

Industrial Opportunities at Future Nuclear Physics Machines Worldwide

Andrew Hutton Jefferson Lab

EUROPEAN COMMISSION DIRECTORATE-GENERAL FOR RESEARCH & INNOVATION

Research infrastructure

Overview

- In high energy physics, most proposals have very long timescales
- In nuclear physics, there is a lot of activity and the timescales are shorter
 - China: HIAF
 - Europe: FAIR
 - Korea: KOMAC, RAON
 - Russia: C-Tau, NICA

Note: order is alphabetic, no priority is implied and no bribes were accepted (or even offered)!

- United States: e-RHIC, FRIB, JLEIC
- In most cases, I received more information than I can pack into this talk
 - The online version has all of the information I received, including some detailed information regarding upcoming orders

High-Intensity Heavy Ion Accelerator Facility-HIAF

HIAF: One of 16 large-scale research facilities proposed in China in order to boost basic science, next-generation high intensity facility for advances in nuclear physics and related research fields.

The HIAF project:

- Proposed by IMP in 2009.
- Approved in principle by the central government in the end of the 2012.
- The final approval was in the December of 2015
- Construction started in the end of 2018, early completion in 2025.
- The total budget of facility is about \$400 million, including \$160 million of local government

Science motivations:

- ※ High intensity radioactive beams to investigate the structure of exotic nuclei, nuclear reactions of astrophysics and to measure the mass of nuclei with high precision.
- % High charge state ions for a series of atomic physics programs.
- % Quasi-continuous beam with wide energy range for applied science.
- ※ High energy and intensity ultra-short bunched ion beams for high energy and density matter research.

HIAF: Main accelerator components

HIAF: Present status

Details of technical design has been finished and most of hardware systems are under production.

HIAF: Present status

The planed construction period is about 7 years, and the early completion is expected in the end of 2025

The FAIR Project

Realization of the world's unique particle accelerator facility in Darmstadt

September 2019

FAIR – The facility

Overview of technology

- Superconducting magnets: for strong and rapidly changing magnetic fields with maximum field precision
- Sophisticated cryotechnology: Use of liquid helium to cool down to 4 Kelvin (-269°C)
- **Ultra-high vacuum**: 10¹⁵ times below the earth's air pressure
- **Development and construction** of cryo-collimators with special coatings

1500

magnets

Worth 200 M€

Of which 600 are superconducting

power supplies

worth 30 M€

vacuum chambers

1500

worth 20 M€

Please visit our procurement website: www.gsi.de/start/wirtschaft_industrie.htm

Additional slides are attached with detailed requirements and contract signing dates

Korea Multi-purpose Accelerator Complex (KOMAC)

- National User Facility: Intense Proton & Ion Source for Basic & Applied Research
 - High-Power Proton Linac (100MeV, 20mA, Proton Source) under operation
 - 1 GeV, 2MW Upgrade (Spallation Neutron Source) under R&D study
- 100MeV Linac developed through Proton Engineering Frontier Project (2002 2012)
- Funding: 300M USD (Government (57%), Local Gov. (39%), & Industry (4%))
- Lead Institute : Korea Atomic Research Institute (KAERI)
- KOMAC Operation as one of branches of KAERI (2013~)

Near Future Plan 1

✤ Li-8 Beamline: 100-MeV Proton

- **O** Application : Li-8 based β-NMR
- Proton beam
- Energy: 100 MeV
- Beam Power: 1 kW @ 100 MeV
- Li-8 Ion Production: 1x10⁶ pps
- Target: BeO
- Status : Prototype development (2017~)

Plan : High power target ion source, β-NMR facilities

SIS heationg current (A) 100 200 300 400 500 2200 - Target heater --- Surface ion source 2000-1800 Temperature (°C) 1600 1400 1200 1000 800-1200 400 600 800 1000 1400 Heater current (A) Heating current vs. temperature

Near Future Plan 2

✤ Pulse Neutron Beamline: 100-MeV Proton

- Application : Fast neutron production
- Proton beam
- Energy: 100 MeV
- Beam Power: 1 kW @ 100 MeV (upgrade 160 MeV)
- Target: Copper (plan to change to W)
- Status : Neutron utilization @ 100 MeV, 1kW (2018~)

Angular distribution of the neutron Neutron spectrum compared with

 Plan : Accelerator energy upgrade, target improvement, neutron facility

the ground spectrum

1.00E+10

Future Plan

- **<u>Neutron Sources</u>**: Materials, Bio-life, Energy, Environment, etc.
 - Long Pulse (1.3 ms): Spatial resolution: μm~nm, Temporal resolution: μs~ns
 - > SANS, Holography, Phase shift interferometry, Static & Dynamic tomography, Spin echo, etc.
 - Short Pulse (~µs): Spatial resolution: 0.01~10 nm, Temporal resolution: ns~fs
 - Elastic scattering, Diffraction, PGAA, Neutron resonance transmission, Neutron resonance capture analysis, Neutron spectroscopy, Neutron stimulated emission CT, etc.

Overview of The Rare Isotope Science Project (RISP)

1. Overview RAC

RAON Layout

SCL1 has been decided to be pended

: SCL3 is going to be taking a role of SCL1 in the early operation

2. Construction

Building Layout

Building Layout

Accelerator System

3. Sys. Install.

3. Sys. Install.

RI & Experimental System

Summary & Outlook

Accelerator

4. Summary

- Mass production for SCL3 is under way
- SCL2 is under pre-production phase
- From April, 2019, installation for SCL will start from SCL3
- Test facility for cavities and cryomodules will operate from next Jan.

By the end of 2021, we will achieve

- SI beams: Stable ion beams (¹⁶O, ⁴⁰Ar) from ECRIS \rightarrow SCL3 \rightarrow low E exp hall
- **RI beams:** RIBs extraction from ISOL \rightarrow re-acceleration through SLC3 \rightarrow low E exp hall
- Stable / RI beams will be delivered to low-E experimental hall
- Early phase experiments are going to be performed using KOBRA
 DIPs production at KOPPA (Acs 50, becam approved 20 Ma)/(u) using SL be
 - \rightarrow RIBs production at KOBRA (A<~50, beam energy < 20 MeV/u) using SI beams from SCL3
- Beam commissioning starts for SCL2
- Installation and commissioning for IF, LAMPS, Neutron, bio-medical and muSR
 → Collaborative works with RUA (RAON Users Association) via RULC (RAON Users Liason Center)

Post RISP (2021 ~)

- Beam acceleration for ISOL → SCL3 → SCL2 → IF (ISOL+IF)
- Beam commissioning and experiments for IF, LAMPS, Neutron, bio-medical and muSR
- Ramping-up to get the 400kW beams (more 5 yrs)
- Energy upgrade to 400MeV/u (require budget)

SCT Project Overview

Pavel Logachev

What is SCT?

