Impact of Layer0 (in)efficiency on TD measurements

Nicola Neri Università di Pisa & INFN

> DGWG 6 November 2009

> > I

I. SuperB baseline:

- SVT baseline: L0 (Hybrid Pixel) + L1-L5 strip detectors, ±300 rad angular coverage;
- DCH baseline: 10 SuperLayers (4 cell layers per SL); inner radius 23.6 cm, spatial resolution 125 μm;

Layer0 impact on Δt resolution for $B^0 \rightarrow \phi K_S$

- Reconstruct $B^0 \rightarrow \phi K_S \text{ with } K_S \rightarrow \pi^+ \pi^-$
 - Δt resolution using TreeFitter vertex algorithm with beam constraint. Apply loose selection cuts: m_{ES}>5.27 GeV, Δt error <5.0 ps, nB=1.

Impact on TD measurement

ToyMC fit with perfect tagging: use 2 Gaussian proper time resolution function tuned to FastSim residual.

S per event error normalized to BaBar result: Phys.Rev.D71:091102,2005.

Cross checks

- track parameters
- Tag vertex
- CP vertex

Tag vertex sigma increases with boost oppositely to B CP vertex sigma. Charm vertex bias is not compensated by reduction of multiple scattering effect due to the increase of the average track momentum

To do list

- Complete the study for sensitivity to S:
 - varying the beampipe radius;
 - using striplet detectors for L0;
 - varying the L0 resolution.
 - other suggestions?

Angular coverage down to 300 mrad FW and BW

Relative amount of material for AI bus and support-cooling requires small adjustments.