 v \bar{v}$ experiment at the SPS

400-GeV SPS proton beam (2 × 10<sup>13</sup> pot/16.8 s) incident on Be target at z = 0 m



## **Expression of Interest: dates**



EoI is needed in order to provide detail and documentation for discussions about the future of NA62

- 2-3 Apr: SPSC meeting
  - Original goal was to submit by 11 Mar
- 13-16 May: ESPP Open Symposium, Granada
  - Real (although approximate) deadline for the EoI if we want it to be available to the Physics Preparatory Group to summarize for the European Strategy Group
- 13-14 June: SPSC meeting
- 15-16 October: SPSC meeting
- 5-6 Nov: General Physics Beyond Colliders WG meeting

"The meeting will have a similar format as that of the June 2018 WG meeting. Its main goal will be to review the status of the projects' preparation close to the EPPSU drafting session of January 2020. Please freeze the date in your agendas and take this milestone as a target to converge on the short term open issues."

## Items in progress for Eol



### Beamline (Maarten)

- Extend studies of detector/veto rates to lower particle energies
- Rates are an important feasibility item and need study in further detail

### **Neutron background** (Maarten + other volunteers?)

- Neutron halo in beam
- Beam-gas interaction probability and background rates

### H2 test beam analysis (Valerio + Giovanni + Ferrara + Matt)

- Raw data reprocessing and calorimeter calibration
  Valerio and Giovanni working on producing a final data set: almost done
- Geometry and cuts Brief look at data at Ferrara: essentially waiting for calibrations
- Implementation of coherent interaction in W in simulation Work being done at Ferrara: status?

## Items in progress for Eol



### **IRC/SAC placement, geometry tuning** (Matt + volunteers?)

- Particularly important because of backsplash
- Any design changes may require real simulation to validate (e.g. Maarten)

### Sensitivity estimate

- Requires IRC/SAC tuning
- MVA for signal/background discrimination (Silvia, see presentation 5 Apr)
  - Optimize selection for signal/ $\pi^0\pi^0/\Lambda \rightarrow n\pi^0$  samples
- Efficiency weights for zOptical (Matt, basically done)

### **Introductory, physics & writing** (Matt + ?)

- Flesh out connection between LFU in *B* decays/expectations for PNN
- Need to correspond with theory community

## Items in progress for Eol



We probably have enough for the Eol for the following items

We do need to add depth to the initial studies for the proposal including start on R&D, prototyping, and tests

- **AFC** (Matteo + Matt)
- Shashlyk (Sergey + ?)
  - Write-up of substantial progress made so far
  - Plans for further testing
- LAV (Matt)
  - Detailed simulation for efficiencies
  - Incorporate changes to Geant4 photonuclear interaction from LDMX
- CPV (?)
- **PSD** (?)
- Hadronic calormeters (MUV1/2) (?)
- Readout (Dario, Riccardo, Marco, Gianluca, Tor Vergata)

## Next steps for R&D



### **Expression of Interest and related studies**

### Funding and resource opportunities:

- For Italian groups, request internal funding from INFN (CSN1) for small scale R&D projects as part of NA62
- Submit project for CSN5 call?
- For other groups, explore similar possibilities in host countries
- European Research Commission funding:
  - One project, one institution, one investigator
  - Advanced Grant, deadline 29 Aug 2019
  - No calls for Starting or Consolidator grants until Horizon Europe (2021?)
  - Marie Curie applications for interested individuals!