Super Charm-Tau factory is a BINP-based electron-positron collider project

- World-best luminosity 10³⁵ cm⁻²s⁻¹ in the energy range between 2 and 6 GeV with longitudinal electron beam polarization
- Rich program of high precision measurements of weak and strong fundamental interactions in the region of charm quark and tau lepton
- Provides solid ground for development of BINPexpertise in particle accelerators and colliders technologies
- Based on replacing and upgrade of existing BINP facilities: VEPP-2000 and VEPP-4M colliders, and electron and positron injection complex

SCTConfiguration and Parameters

Beam dynamics and polarization

- \checkmark All essential beam physics issues are considered
 - optics, nonlinear beam dynamics, longitudinal polarization, IBS, etc.
- ✓ No showstoppers revealed

Project Status

- Draft Conceptual Design Report is available at ctd.inp.nsk.su
 - Cost estimate: 37B RUB(about \$560M)
 - Construction period: 6 years
- Approval status
 - SCTis one of six mega-sciences projects selected by Russian Government
 - SCTproject is included in the plan for the implementation of the first phase of the Strategy for Scientific and Technological Development of the Russian Federation
 - Officially supported by ECFA
- R&D for accelerator and detector underway
- International collaboration around the SCTexperiment is being formed
 - MoUs with CERN, KEK, INFN, JINR, John Adams Institute, etc. are signed
 - Annual international workshops are being held
 - HORIZON 2020 project CREMLINplus in collaboration with CERN, INFN, LAL, and Giessen U.
 - SCThas been well-recognized at the Open Symposium on the Update of European Strategy for Particle Physics (Granada, Spain)

NICA (Nuclotron based Ion Colider fAcility

Main targets:

- study of hot and dense baryonic matter

at the energy range of max baryonic density

- investigation of nucleon spin structure, polarization phenomena

- development of accelerator facility for HEP @ JINR : construction of collider of relativistic ions from **p** to **Au**, polarized protons and deute-rons with max energy up to $\sqrt{S_{NN}}$ = **11** GeV (Au⁷⁹⁺) and =**27** GeV (p)

NUCLOTRON BASED ION COLLIDER FACILITY

experiments at NICA

45 T*m, 4.5 GeV/u for **Au**⁷⁹⁺

Baryonic Matter at Nuclotron (BM@N)

experiment at Nuclotron extracted beams

Physics:

- ✓ strange / multi-strange hyperon and hypernuclei production at the threshold
- ✓ hadron femtoscopy
- ✓ short range correlations
- </ event-by event fluctuations
- ✓ in-medium modifications of strange & vector mesons in dense nuclear matter
- \checkmark electromagnetic probes, states decaying into γ , e (with ECAL)

MultiPurpose Detector (MPD)

Main target:

- study of hot and dense baryonic matter at the energy range of max net baryonic density

MPD Collaboration:

- JINR, Dubna;
- Tsinghua University, Beijing, China;
- MEPhl, Moscow, Russia.
- INR, RAS, Russia;
- PPC BSU, Minsk, Belarus;
- WUT, Warsaw, Poland;

SS, HU, Huzhou, Republic of South Africa.

• PNPI NC KI, Saint Petersburg, Russia;

• CPPT USTC, Hefei, China;

•

MPD detector for Heavy-Ion Collisions @ NICA

NICA schedule

	201	5	2016	2017	2018	2019	2020	2021	2022	2023
Injection complex										
Lu-20 upgrade										
HI Source										
HI Linac										
Nuclotron										
general development										
extracted channels										
Booster										
Collider										
startup configuration										
design configuration										
BM@N										
l stage										
II stage										
MPD										
solenoid										
IPC, IOF, Ecal (barrel)										
Civil engineering	┢┥┥									
MPD Hall										
SPD Hall										
collider tunnel										
HEBT Nuclotron-collider										
Cryogenic										
for Booster										
for Collider										

running time

EIC Accelerator Overview and R&D

Ferdinand Willeke, BNL EICUG Annual Meeting, Paris 2019

Electron Ion Collider

Requirements on EIC Performance

The EIC is designed to meet the requirements set forth in NSAC Long Range Plan, which was emphasized by the NAS report:

Highly polarized (~70%) electron and nucleon beams Ion beams from deuterons to the heaviest nuclei (uranium or lead) Variable center of mass energies from ~20 - ~100 GeV, upgradable to ~140 GeV High collision luminosity ~10³³ – 10³⁴ cm⁻²s⁻¹ Possibilities of having more than one interaction region

JLEIC to be constructed at Jefferson Lab **eRHIC** to be constructed at Brookhaven National Lab

Both design benefit from existing Nuclear Physics infrastructure and are based on the same accelerator principles:

Electron Storage Rings with frequent injection of fresh polarized beams **Hadron storage rings** with strong cooling or alternatively frequent injections

eRHIC

Hadrons up to 275 GeV

eRHIC is using the existing RHIC complex: Storage ring (Yellow Ring), injectors, ion sources, infrastructure,
Need only few modifications for eRHIC
Todays RHIC beam parameters are close to what is required for eRHIC

Electrons up to 18 GeV

Electron storage ring with up to 18GeV \rightarrow E_{cm} = 20 GeV -141 GeV installed in RHIC tunnel. Beam current are limited by the choice of installed RF power 10 MW.

Electron beams with a variable spin pattern accelerated in the on-energy, spin transparent injector: Rapid Cycling Synchrotron with 1-2 Hz cycle frequency in the RHIC tunnel

Polarized electron source and 400 MeV s-band injector linac in existing tunnel

Design meets the high luminosity goal of $L = 10^{34} \text{cm}^{-2} \text{s}^{-1}$
eRHIC Strong Hadron Cooling

- Micro-bunched cooling is a novel scheme based on available technology
- For eRHIC, strong cooling as desirable but not necessary for high luminosity (especially high average luminosity) as the hadron beam could be replaced frequently on-energy using the existing second ring of present RHIC. As the JLEIC scheme, this option requires electron cooling at low energy.

Electron Ion Collider.

Alternative to Strong Hadron Cooling in eRHIC

eRHIC maximum luminosity of 1·10³⁴ cm⁻²s⁻¹ does not depend on the feasibility of strong hadron cooling.

