AMICI Bruxelles, 18th September 2019

Light Sources next generation P Raimondi

The European Synchrotron

ESRF

LOW EMITTANCE SYNCHROTRONS UPGRADES TREND

UPGRADES IN EUROPE

To achieve low emittance the following points should be considered:

- The number of magnets has to be large, which means multi-bend achromat cells (MBA) with 5 or more bending magnets.
- The outer bending magnets must be shorter by roughly a factor 2
- The bending magnets should be combined-function construction with vertical focusing to increase or maximize J_x. Combined-function bending magnets also have the advantage of leading to a compact machine design.

MAGNET BLOCKS OF MAX IV

ESRF TODAY

ESRF Phase II Upgrade at the Bone

New Low Emittance Layout: Ex=0.133nm

The 844m Accelerator ring consists of:

- 32 identical Arcs 21.2m long
- 32 straight sections 5.2m long equipped with undulators and RF

Each Arc is composed by a well defined sequence of Magnets (dipoles, quadrupoles etc), Vacuum Components (vacuum vessel, vacuum pumps etc), Diagnostic (Beam Position Monitors etc) etc.

All the Arcs will be replaced by a completely new Layout

EBS MASTER PLAN (2015-2020) MADE IN 2014 (COUNCIL APPROVAL)

Master Plan and Major Milestones

Design:Magnets System

MAGNETS FABRICATION

Dipole assembly area

Module's Yokes Page 11

VACUUM CHAMBERS FABRICATION

Page 12

MAIN VACUUM CHAMBERS FOR THE ARCS

Production at FMB (up) and Cecom (down)

VACUUM CHAMBERS – DIAGNOSTICS

- 1. H stripline
- 2. V stripline
- 3. Shaker
- 4. Beam losses collimator
- 5. Current transformer

Procurement in progress

Single pieces components fabrication nearly finished

RF CAVITIES READY TO BE INSTALLED

1000 LARGE POWER SUPPLIES AND 1000 SMALL POWER SUPPLIES

Туре	Name		NOMINA	AL FIELD	VALUES	Electrical	design		PS				nom	maxWatt
		quantity	Length	dB/dx	lattice	Power	Voltage	Current	OVdesign		Watts	Watts	Watts	P total
		per cell	[m]	[T/m]		[kW]	[V]	[A]	factor	Imax	Pnom	Pmax	cell	cell
Quadrupole, mod. gradient	QF1	2	0.349	53.7		1.06	12.1	87.5	1.2	102	116	7 1576	2334	3152
Quadrupole, mod. gradient	QD2	2	0.266	51.5		0.86	9.8	87.5	1.2	106	96	6 1418	1932	2836
Quadrupole, mod. gradient	QD3	2	0.216	46.5		0.74	8.4	87.5	1.2	117	84	3 1519	1687	3037
Quadrupole, mod. gradient	QF4	4	0.216	51.5		0.74	8.4	87.5	1.2	106	84	3 1238	3373	4952
Quadrupole, mod. gradient	QD5	2	0.212	52.5		0.86	9.8	87.5	1.2	104	96	6 1364	1932	2729
Total		12											11257	16705
Quadrupole, high gradient	QF6	2	0.36	95.2		1.42	15.7	90.4	1.1	99	153	5 1857	3070	3714
Quadrupole, high gradient	QF8	2	0.48	96.2		1.66	18.6	89	1.1	98	176	7 2139	3535	4277
Total		4											6605	7992
Dipole-Quadrupole, high field	DQ1	2	1.11	37.54	33.9	1.59	15.75	100.7	1.2	121	172	9 2490	3458	4980
Dipole-Quadrupole, mod field	DQ2	1	0.77	37.04	33.7	1.38	17.0	81.0	1.2	97	146	9 2116	1469	2116
Total		3											4928	7096
Sextupole, long	SD	4		4500	4300	1.01	11.7	86	1.1	95	111	1 1344	4444	5377
Sextupole, long	SF	2				1.01	11.7	86	1.1	95	111	1 1344	2222	2689
Total		6											6666	8066
Octupole	OF1-2	2	0.1			0.30	3.2	94	1.2	113	42	6 613	852	1226
Total		2										-	852	1226
		27	Total I	PS pow	er for	one cell	for main	electron	nagnets				30.3	41.1
				·								_	KW	KVA

magnetcoilstypecorrector AC+DC (5 independent coils)35AC+DCSextupole, short correctors66DC

Total number of coils/cell

51

About 1000 DC-DC low voltage converters: the average channel power is around 1kW and a maximum of 2.3kW.

The stability requested will be 15ppm with a MTBF of more than 400 000 hours.