### Other funding possibilities?

# Possible R&D projects



### AFC

- Test single crystals with different SiPMs
- Efficiency, time resolution for test assemblies with photons (Frascati)
- Preliminary module design considerations

### Shashlyk with spy tiles (MEC and UV)

- Continue simulation work
- Optimize and test Protvino prototype in beam:
  - Efficiency, time resolution with photons (Frascati)
  - EM/hadron discrimination (Protvino)
- Preliminary module and/or system design considerations

### Large-angle vetoes

- Basic mechanical design for module
- Prototype construction
- Efficiency and time resolution with electrons and photons (Frascati)

## **Possible R&D projects**



### SAC/Crystal studies (possible CSN5 application)

- Beam test properties of Mateck crystals (Ferrara)
- Continued research into crystal candidates for converter and SAC, including XRD and beam test characterization
- SAC design studies
- Procurement and characterization of photon absorber crystal
- Elaboration of possible strategy for realization of converter and SAC prototypes and beam test with neutral hadrons in ECN3 at end of Run 3

### CPV

 Test scintillator tiles with SiPM configurations: efficiency, time resolution (Frascati)

## PSD

- Obtain MPGDs on loan (e.g. ATLAS or RD51 prototypes)
  - Gain experience with technology
- Validation of basic PSD concept using tagged photon beam (Frascati)

## **Possible R&D projects**



### Common readout platform (possible CSN5 application)

- Interface with work on simulations (hit rates, signal selection)
  - Evaluate necessity of FADCs and determine frequency
  - Evaluate cost/complexity of triggerless readout including SAC
- Conceptually develop common elements of readout system:
  - Analog front-end stage
  - Digital front-end stage for digitization and zero suppresion
  - Digital readout/data transmission board
  - Fully pipelined MEC trigger if needed to handle SAC dataflow
  - Networking and online computing architecture with model for dataflow from readout boards to permanent storage

## Beam test possibilities for R&D



### Frascati BTF

- 200-550 MeV electrons, tagged photons
- May help to commission tagged photon line adds significant value to any R&D proposal!

### MAMI

- 1600 MeV electrons and tagged photons
- Experience with tagged photon measurements

## **DESY II**

- 1-6 GeV electrons with possibility of tagged photon beam
- Also used by Ferrara group for studies of crystal quality

### Protvino

• OKA beamline: 5 GeV electrons; 12.5, 17.7 GeV hadrons

## $K^+ \rightarrow \pi^+ vv$ and KLEVER



NA62 run at 4x intensity in Run 4 or beyond = "NA62x4"

- In early 2012 (first KLEVER PRIN proposal), it seemed certain that NA62 would have ~100  $K^+ \rightarrow \pi^+ vv$  events by now
  - 2026 KLEVER start date seemed natural even allowing for a Run 3 highstatistics NA62 phase in Run 3
- KOTO will not reach SES for SM  $K_L \rightarrow \pi^0 v v$  decay until ~2024
- Can NA62 and/or KOTO results make NA62x4 more attractive than KLEVER in the short term?
  - Significant effect in  $K^+$  would generate curiosity about  $K_L$
  - Marginal or no observed effect in  $K^+$  would call for better statistics
- NA62x4 no less of a technological challenge than KLEVER
- No realistic way for NA62/ $K^+$  and KLEVER/ $K_L$  to run concurrently
  - $K^+ \rightarrow \pi^+ vv$  and  $K_L \rightarrow \pi^0 vv$  at CERN must be envisioned as two parts of the same program
- Seek a unitary design:
  - If *K*<sup>+</sup> program first, begin work on key KLEVER detectors and put to good use
  - Modular layout, to ensure detectors can be reused for  $K_L$

# **Physics sensitivity**



**K**<sub>L</sub>**EVER** target sensitivity: 5 years starting Run 4

 $\begin{array}{l} 60 \text{ SM } K_L \rightarrow \pi^0 vv \\ S/B \thicksim 1 \end{array}$ 

 $\delta$ BR/BR( $\pi^0 vv$ ) ~ 20%

60  $K_L \rightarrow \pi^0 vv$  events at SM BR 60 background events Signif.  $\approx \frac{S_{obs} - S_{SM}}{\sqrt{S_{obs} + B_{obs}}}$ 

If BR( $K_L \rightarrow \pi^0 v v$ ) is:

- Suppressed to 0.25  $BR_{SM} \Rightarrow 5\sigma$
- Enhanced to 2 BR<sub>SM</sub>  $\Rightarrow$  5 $\sigma$
- Suppressed to 0.5  $BR_{SM} \Rightarrow 3\sigma$