Since RHIC has a second superconducting ring, the Blue Ring, on-energy injections into the collider ring, the Yellow Ring will replace the hadron bunches after one hour of storage. Transfer takes 13 μ s and will preserve the total charge in both machines, no transient injection effect.

The required small vertical emittance \mathcal{E}_{Ny} = 0.5 μ m will be achieved with standard DC electron beam cooling in the AGS.

No new hardware for spin transparency is required

On-Going EIC R&D Effort

Component Development

Crab Cavity design development and prototyping 0.1 0.05 IR magnet development and prototyping 2.0 1.8 1.6 1.4 1.8 1.0 0.8 0.6 0.4 0.2 HOM damping for RF structure development |B| (T) Variable coupling high power forward power couplers develop 0 X (m) 0.2 Effective in situ Cu coating of the beam pipe (BNL hadron only) Instrumented accelerator magnet High average current electron gun development Polarized ³He source Bunch by bunch polarimetry

Accelerator Physics R&D

Strong hadron cooling CeC, cooling development (simulation and experim Strong hadron cooling bunches electron beam cooling (simulation and ex ERL development for strong hadron cooling Test of suppression of intrinsic depolarizing resonances Study of collisions with different revolution frequencies (JLAB only) Experimental verification of figure-8 configuration Study of residual crab cavity effect on beam emittance

0.45 0.4

Crab cavity

Crabbed beam dynamics

Electron Ion Collider.

FRIB Project Overview

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Facility for Rare Isotope Beams A Future DOE-SC National User Facility

- Funded by DOE–SC Office of Nuclear Physics with contributions and cost share from Michigan State University
- Serving over 1,400 users Experiments with fast, stopped, and reaccelerated beams
- Key feature is 400 kW beam power for all ions (e.g. 5x10^{13 238}U/s)
- Separation of isotopes in-flight provides
 - Fast development time for any isotope
 - All elements and short half-lives
 - Fast, stopped, and reaccelerated beams

Civil and Technical Construction on Track FRIB Project 92% complete

- June 2009 DOE-SC and MSU sign Cooperative Agreement
- September 2010 CD-1 approved, DOE issues NEPA FONSI
- August 2013 CD-2 approved (baseline), CD-3a approved
- March 2014 Start civil construction
- August 2014 CD-3b approved (technical construction)
- December 2021 Early completion
- June 2022 CD-4 (project completion)
- Recent milestones
 - October 2018 First superconducting magnets installed in target facility
 - December 2018 Cryoplant 2 K coldbox commissioned
 - April 2019 Ar and Kr beams accelerated above 20 MeV/nucleon

- \$730M Total Project Cost (TPC)
 - \$635.5M DOE outlay
 - \$94.5M MSU cost share
- \$306.6M contributions
 - Outside of project baseline
 - Monitored for schedule and performance, all critical items complete

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University 9 August 2019

AMICI Second Industrial Forum, Slide 42

Successfully Delivering Technical Scope

Major technical procurements progressing well:

	Accelerator Systems	Experimental Systems
Major technical procurements	286	111
Cost	\$113.7M	\$24.2M
% Costed/committed	95%	82%

Accelerator Systems:

- Linac cryomodules (4 types) 46 + 3 spares
 - Cavities 324 + 16 spares
 - Solenoids -69 + 5 spares
- Room temperature magnets 151
- Superconducting dipole magnets 4
- Solid-state RF amplifiers (5 types) 220
- Crvogenic transfer lines 49
- Network switches 164
- Room temperature magnet power supplies 314
- Superconducting magnet power supplies 278
- High voltage power supplies 74
- Diagnostics 608 total devices
 - Beam position monitors 150
 - Fast thermometry for beam loss 240
- 4 K and 2 K Cryogenic plants
- Radio Frequency Quadrupole
- Charge state stripper
- Low- and high-level controls

FRIB

Facility for Rare Isotope Beams

Beta=0.041 cryomodule

Preseparator magnets

Experimental Systems:

- Superconducting dipoles 4
- Superconducting cold iron guads 4
- Superconducting warm iron guads 5
- Room temperature magnets 1
- Large vacuum vessels 3
- Remote handling gallery
- Target, beam dump, and wedge
- Cooling water processing loops 2

4K cold box

SC dipole magnet

Beam dump module

Warm iron quadrupole magnet

AMICI Second Industrial Forum, Slide 43

Overview of JLEIC – The EIC at Jefferson Lab

44

• Electron complex

- CEBAF as a full energy injector
- Electron collider ring (ECR): 3-12 GeV/c

Ion complex

- Ion source, SRF linac: 150 MeV for proton s
- Low Energy Booster (LEB): 8.9 GeV/c
- High Energy Booster (HEB): 13 GeV/c
- Ion collider ring (ICR): 200 GeV/c
- Up to two detectors at minimum background I ocations

Element	Туре	Electron Complex	Ion Complex
Length of Beamline		2,669 m	5,416 m
Dinala Magnata	Normal-Conducting	369	252
Dipole Wagnets	Superconducting	-	258
Quadrupole Magnets	Normal-Conducting	515	394
	Superconducting	6	196
Sextupole Magnets	Normal-Conducting	148	48
	Superconducting	-	56
Correctors Magnets	Normal-Conducting	321	164
	Superconducting	-	55
Solenoids Magnets	Superconducting	10	6
Kickers	Normal-Conducting	2	6
BPMs		321	337

Accelerating and Bunching – Summary

		# Cavitie s	Cavities per unit	Fwd Pwr per cavity (kW)
Electron Collider Ring	Acceleration – Normal Conducting	16**	1	500**
	Acceleration – SRF	12	4	600
	Crab Cavities – SRF	6	3	40
Low Energy Booster	Acceleration/Bunch Control	3	1	50
High Energy Booster	Acceleration/Bunch Control	7	1	100
Ion Collider Ring	Acceleration/Bunch Control – Normal Conducting	3	1	120
	Bunch Control – SRF	26	4	120
	Crab Cavities – SRF	24	6	30
Electron Cooling	DC Cooler (LEB)	1	4	50
	DC Cooler (HEB)	1	1	50
	Bunched Beam (ICR) – ERL	15	2	50

** - PEP-II Cavities and HPAs

All the information presented was provided by my generous collaborators

- Sonia Utermann, GSI, Germany
- Pavel Logachev, BINP, Russia
- Hongwei Zhao, IMP, China
- Won Namkung, PAL, Korea
- Alexander Kovalenko, Dubna, Russia
- Paul Mantica, NCLS, USA
- Ferdi Willeke, BNL, USA
- Tim Michalski, Jefferson Lab, USA

Thanks to all of you!