The integration in 32 cabinets will be designed with the Computer Services for redundancy and HOT-Swappability

COMECA PRODUCTION

Assembled racks (3 units each)

Cubicles (11 racks each)

GIRDERS PRODUCTION

Courtesy of T Brochard, F Cianciosi

MOCK-UP: AN ARC FULLY ASSEMBLED IN THE FINAL TUNNEL LAYOUT CONFIGURATION

Page 19

GIRDER LIFTING BEAM

Delivery: end of July 2018

<u>Used to move assembled</u> girders:

- ✓ One at ESRF01 for lorry load / unload
- ✓ One at GLD for lorry load / unload

DISMANTLING: OLD SERVICES REMOVAL

- **Duration: 33H/cell. 3 cell in parallel**
- 3 teams of 4 people:
- **Disconnect power cables**
- Remove
- -Low current cables
- -Electrical boxes
- -Cable trays
- -Pipes

Special cells: 32,1,2

ESRF11 FILLING UP

07/01/19

15/01/19

28/01/19 Council Meeting 24-25 June 2019 P Raimondi

20/01/19

12/02/19

11/01/19

25/01/19

27/02/19

NON-ACTIVATION MEASUREMENTS: CABLE TRAYS

All cable trays measured by 5 March 2019 Total 123 measurements No activation detected

NON-ACTIVATION MEASUREMENTS

ESRF11 on 16 March 2019

ESRF11 today (23 April 2019)

ESRF

INSTALLATION PHASES – PIPING INSTALLATION

Supply in drop zone

Insert in SRTU

Opening of wooden boxes

Piping inserted in SRTU

Fittings and flanges to install

24 welds

Connection to equipment

Connection to network

INSTALLATION PHASES – CABLING

SRTU CABLING WORKS

Supply in drop zone

Pushing cables from TZ to SRTU

Cabling work started on cell 04 on 29th April

ZONE	START of Work	ZONE	START of Work
SRTU 2	10 th May 2019	SRTU 7	11 th July 2019
SRTU 8	28 th May 2019	SRTU 3	12 th July 2019
SRTU 5	05 th June 2019	SRTU 1	18 th July 2019
SRTU 6	26 th June 2019	SRTU 4	06 th August 2019

Cables installation in SRTU

Council Meeting 24-25 June 2019 P Raimondi

PROPOSAL FOR THE ELETTRA 2.0 LATTICE

ELETTRA II UPGRADE SCHEDULE

Dark period is estimated to 18 months. Users don't like it asked if it can be avoided? How?

Project approved by the Italian Government!!!

SOLEIL: UPGRADE SITUATION 2018/2019

Page 29

SOLEIL UPGRADE: TIME SCHEDULE

Date	Phase				
Dec. 2016	Council meeting, presentation of the first proposal for an upgrade.				
2017 - 2019	Discussions regarding the definition of the project (beamlines and storage ring); definition of objectives. Baseline Lattice defined.				
2018 - 2019	Continuation of discussions and prototyping to assess feasibility of key options.				
2019	Decision to launch a Conceptual Design Report (CDR).				
2019-2020	CDR based on preliminary studies and prototyping.				
2020	Decision to launch a Technical Design Report (TDR).				
2020-2022	Technical Design Report.				
2022	Decision to start the project.				
2022-2025	Reconstruction of storage ring and beamlines.				
2026	Restart of user operation.				

UPGRADE OF PETRA III TO PETRA IV

Parameter	Value		
Energy	6 GeV		
Current	100 mA, Top-Up		
Hor. Emittance	1.2 nm·rad		
Ver. Emittance	12 pm·rad		
Bunches	40, 960		
Circumference	2304 m		
Harmonic number	3840		
RF Voltage	20 MV		
Energy loss/Turn	6.1 MeV		

Page 31

TIME SCHEDULE OF PETRA IV PROJECT

Tight time schedule:

- Project preparation phase 1/16 12/19
- Conceptual Design Report 4/2018
- > Technical Design Report 12/2019

DIAMOND UPGRADE 2018-2023

UPGRADES IN AMERICA

LAYOUT OF SIRIUS

	Storage Ring					
	Beam energy		3.0	GeV		
	Circumference		518	3.4 m		
	Lattice	20	x 5BA			
	Hor. emittance (ba	0.2	.25 nm.rad			
	Hor. emittance (w	$\rightarrow 0$	\rightarrow 0.15 nm.rad			
	Betatron tunes (H	49.	49.11 / 14.17			
	Natural chrom. (H	-119.0 / -81.2				
	rms energy spread	0.8	0.85 x 10 ⁻³			
	Energy loss/turn (dipoles)			473 keV		
	Dam. times (H/V/L) [ms] Nominal current, top up			16.9 / 22.0 / 12.9		
				350 mA		
Booster						
Circumference		496.8 m				
Emittance @ 3 GeV		3.5 nm.rad				
Lattice		50 Bend				
Cycling frequency		2 Hz				