### Effects on $K \to \pi v v$ BRs with constraints from Re $\varepsilon'/\varepsilon$ , $\varepsilon_K$ , $\Delta m_K$ , $K_L \to \mu \mu$

| Model                                         | $\Lambda \ [\text{TeV}]$ | Effect on $BR(K^+ \to \pi^+ \nu \bar{\nu})$ | Effect on $BR(K_L \to \pi^0 \nu \bar{\nu})$ |
|-----------------------------------------------|--------------------------|---------------------------------------------|---------------------------------------------|
| Leptoquarks, most models                      | 1 - 20                   | Very large enhanceme                        | ents; mainly ruled out                      |
| Leptoquarks, $U_1$                            | 1 - 20                   | +10% to $+60%$                              | +100% to $+800%$                            |
| Vector-like quarks                            | 1 - 10                   | -90% to $+60%$                              | -100% to $+30%$                             |
| Vector-like quarks $+ Z'$                     | 10                       | -80% to $+400%$                             | -100% to $0%$                               |
| Simplified modified $Z$ , no tuning           | 1                        | -100% to $+80%$                             | -100% to $-50%$                             |
| General modified $Z$ , cancellation to $20\%$ | 1                        | -100% to $+400%$                            | -100% to $+500%$                            |
| SUSY, chargino $Z$ penguin                    | 4-6 TeV                  |                                             | -100% to $-40%$                             |
| SUSY, gluino $Z$ penguin                      | $3-5.5~{\rm TeV}$        | 0% to $+60%$                                | -20% to $+60%$                              |
| SUSY, gluino $Z$ penguin                      | 10                       | Small effect                                | 0% to $+300%$                               |
| SUSY, gluino box, tuning to $10\%$            | 1.5 - 3                  | $\pm 10\%$                                  | $\pm 20\%$                                  |
| LHT                                           | 1                        | $\pm 20\%$                                  | -10% to $-100%$                             |

## NA62x4 physics sensitivity



**NA62x4** target sensitivity:

500 SM  $K^+ \rightarrow \pi^+ vv$ S/B ~ 0.25

 $\delta$ BR/BR( $\pi^0 vv$ ) ~ 5%

## 500 $K^+ \rightarrow \pi^+ vv$ events at SM BR 125 background events Signif. $\approx \frac{S_{obs} - S_{SM}}{\sqrt{S_{obs} + B_{obs}}}$

If BR( $K^+ \rightarrow \pi^+ vv$ ) is:

- BR<sub>SM</sub> –25% or +30% ⇒ 5σ
- BR<sub>SM</sub> ±15% ⇒ 3σ

### Effects on $K \to \pi v v$ BRs with constraints from Re $\varepsilon'/\varepsilon$ , $\varepsilon_K$ , $\Delta m_K$ , $K_L \to \mu \mu$

| Model                                         | $\Lambda \ [\text{TeV}]$ | Effect on $BR(K^+ \to \pi^+ \nu \bar{\nu})$ | Effect on $BR(K_L \to \pi^0 \nu \bar{\nu})$ |
|-----------------------------------------------|--------------------------|---------------------------------------------|---------------------------------------------|
| Leptoquarks, most models                      | 1 - 20                   | Very large enhanceme                        | ents; mainly ruled out                      |
| Leptoquarks, $U_1$                            | 1 - 20                   | +10% to $+60%$                              | +100% to $+800%$                            |
| Vector-like quarks                            | 1 - 10                   | -90% to $+60%$                              | -100% to $+30%$                             |
| Vector-like quarks $+ Z'$                     | 10                       | -80% to $+400%$                             | -100% to $0%$                               |
| Simplified modified $Z$ , no tuning           | 1                        | -100% to $+80%$                             | -100% to $-50%$                             |
| General modified $Z$ , cancellation to $20\%$ | 1                        | -100% to $+400%$                            | -100% to $+500%$                            |
| SUSY, chargino $Z$ penguin                    | $4-6 {\rm ~TeV}$         |                                             | -100% to $-40%$                             |
| SUSY, gluino $Z$ penguin                      | $3-5.5~{\rm TeV}$        | 0% to $+60%$                                | -20% to $+60%$                              |
| SUSY, gluino $Z$ penguin                      | 10                       | Small effect                                | 0% to $+300%$                               |
| SUSY, gluino box, tuning to $10\%$            | 1.5 - 3                  | $\pm 10\%$                                  | $\pm 20\%$                                  |
| LHT                                           | 1                        | $\pm 20\%$                                  | -10% to $-100%$                             |