Here is all the information sent by my collaborators

High-Intensity Heavy Ion Accelerator Facility-HIAF

HIAF: One of 16 large-scale research facilities proposed in China in order to boost basic science, next-generation high intensity facility for advances in nuclear physics and related research fields.

The HIAF project:

- Proposed by IMP in 2009.
- Approved in principle by the central government in the end of the 2012.
- The final approval was in the December of 2015
- Construction started in the end of 2018, early completion in 2025.
- The total budget of facility is about \$400 million, including \$160 million of local government

Science motivations:

- ※ High intensity radioactive beams to investigate the structure of exotic nuclei, nuclear reactions of astrophysics and to measure the mass of nuclei with high precision.
- % High charge state ions for a series of atomic physics programs.
- % Quasi-continuous beam with wide energy range for applied science.
- ※ High energy and intensity ultra-short bunched ion beams for high energy and density matter research.

HIAF: Main accelerator components

HIAF: Experiment terminals

Around the whole facility, there are a series of experiments terminals

HIAF: Basic beam parameters

	lons	Energy	Intensity
SECR	238U35+	14 keV/u	0.05 <mark>-0.1</mark> pmA
iLinac	238U35+	17-22 MeV/u	0.028-0.05 pmA
BRing	238U35+	0.8 GeV/u	~2.0×10 ¹¹ ppp
	238U76+	2.45 GeV/u	~5.0×10 ¹⁰ ppp
SRing	RIBs: neutron-rich, proton-rich	0.84 GeV/u(A/q=3)	~10 ⁹⁻¹⁰ ppp
	Fully stripped heavy ions H-like, He-like heavy ions	0.8 GeV/u(²³⁸ U ⁹²⁺)	~10 ¹¹⁻¹² ppp

HIAF: Present status

Details of technical design has been finished and most of hardware systems are under production.

HIAF: Present status

The civil construction and common system are going smoothly

iLinac section

BRing arc section

BRing straight section

Beam transfer line

SRing arc section

on **Tunnel mechanical installation**

HIAF: Present status

The planed construction period is about 7 years, and the early completion is expected in the end of 2025

The FAIR Project

Realization of the world's unique particle accelerator facility in Darmstadt

September 2019

Accelerator facilities GSI and FAIR

FAIR GmbH I GSI GmbH

What are the smallest building blocks of our matter?

How, when and where did they come into being?

How are chemical elements formed in stellar explosions?

What does matter look like in the most heavy objects of our universe, the neutron stars?

Cosmic matter can be produced with particle accelerators in the lab.

The four scientific pillars at FAIR

NUSTAR	CBM
Nuclear Structure, Astrophysics and	Compressed Baryonic Matter:
Reactions: Stars and nuclei	Inside a neutron star
(850 scientists)	(500 scientists)
PANDA	APPA
Antiproton-Annihilation at Darmstadt:	Atomic, Plasma Physics and Applications:
Antimatter research	From atoms to planets to cancer research

(500 scientists)

From atoms to planets to cancer research (720 scientists)

FAR—Facility for Antiproton and Ion Research

In addition to the existing linac and ring accelerator and storage ring at GSI, FAIR is building:

- Aring accelerator, 1.1 km in circumference
- 3 storage rings
- 1 linac
- 2 major target stations
- 1 super fragment separator with extra-large acceptance

FAIR – The facility

FAR—key figures

Completion until **2025**

Investments

70% of this amount will be provided by the German federal government and the State of Hesse Area covered by the land-use plan

686,373 m²

Construction volumes

2 million m³ 600,000 m³ of concrete

65,000 tons of steel

to be moved

to be used

to be utilized

As much as for 5,000 single-family homes

As much as eight Frankfurt soccer stadiums

As much as nine Eiffel Towers

1500

magnets

Worth 200 M€

Of which 600 are superconducting

power supplies

worth 30 M€

1500

vacuum chambers worth 20 M€

FAIR develops and uses innovative technology – with YOU

Overview of technology

- Superconducting magnets: for strong and rapidly changing magnetic fields with maximum field precision
- Sophisticated cryotechnology: Use of liquid helium to cool down to 4 Kelvin (-269°C)
- **Ultra-high vacuum**: 10¹⁵ times below the earth's air pressure
- **Development and construction** of cryo-collimators with special coatings

For the Proton Linac

- 3 crossbar H-Mode cavities (CH) and 3 coupled crossbar H-Mode cavities (CCH)
- Stainless steel
- Operating resonance frequency 325 MHz
- Duty cycle 0.5 ‰
- CALLTOTENDERNOW OPEN

Current technical needs

GHE tanks

- 26 standing helium tanks
- each 100 cubic metres
- for storing helium gas at ambient temperature at a maximum pressure of 20 bar.
- Pipe class PN25

Current technical needs

Current technical needs

Modular stands for high-energy beam transport

- 317 stands of six different types
- For mounting magnets and diagnostic chambers

Power parts

Various parts with various power and ramping specifications

3 Local cryogenic plants

ent separator shielding

- Castiron grade GJL150 250 or GJS with
- ⁶⁰Co content less than 50 ppm
- nickel content below 0.5%.

Pbar target station (for antiprotons)

- main shielding block (150t)
- $1^{st}(24t)$ and $2^{nd}(8.5t)$ sliding doors
- sliding doors support and 2 sliding door motor
- graphite collimator
- copper and iron collimators stack
- adjustment table

Current technical needs

Various UHV components

Various diagnostics

Please visit our procurement website: www.gsi.de/start/wirtschaft_industrie.htm

Current technical needs

Facility for Antiproton and Ion Research in Europe GmbH Planckstraße 1 64291 Darmstadt www.fair-center.eu

Facility for Antiproton and Ion Research in Europe GmbH

Planckstraße 1 64291 Darmstadt

www.fair-center.eu

Necessary technological capabilities:

- detailed 3D design
- billets cutting
- welding work
- anticorrosion processing and painting
- tests and inspections according codes and standards

Contract signing date (Milestone M4) 02/2020

GHE Storage Tanks (PSP 2.14.8.1.7)

Content of delivery:

- 26 Storage vessels.
- One storage vessel in one unit, finally mounted, tested and packed.
- specification completed as required, including all performance descriptions and drawings.