SIRIUS PROGRESS

Page 36 ASD Workshop – 2nd February 2018 – D. Einfeld

ESRF

MAGNET AND TIME SCHEDULE OF SIRIUS

Permanent magnet (NdFeB) High field insert (3.2 T) superbend

- 19 keV critical energy at peak
- Hard X-rays produced only at beamline exit
- Total energy loss/turn from dipoles = 473 keV

The schedule is the following: February 19th : start of the supports installations in the storage ring March 5th : Start of the Linac installation May 5th: Linac commissioning completed July 31st: Machine installation completed Second semester 2018: commissioning with normal conducting cavity (up to 100 mA)

TIME SCHEDULE FOR SLS-2

APS UPGRADE BASED ON LATTICE 7-HMBA ACHROMAT

After extensive study, chosen hybrid 7-bend achromat with 4 longitudinal gradient dipoles, 3 transverse-gradient and 6 reversed dipoles

- It provides for two locations with larger dispersion that can be used for chromatic corrections
- Phase separation between sextupole triplets is $\approx 3\pi$ in X and $\approx \pi$ in Y Introduction of reverse bends allowed us to further reduce emittance.

ESRF

APS UPGRADE PROJECT SCHEDULE

Robert Hettel - DOE Review of the APS Upgrade Project - December 12-13, 2017

Page 40

The European Synchrotron | ESRF

ALS-UPGRADE PARAMETERS

Parameter	Units	ALS	ALS-U
Electron energy	GeV	1.9	2.0
Horiz. emittance	pm 🔇	2000	~50
Vert. emittance	pm	30	~50
Beamsize @ ID center (σ_x / σ_y)	mm 🄇	251/9	<10 / <10
Beamsize @ bend (σ_x / σ_y)	mm	40 / 7	<5 / <7
bunch length (FWHM)	ps (60-70 (narmonic cavity)	120-200 (namonic cavity)
RF frequency	MHz	500	500
Circumference	m	196.8	~196.5
		А	LS-U

Page 41

ASD Workshop – 2nd February 2018 – D. Einfeld

ean Synchrotron | ESRI

ALS-UPGRADE

ALS TIME SCHEDULE

CD-0 means the project has started!

ESRF

ASD Workshop – 2nd February 2018 – D. Einfeld

Page 43

UPGRADES IN ASIA

44

SPRING 8 UPGRADE : RING CONFIGURATION

The ring has four long straight sections (LSS) of about 30m and an injection section having high horizontal beta of $\beta_x = 20m$. In both sections phase matching condition is imposed and these sections are transparent for on-momentum electrons.

MAIN PARAMETERS OF SPRING-8-2

	SPring-8-II	SPring-8 (Present)	Spring 8
E [GeV]	6	8	
l [mA]	100	100	
C [m]	1435.45	1435.95	0.0
Lattice	5BA (w/ Long. Var.)	DB	
e [nmrad]	0.157 \sim 0.10 w/ und.	2.4	$\sigma_{\rm x} = 316 \ \mu m$ $\sigma_{\rm v} = 4.9 \ \mu m$
(b _x , b _y) [m] @ ID	(5.5, 2.2)	(31.2, 5.0)	-1.0 -0.5 0.0 0.5 1.0
h _x [m] @ ID	0.0	0.146	Spring 8 II
(n _x , n _y)	(108.10, 44.58)	(41.14, 19.35)	
(x _x , x _y) _{natural}	(-143, -147)	(-117, -47)	
а	3.24e-5	1.60e-4	- 0.0
s _{Dp/p} [%]	0.093	0.109	
k [%]	10	0.2	$\sigma_{\rm x} = 28.0 \mu{\rm m}$
h	2436	2436	$\sigma_{y} = 3.0 \mu m$
f _{RF} [Hz]	508.76	508.58	-1.0 -0.5 0.0 0.5 1.0

HEPS: LATTICE LAYOUT

HEPS will be the next storage ring light source with high energy and low emittance in China, and the HEPS test facility has been started. Lattice design and physics studies are going smoothly.

Now ESRF-EBS, APS-U, HEPS, ALS-II, etc. adopts hybrid-MBA lattice.

ESRF

Page 48

SHANGHAI LIGHT SOURCE (SSRF) UPGRADE PROPOSAL

The European Synchrotron | ESRE

CONCLUSIONS

ESRF has pioneered the SR light sources upgrade by replacing its synchrotron with a complete new ring

> At least 10 facilities will do very similar upgrades in the next 5-10 years

Some green-field facilities will be also be built worldwide with similar concepts and technologies

Upgrades involve the realization of hundreds of:

high quality magnets

vacuum chambers

power supplies

Upgrades are great opportunities for high-tech industries

>Upgrades involve heavy logistics activities

➢Upgrades budget envelopes range between 100ME to 400ME

THANK YOU FOR YOUR ATTENTION

ASD Workshop – 2nd February 2018 – D. Einfeld

Page 51