## Sensitivity for 2016-2018 data



1.4x more data than for 2015 collected in 2016-2018 Several important detector upgrades and analysis improvements

KOTO preliminary 2016-2018 data, Moriond 2019



Combined with 2015 result SES ~  $5 \times 10^{-10}$ 

**New results expected summer 2019!** 

## KOTO projected sensitivity (step 1) **SES** Projection 1.0E-08 New target New Main Ring power supplies 1.0E-09 \* At SES SM: SM is excluded at SES 95% ( $2\sigma$ ) if BR<sub>obs</sub> = 5.7 BR<sub>SM</sub> 1.0E-10 - 2m 60ns SES SM\* – 2m 30ns

T. Yamanaka, J-PARC PAC, 18 Jul 18, https://kds.kek.jp/indico/event/28286/

2022

Year

2024

2026

2028

### KOTO will not reach SES SM until 2024 at earliest without step-2 upgrade

KLEVER: Status and discussion - M. Moulson - Napoli, 17 April 2019

2017(75)

2018

2020

1.0E-11

2015

- 4m\_30ns

## Long-term upgrade plans

## KOTO Step-2 upgrade:

- Increase beam power to >100 kW
- New neutral beamline at 5°  $\langle p(K_L) \rangle = 5.2 \text{ GeV}$
- Increase FV from 2 m to 11 m Complete rebuild of detector
- Requires extension of hadron hall



### Strong intention to upgrade to 10-100 event sensitivity over long term:

- No official Step 2 proposal yet (plan outlined in 2006 KOTO proposal)
- Scaling KOTO performance for smaller beam angle & larger detector: ~10 SM evts/year (10<sup>7</sup> s) at 100 kW beam power?
- Exploring possibilities for machine & detector upgrades to further increase sensitivity

# News from KOTO on Step 2

- 30 SM events with 100kW beam  $\times$  3e7 sec
  - Measurement of BR with ~20% stat. error.
- S/N(K decay) = 4.8



# News from KOTO on Step 2 Summary



- Physics of  $K \rightarrow \pi \nu \nu$
- KOTO improving sensitivity with upgrades
  - SES=1.3×10<sup>-9</sup> for 2015 data (PRL.122 021802)
  - $\rightarrow 5 \times 10^{-10}$  for combining 2015-18 data
  - Successful upgrade of calorimeter
  - Explore NP with BR of  $O(10^{-11}) \sim 2024$ 
    - Calorimeter upgrade + Accelerator upgrade
- Other analysis topics
  - Dark photon search,  $K_L{\rightarrow}3\,\gamma$  ,  $K_L{\rightarrow}\,\pi^{\,0}\,\gamma\,\,\gamma$
- · Let's discuss future kaon experiments.
  - J-PARC KOTO step2(KL)
  - CERN SPS: NA62(K+)→KLEVER(KL)
  - Now is good time to start. Join us!