Dimensions:

- positioning Vertical
- geometric volume 100 m³
- outside diameter Max- 2800 mm

Facility for Antiproton and Ion Research in Europe GmbH Planckstraße 1 64291 Darmstadt www.fair-center.eu

Facility for Antiproton and Ion Research in Europe GmbH

Planckstraße 1 64291 Darmstadt www.fair-center.eu

Frames for HEBT (PSP: 2.3.11.13.2 and 2.3.11.13.3) (indicated in blue and red)

Frames category I

- Scope of delivery:
- dimensioning, design ٠
- production for all parts ٠
- weight 500 kg •

Necessary technological capabilities:

- detailed 3D design
- billets cutting ٠
- welding work ٠
- electrolytic galvanizing and painting

Frames category III

Scope of delivery:

- · dimensioning, design
- design for six-strut-system •
- production for all parts •
- weight 500 kg ٠

Necessary technological capabilities:

- detailed 3D design •
- billets cutting
- welding work ٠
- electrolytic galvanizing • and painting

Frames category II

Scope of delivery:

- dimensioning, design
- production for all parts •
- weight 500 kg •

Necessary technological capabilities:

- detailed 3D design
- billets cutting •
- welding work
- electrolytic galvanizing • and painting

Frames category IV

Scope of delivery:

- dimensioning, design
- production for all parts
- Frame load- 12000 kg

Necessary technological capabilities:

- detailed 3D design • •
- billets cutting
- welding work •
- painting

Facility for Antiproton and Ion Research in Europe GmbH

> Planckstraße 1 64291 Darmstadt www.fair-center.eu

Facility for Antiproton and Ion Research in Europe GmbH

> Planckstraße 1 64291 Darmstadt

www.fair-center.eu

Amount of frames per category

Category	I	II	111	IV	v	VI
Amount	16	61	15	1	1	1

Contract signing date (Milestone M4) 03/2020

Frames category V Scope of delivery:

- dimensioning, design
- design for the six strut system
- the development of an compensation for enlargement of components because of the baking process for vacuum
- production for all parts
- weight– 500 kg

Necessary technological capabilities:

- detailed 3D design
- billets cutting
- welding work
- baking process for vacuum to 300°C.
- painting

Frames category VI Scope of delivery:

dimensioning, design

- design for the six strut system
- production for all parts
- weight- 500 kg

Necessary technological capabilities:

- detailed 3D design
- billets cutting
- welding work
- electrolytic
- galvanizing painting

Shielding of the pbar target station (PSP 2.9.11.6.1)

The antiprotons are generated by a primary proton beam that is interacting with a nickel rod. The main purpose of the target station is the suppression of secondary particles originating from the target. The shielding of the target station is pre-designed to have 1.6 m of iron behind the target area and 1 m in each other direction from the target area. The approximate weight of the main shielding block (brown) is 150 t. The 1st door (purple) is 24 t and the 2nd one (light blue) is about 8.5 t. Both doors are sliding on the support frame (blue) and get pushed individually by the motors.

Content of delivery:

- main shielding block (150t)
- 1st (24t) and 2nd (8.5t) sliding doors
- sliding doors support and 2 sliding door motor
- graphite collimator
- copper and iron collimators stack
- adjustment table

Facility for Antiproton and Ion Research in Europe GmbH Planckstraße 1 64291 Darmstadt www.fair-center.eu

Necessary technological capabilities

- detailed 3D design
- casting steel billets
- billets cutting
- milling the required shape
- welding work
- anticorrosion processing and painting

Contract signing date (Milestone M4) 04/2020

Facility for Antiproton and Ion Research in Europe GmbH

> Planckstraße 1 64291 Darmstadt

www.fair-center.eu

Facility for Antiproton and Ion Research in Europe GmbH Planckstraße 1 64291 Darmstadt www.fair-center.eu

Shielding of the SFRS target area (PSP 2.4.11.4.1)

Super-FRS target area will require a large amount of iron shielding for radiation protection reasons. The overall work package consists of three parts with an independent PSP for each sub-work package. These three sub-work packages are the side shielding of the target area, the roof shielding, and dedicated inner shielding to balance dimension differences of the various components installed in the target area. The iron shielding serves as an inner shielding and all beamline components are installed within this iron shielding. Those components will never be directly accessible during facility operation but maintenance shall be performed from above by a so-called working platform. The side shielding must be installed in a very early phase of the project, namely during the shell construction of the target building of Super-FRS. The shielding blocks shall be made of Cast Iron Grade GJL 150 - 250 or GJS with 60Co content less than 50 ppm (parts per million) and nickel content below 0.5%. The chemical composition of the material needs to be proven using mass spectroscopic analysis. Content of delivery:

Component	Weight /component [Ton]	Total number	
Shielding block type V1	23.5	86	
Shielding block type V1 A	13	2	
Shielding block type V1 B	23	2	
Shielding block type V2	11.7	40	
Shielding block type V2 A	5.2	2	
Shielding block type V3	30.1	1	
Shielding block type V4	23	1	

Necessary technological capabilities:

- Detail 3D design
- Casting steel billets
- Billets cutting
- · Milling the required shape
- Anticorrosion processing and painting
- · Material guality inspection and certification

Contract signing date (Milestone M4) 04/2020

p-Linac: Bellows

Call for tender shall start in Q4/2019, end of delivery Q2/2021

- ~20 pieces (3 different types)
- Geometry: round, length ~10 cm, diameter DN40, DN100
- flanges: CF

Vacuum Properties

- Integral Leak rate $\leq 1 \cdot 10^{-10}$ mbarl/s
- Outgassing rate: $\leq 5 \cdot 10^{-10}$ mbar l/ scm²
- Chamber material according DIN EN 10088: 1.4404 or 1.4571
- Flange material according DIN EN 10088: 1.4306, 1.4307, 1.4404, 1.4429 or 1.4435
- UHV suitable cleaning required

- Check of welding seam according to DIN EN ISO 9712, quality class DIN EN ISO 5817B
- Surface quality Rz=25

SIS100: Beam Vacuum Cold Warm Transitions (BV-CWTs)

Call for tender shall start in Q2/2019, delivery until Q4/2020

- ~50 pieces
- 6 types
- Length: ~0.5 m
- Elliptically/star-shaped aperture of inner tube: 133 x 65 mm²
- Chamber material according to EN 10088: 1.4306, 1.4307, 1.4404, 1.4429 or 1.4435
- Corrugated (hydroformed) round bellows, material according to EN 10088: 1.4404 or 1.4571
- Flanges DN160CF, material according to EN 10088: 1.4429 ESR
- Additional Helicoflex type seal
- Bake-out jackets (on warm side) part of delivery

Vacuum requirements:

- Integral leak rate $\leq 1 \times 10^{-10}$ mbarl/s
- Outgassing rate (after bake-out) ≤ 1x10⁻¹² mbar l/(scm²)
- Operational temperature (on cold side) < 20 K
- UHV suitable cleaning
- Bakeable up to 300°C
- Bake-out cycle for acceptance test required

- Check of welding seams according to ISO 9712, quality class ISO 5817 B
- Surface quality Rz=25

BV-CWT with star-shaped inner tube

BV-CWT with elliptically shaped inner tube

SIS100: Chamber for Resonance Sextupoles

Call for tender shall start in Q4/2019 , delivery until Q2/2020

- 6 pieces
- Round tube, diameter DN160, with integrated corrugated (hydroformed) bellow
- Chamber length: 730 mm
- Chamber/bellow material according to EN 10088: 1.4429 or 1.4435
- Flanges DN160CF, material according to EN 10088: 1.4429 ESR
- Magnetic permeability µ_r ≤ 1.01
- Bake-out jackets part of delivery

Vacuum requirements:

- Integral leak rate $\leq 1 \times 10^{-10}$ mbarl/s
- Outgassing rate (after bake-out) ≤ 1x10⁻¹² mbar I/(s cm²)
- UHV suitable cleaning
- Bakeable up to 300°C
- Bake-out cycle for acceptance test required

- Check of welding seams according to ISO 9712, quality class ISO 5817 B
- Surface quality Rz=25

p-Linac: CH & CCH structures

Call for tender shall start in Q4/2019, delivery until Q4/2021

6 pieces (2 types)

Geometry: diameter ~300 to 400mm, length 1.4m to 3.7m, wall thickness ~10mm

Vacuum Properties

- Integral Leak rate $\leq 1 \cdot 10^{-10}$ mbarl/s
- Outgassing rate: $\leq 5 \cdot 10^{-10} \text{ mbar I/ scm}^2$ •
- Chamber material according DIN EN 10088: 1.4301 •
- Flange material according DIN EN 10088: •
- UHV suitable cleaning required ٠

- Check of welding seam according to DIN EN ISO 9712, quality class DIN EN ISO 5817B
- Surface quality Rz= 4 6.3 (structures will be copper plated at GSI) •
- High mechanical accuracy and tolerances for electron beam welding and complex RF structures

SIS100: Cryogenic Bellows

Call for tender shall start in Q1/2020, delivery until Q4/2021

- ~120 pieces
- ~3 types
- Length: ~0.1 m ... ~0.3 m
- Corrugated (hydroformed) round bellows
- Chamber/bellow material according to EN 10088: 1.4404 or 1.4571
- Flanges DN160CF, material according to EN 10088: 1.4429 ESR

Vacuum requirements:

- Integral leak rate ≤ 1x 10⁻¹⁰ mbarl/s
- Outgassing rate (after bake-out) $\leq 1 \times 10^{-12} \text{ mbar l/(s cm^2)}$
- Operational temperature < 20 K
- UHV suitable cleaning
- Bake-out cycle for acceptance test required

- Check of welding seams according to ISO 9712, quality class ISO 5817 B
- Surface quality Rz=25

p-Linac: Beam diagnostic chambers

Call for tender shall start end of Q4/2020, delivery Q1/2021

- ~5 pieces (4 different types)
- Geometry: round, length ~250 mm, diameter ~250mm
- with DN100CF flanges

Vacuum Properties

- Integral Leak rate $\leq 1 \cdot 10^{-10}$ mbarl/s
- Outgassing rate: $\leq 5 \cdot 10^{-10}$ mbar l/ scm²
- Chamber material according DIN EN 10088: 1.4306, 1.4307, 1.4404, 1.4429 or 1.4435
- Flange material according DIN EN 10088: 1.4306, 1.4307, 1.4404, 1.4429 or 1.4435
- UHV suitable cleaning required

- Check of welding seam according to DIN EN ISO 9712, quality class DIN EN ISO 5817B
- Surface quality Rz=25
- High accuracy of orientation of flanges towards beam axis

CR: Double Kicker Tank

Call for tender shall start in Q2/2020, delivery Q4/2020

Two tanks (one double tank) Geometry: diameter ~500mm, total length of two tanks ~4.7m Flanges per tank: 2x DN500COF, 8x DN200CF, 2x DN160CF, 8x DN100CF, 8x DN40CF, 2x DN200CF with bellow DN200

Vacuum Properties

- Integral Leak rate $\leq 1 \cdot 10^{-10}$ mbarl/s
- Outgassing rate: $\leq 5 \cdot 10^{-10}$ mbar l/scm²
- Material within the UHV range DIN EN 10088: 1.4306
- Material outside the UHV range DIN EN 10088: 1.4301
- Material for COF Flange according DIN EN 10088: 1.4429 ESR
- UHV suitable cleaning required

- Check of welding seam according to DIN EN ISO 9712
- Quality class DIN EN ISO 5817 B of vacuum tight welds
- Quality class DIN EN ISO 5817 C from all other welds
- Surface quality DIN ISO 1302
- Mechanical tolerances: DIN ISO 2768-mK & EN ISO 13920-BF

CR: Double Pick-Up Tanks

Call for tender shall start in Q1/2020, delivery Q1/2021

Two tanks (one double tank)

Geometry: diameter ~500mm, total length of two tanks ~4.7m Flanges per tank: 2x DN500COF, 8x DN200CF, 2x DN160CF. 8x DN100CF, 8x DN40CF, 2x DN200CF with bellow DN200 tank f

Vacuum Properties

- Integral Leak rate $\leq 1 \cdot 10^{-10}$ mbarl/s
- Outgassing rate: $\leq 5 \cdot 10^{-10}$ mbar l/scm²
- Material within the UHV range DIN EN 10088: 1.4306
- Material outside the UHV range DIN EN 10088: 1.4301
- Material COF Flange according DIN EN 10088: 1.4429 ESR
- UHV suitable cleaning required

- Check of welding seam according to DIN EN ISO 9712
- Quality class DIN EN ISO 5817 B of vacuum tight welds
- Quality class DIN EN ISO 5817 C from all other welds
- Surface quality DIN ISO 1302
- Mechanical tolerances: DIN ISO 2768-mK & EN ISO 13920-BF

SIS100: Drift Tubes

Call for tender shall start in Q3/2019, delivery until Q4/2021

- ~60 pieces
- ~5 types
- Length: ~0.5 m
- T-type round chambers with two integrated bellows
- Support structure for pumps as shown part of delivery
- Chamber material according to EN 10088: 1.4306, 1.4307, 1.4404, 1.4429 or 1.4435
- Corrugated (hydroformed) round bellows, material according to EN 10088: 1.4404 or 1.4571
- Flanges DN160CF, material according to EN 10088: 1.4429 ESR