# Random veto considerations





Linear extrapolation of random veto probability from 2016 analysis

|             | Random veto efficiency |          |  |
|-------------|------------------------|----------|--|
|             | 750 MHz                | 3000 MHz |  |
| LAV         | 85%                    | 55%      |  |
| LKr         | 83%                    | 38%      |  |
| IRC+SAC     | 92%                    | 75%      |  |
| Photon veto | 64%                    | 15%      |  |

# Time resolution for all photon vetoes would have to be improved beyond capabilities of current detectors for NA62x4

- Coincidence windows of < 2 ns
- Coincidence time resolution of ~200 ps (±5σ for full efficiency)
- Photon veto time resolution < 200 ps

### These characteristics are necessary for KLEVER too

## Large-angle vetoes

# Klever

## Time resolution for current LAVs ~ 1 ns

- Cerenkov light is directional
- Complicated paths to PMT with multiple reflections
- Coincidence windows ±3 ns perhaps a bit tight Need more detailed study of LAV efficiency vs time

## **CKM Vacuum Veto System (VVS)**

- Pb/scintillating tile
- 1 mm Pb + 5 mm scint f<sub>em</sub> ~ 36%
- WLS fiber readout

Light read out with PMTs in original design

*Y* ~ 20 p.e./MeV cf NA62 ~ 0.3 p.e./MeV

Modify design to use SiPM arrays





# CKM VVS prototype: time resolution

### Measurements at Frascati BTF, Jul 2007

| E <sub>beam</sub> | $\sigma_t$ tag | $\sigma_t \mathbf{CKM}$ |
|-------------------|----------------|-------------------------|
| 350 MeV           | 201            | 155                     |
| 483 MeV           | 205            | 250                     |



### Time resolution 150-250 ps

Extra jitter at 483 MeV not understood



## CKM VVS photon efficiency



Need good detection efficiency at low energy  $(1 - \varepsilon \sim 0.5\% \text{ at } 20 \text{ MeV})$ 

**Baseline technology: CKM VVS** Scintillating tile with WLS readout



Good efficiency assumptions based on E949 and CKM VVS experience

**E949 barrel veto efficiencies** Same construction as CKM

### **Tests for NA62 at Frascati BTF**



# Tests at JLAB for CKM: 1 − ε ~ 3 × 10<sup>-6</sup> at 1200 MeV

## Large-angle photon vetoes





### For KLEVER, need 25 new LAV stations based on CKM VVS

- Hermetic coverage out to 100 mrad
- Good detection efficiency at low energy  $(1 \varepsilon \sim 0.5\% \text{ at } 20 \text{ MeV})$

| LAVs  | $r_{\rm int}$ (m) | $r_{\rm ext}$ (m) | Sectors | Total ch. | Tot. scint. (kg) | 12 for NA62x4:                             |
|-------|-------------------|-------------------|---------|-----------|------------------|--------------------------------------------|
| 1–11  | 0.44              | 0.85              | 40      | 3520      | 9690             | → 5 (LAV1-5)                               |
| 12–15 | 0.58              | 0.99              | 48      | 1536      | 4290             |                                            |
| 16–18 | 0.72              | 1.23              | 56      | 1344      | 4970             | → 3 (LAV 6-8)                              |
| 19–21 | 0.86              | 1.37              | 64      | 1536      | 5680             | → 3 (LAV 9-10)                             |
| 22–25 | 1.00              | 1.51              | 72      | 2304      | 8525             | <b>LAV12</b> $\rightarrow$ NA62x4 specific |

## Large-angle photon vetoes



To handle NA62x4  $\rightarrow$  KLEVER interface:

- Need new blue tube from upstream edge to LAV8
  - Positions of LAVs 1-8 optimized for KLEVER (not same as now in NA62)
  - NA62x4 less stringent new LAVs have 20% more radial coverage
- LAVs 9-11 in approx same positions as now in NA62

### Extrapolating from KLEVER LAV cost estimate (€17950k/25 LAVs)

| ltem      | Cost    | Notes                                         |
|-----------|---------|-----------------------------------------------|
| Modules   | €5160k  | 17190 kg scint                                |
| Mechanics | €1820k  | Incl. 12 new blue tube segments               |
| SiPMs     | €760k   | 5056 ch, 500mm2 SiPM array                    |
| Front-end | €1260k  | 12 layers 1 SiPM array, analog sum of outputs |
| Readout   | €1010k  | Digitization with 1 GHz FADCs                 |
| Total     | €10010k |                                               |