Vacuum requirements:

- Integral leak rate $\leq 1 \times 10^{-10}$ mbarl/s
- Outgassing rate (after bake-out) ≤ 1x10⁻¹² mbar I/(s cm²)
- Operational temperature < 20 K
- UHV suitable cleaning
- Bake-out cycle for acceptance test required

- Check of welding seams according to ISO 9712, quality class ISO 5817B
- Surface quality Rz=25

CR: Palmer Pick-Up Tank

Call for tender shall start in Q1/2019, delivery Q4/2019

Geometry: diameter ~500mm, length ~2000m Flanges: 2x ISO-K DN500, 3x DN160CF, 17x DN40CF

Vacuum Properties

- Integral Leak rate $\leq 1 \cdot 10^{-10}$ mbarl/s
- Outgassing rate: $\leq 5 \cdot 10^{-10}$ mbar l/s cm²
- Material within the UHV range DIN EN 10088: 1.4306
- Material outside the UHV range DIN EN 10088: 1.4301
- UHV suitable cleaning required

- Check of welding seam according to DIN EN ISO 9712
- Quality class DIN EN ISO 5817 B of vacuum tight welds
- Quality class DIN EN ISO 5817 C from all other welds
- Surface quality DIN ISO 1302
- Mechanical tolerances: DIN ISO 2768-mK & EN ISO 13920-BF

Call for tender shall start in Q3/2019, delivery until Q3/2020

- 2 piecss
- length: ~ 2 m
- star-shaped aperture: 135 x 135 mm²

- SIS100: Radiation-resistant
- chamber material according DIN EN 10088: 1.44299 rm44guadrupole chambers
- Flanges DN160CF & DN300CF, material according DIN EN10088: 1.4429 ESR
- Magnetic permeability: µ_r ≤ 1.01
- Heating jacket part of delivery

Vacuum Properties:

- Integral leak rate $\leq 1 \times 10^{-10}$ mbarl/s
- Outgassing rate ≤ 1x 10⁻¹² mbar l/(scm²)
- UHV suitable cleaning
- Fully bakeable up to 250°C
- Bake-out cycle for acceptance test required

- Check of welding seam according to DIN EN ISO 9712, quality class DIN EN ISO 5817B
- Surface quality Rz=25

SIS100: Cryogenic quadrupole chambers with star-shaped cross section

Call for tender shall start in Q3/2019, delivery until Q4/2020

- 8 pieces
- 2 types
- Chamber length: 1.4 m & 1.9 m
- Star-shaped aperture: 135 x 135 mm²
- Wall thickness: 0.3 mm
- Stabilizing transversal ribs
- Four LHe cooling tubes Ø 5 mm, wall thickness 0.5 mm
- Material (chamber, ribs, cooling tubes): stainless steel BöP506 (provided by GSI); DN160CF flanges: 1.4429 ESR
- Magnetic permeability $\mu_r \le 1.01$
- Operational temperature < 10 K

Vacuum requirements:

- Integral leak rate ≤ 1x 10⁻¹⁰ mbarl/s
- Outgassing rate (after bake-out) $\leq 1 \times 10^{-12}$ mbar l/(s cm²)
- UHV suitable cleaning
- Bake-out cycle for acceptance test required

SIS100: Straight Beam Pipe

Call for tender shall start in Q4/2020, delivery until Q4/2021

FAIR GSI

- 11 pieces
- 2 types
- Round tube, diameter DN160
- Chamber length: ~1.3 m & ~3 m
- Chamber material according to EN 10088: 1.4306, 1.4307, 1.4404, 1.4429 or 1.4435
- Flanges DN160CF, material according to EN 10088: 1.4429 ESR
- Bake-out jackets and chamber support stands part of delivery

Vacuum requirements:

- Integral leak rate $\leq 1 \times 10^{-10}$ mbarl/s
- Outgassing rate (after bake-out) $\leq 1 \times 10^{-12}$ mbar l/(s cm²)
- UHV suitable cleaning
- Bakeable up to 300°C
- Bake-out cycle for acceptance test required

- Check of welding seams according to ISO 9712, quality class ISO 5817 B
- Surface quality Rz=25

p-Linac: Straight Beam Pipes

Call for tender shall start in Q4/2019, delivery until end Q3/2020

- ~10 pieces (3 to 4 different types)
- Geometry: round, length ~50cm, diameter DN40, DN63, DN100
- flanges: CF

Vacuum Properties

- Integral Leak rate $\leq 1 \cdot 10^{-10}$ mbarl/s
- Outgassing rate: $\leq 5 \cdot 10^{-10} \text{ mbar I/ scm}^2$
- Chamber material according DIN EN 10088: 1.4306, 1.4307, 1.4404, 1.4429 or 1.4435
- Flange material according DIN EN 10088: 1.4306, 1.4307, 1.4404, 1.4429 or 1.4435
- UHV suitable cleaning required

- Check of welding seam according to DIN EN ISO 9712, quality class DIN EN ISO 5817B
- Surface quality Rz=25

System Installation Project

Development, installation, and commissioning of the accelerator systems that provides high-energy (200MeV/u) and high-power (400kW) heavy-ion beam

- Providing high intensity RI beams by ISOL and IF ISOL: direct fission of ²³⁸U by 70 MeV proton IF: 200 MeV/u ²³⁸U (intensity: 8.3 pµA)
- Providing high quality neutron-rich beams e.g., ¹³²Sn with up to 250 MeV/u, up to 10⁹ particles per second
- Providing More exotic RI beam production by combination of ISOL and IF

Facility Construction Project

Construction of research and support facility to ensure the stable operation of the heavy-ion accelerator, experiment systems, and to establish a comfortable research environment

X Accelerator and experiment buildings, support facility, administrative buildings, and guest house, etc.