### Intermediate solution may be possible (needs study): Only replace LAV1-5, LAV12 (use old LAVs 6-11)

## Thoughts about LKr calorimeter



### **Concerns about LKr:**

### **Time resolution**

- $\sigma_t = 0.56 \text{ ns} + 1.53/E 0.233/\sqrt{E} \rightarrow 640 \text{ ps for } E \sim 10 \text{ GeV}$
- Non-gaussian tails
  - $\pm 15\sigma$  coincidence windows for 2 < E < 15 GeV (35 -> 18 ns)
  - $\pm 70\sigma$  coincidence windows for E > 15 GeV

## Rates of 20 MHz on LKr in NA62x4?

- Naively need 4x better  $\sigma_t$
- Faster shaping, faster digitizers (cf Riccardo's talk) necessary
  - Will they be enough?

Long-term reliability (1996  $\rightarrow$  2018  $\rightarrow$  2030?)

For KLEVER, LKr central bore is not big enough

• Limits beam solid angle to  $\Delta \theta < 0.3 \text{ mrad} \rightarrow 40\% \text{ less } K_L \text{ flux}$ 

### Baseline design for KLEVER calls for NA48 LKr to be replaced

# Shashlyk calorimeter with spy tiles



### Main electromagnetic calorimeter (MEC):

Fine-sampling shashlyk based on PANDA forward EM calorimeter produced at Protvino

0.275 mm Pb + 1.5 mm scintillator

### PANDA/KOPIO prototypes:

- σ<sub>E</sub>/√E ~ 3% /√E (GeV)
- $\sigma_t \sim 72 \text{ ps} / \sqrt{E} \text{ (GeV)}$
- $\sigma_x \sim 13 \text{ mm} / \sqrt{E} \text{ (GeV)}$

### New for KLEVER: Longitudinal shower information from spy tiles

- PID information: identification of  $\mu$ ,  $\pi$ , n interactions
- Shower depth information: improved time resolution for EM showers



1<sup>st</sup> prototype assembled and tested at Protvino OKA beamline, April 2018



# Shashlyk calorimeter with spy tiles



### Adaptation of KLEVER MEC design to NA62x4:

- KLEVER MEC has wide bore to accomodate neutral beam: 130 mm
  - Minimal dead region around beam IRC not necessary
  - IRC-like detector could be used to reduce effective bore diameter
- Spy tiles
  - Could save money by not fully instrumenting spy tiles for NA62x4 phase
  - Supplemental PID information perhaps not critical for NA62x4
  - Shower depth information  $\rightarrow$  improved time resolution for EM showers

| Item                | Cost (k€) | Notes                                                   |
|---------------------|-----------|---------------------------------------------------------|
| Module construction | 1910      | 1800 modules at $\in$ 1060 each                         |
| Mechanics           | 200       |                                                         |
| SiPMs               | 320       | 10800 channels at $\in$ 30 each                         |
| Front end           | 1080      | 10800 power supply/amplifier channels at $\in$ 100 each |
| Readout             | 2160      | 10800 1-GHz FADC channels at $\in$ 200 each             |
| MUV1/2 front end    | 10        | 264 channels at $\in$ 50 each                           |
| MUV1/2 readout      | 50        | 264 1-GHz FADC channels at € 200 each                   |

### **KLEVER MEC cost estimate**

### Total €5730 including readout (also for MUV1/2)

## Readout



### KLEVER cost estimates assume "digitizer" = 1 GHz FADC at €200/ch

- Idea was to develop a common, fast CREAM-like readout for KLEVER
- 1 GHz necessary for KLEVER SAC and possibly MEC
- LAVs could likely use 125-250 MHz digitizers in NA62x4

### News from Riccardo on new CAEN digitizers:



- Flexible and modular solution adapted well to NA62x4 and KLEVER
- Cost per channel approximately 60% of that for KLEVER estimates

In general, TDAQ solutions very well matched for NA62x4 and KLEVER