Korea Multi-purpose Accelerator Complex (KOMAC)

- National User Facility: Intense Proton & Ion Source for Basic & Applied Research
 - High-Power Proton Linac (100MeV, 20mA, Proton Source) under operation
 - 1 GeV, 2MW Upgrade (Spallation Neutron Source) under R&D study
- 100MeV Linac developed through Proton Engineering Frontier Project (2002 2012)
- Funding: 300M USD (Government (57%), Local Gov. (39%), & Industry (4%))
- Lead Institute : Korea Atomic Research Institute (KAERI)
- KOMAC Operation as one of branches of KAERI (2013~)

Main Facilities

✤ Building layout at KOMAC

100 MeV Linac and Beamlines

100 MeV linac and beamline specification and layout						
F	eatures of KOMAC 100MeV linac	Output Energy (MeV)	20	100		
•	50-keV Injector (Ion source + LEBT)	Max. Peak Beam Current (mA)	1 ~ 20	1 ~ 20		
0	3-MeV RFQ (4-vane type)	Max. Beam Duty (%)	24	8		
\bigcirc	20 & 100-MeV DTL	Avg. Beam Current (mA)	0.1 ~ 4.8	0.1 ~ 1.6		
0	RF Frequency : 350 MHz	Pulse Length (ms)	0.1 ~ 2	0.1 ~ 1.33		
0	Beam Extractions at 20 or 100 MeV	Max. Repetition Rate (Hz)	120	60		
\bigcirc	5 Beamlines for 20 MeV & 100 MeV	Max. Avg. Beam Power (kW)	96	160		

100 MeV Proton Linac

✤ 100 MeV linac / beamline development and operation

- Linac commissioning at 2013
- General purpose beamline and user service starts (2013~)
- RI production beamline (2016~)
- Low flux beamline (2017~)
- Total 4 beamlines are under user service at 2019

100 MeV Proton Linac Operation Statistics

Machine availability and main failure components

Year	2013	2014	2015	2016	2017	2018	Sum
Operation hours	2,290	2,863	2,948	2,961	3,231	3,038	17,331
Unplanned Downtime	412	392	280	151	164	134	1,534
Machine Availability	82.0%	86.3 %	90.5%	94.9%	94.9%	95.6%	91.1%

• Availability: improved to ~95%

100 MeV Proton Linac User Service Statistics

100 MeV Proton Linac Beamline 1

General Purpose Beamline: 20-MeV / 100-MeV Proton

- Application : Proton beam irradiation for general purpose (material / nano-science, semiconductor etc.)
- Proton beam
- Energy: 20 MeV / 33 ~ 100 MeV
- Beam power: 10 kW @ 100 MeV
- Status : Under operation (2013~)

Hot cell for sample manipulation

Beam irradiation station

100 MeV Proton Linac Beamline 2

✤ RI Production Beamline: 100-MeV Proton

- Application
- RI production: Cu-67, Sr-82, etc.
- Proton beam
 - Energy: 33 ~ 100 MeV
 - Beam power: 30 kW @ 100MeV
- Status
- Completed installation: Dec. 2015
- Status: Under operation (2016~)

Target Preparation

RI Target (60 mm dia., 16.6 mm thick)

^{nat}Rb(p,x)⁸²Sr

100 MeV Proton Linac Beamline 3

Low-flux Beamline: 100-MeV Proton

Application : Space radiation, Detector R&D, Bio etc.

Proton beam

- Energy: 100 MeV
- Avg. Current : 0.13 nA (1.6 nA peak, duty 8%, 60 Hz)
- Uniformity: < 10%, 100 mm X 100 mm</p>
- Flux: 1x10⁵ ~ 1x10⁸/cm² @ peak
- Status : Under operation (2017~)

Accumulated dose during irradiation on sample

Near Future Plan 1

✤ Li-8 Beamline: 100-MeV Proton

- **O** Application : Li-8 based β-NMR
- Proton beam
- Energy: 100 MeV
- Beam Power: 1 kW @ 100 MeV
- Li-8 Ion Production: 1x10⁶ pps
- Target: BeO
- Status : Prototype development (2017~)

Plan : High power target ion source, β-NMR facilities

SIS heationg current (A) 100 200 300 400 500 2200 - Target heater --- Surface ion source 2000-1800 Temperature (°C) 1600 1400 1200 1000 800. 1200 400 600 800 1000 1400 Heater current (A) Heating current vs. temperature

Near Future Plan 2

✤ Pulse Neutron Beamline: 100-MeV Proton

- Application : Fast neutron production
- Proton beam
- Energy: 100 MeV
- Beam Power: 1 kW @ 100 MeV (upgrade 160 MeV)
- Target: Copper (plan to change to W)
- Status : Neutron utilization @ 100 MeV, 1kW (2018~)

Angular distribution of the neutron Neutron spectrum compared with

 Plan : Accelerator energy upgrade, target improvement, neutron facility

the ground spectrum

1.00E+10
Future Plan

- **<u>Neutron Sources</u>**: Materials, Bio-life, Energy, Environment, etc.
 - Long Pulse (1.3 ms): Spatial resolution: μm~nm, Temporal resolution: μs~ns
 - > SANS, Holography, Phase shift interferometry, Static & Dynamic tomography, Spin echo, etc.
 - Short Pulse (~µs): Spatial resolution: 0.01~10 nm, Temporal resolution: ns~fs
 - Elastic scattering, Diffraction, PGAA, Neutron resonance transmission, Neutron resonance capture analysis, Neutron spectroscopy, Neutron stimulated emission CT, etc.

Overview of The Rare Isotope Science Project (RISP)

1. Overview RAC

RAON Layout

SCL1 has been decided to be pended

: SCL3 is going to be taking a role of SCL1 in the early operation

1. Overview Project Milestone

2. Construction

Building Layout

Building Layout

Accelerator System

3. Sys. Install.

기초과학연구원 Institute for Basic Science

3. Sys. Install.

RI & Experimental System

Rare Isotope

Science Projec

Major achievements

QWR cryomodule test complete (2017.05)

HWR cryomodule test complete (2018.03)

Superconducting RF Test facility(2016.06) ----📙 🔤 witz HBANA

1st Oxygen Ion beam acceleration with QWR module, SCL Demo(2017.10)

High purity Sn beam extraction using RILIS (2015.12)

1st Oxygen Ion beam acceleration with RFQ(2016.12)

Summary & Outlook

Accelerator

4. Summary

- Mass production for SCL3 is under way
- SCL2 is under pre-production phase
- From April, 2019, installation for SCL will start from SCL3
- Test facility for cavities and cryomodules will operate from next Jan.

By the end of 2021, we will achieve

- SI beams: Stable ion beams (¹⁶O, ⁴⁰Ar) from ECRIS \rightarrow SCL3 \rightarrow low E exp hall
- **RI beams:** RIBs extraction from ISOL \rightarrow re-acceleration through SLC3 \rightarrow low E exp hall
- Stable / RI beams will be delivered to low-E experimental hall
- Early phase experiments are going to be performed using KOBRA
 DIPs production at KOPPA (Acs 50, beam approved 20 Ma)/(u) using SI beam approved 20 Ma)/(u) u) u)
 - \rightarrow RIBs production at KOBRA (A<~50, beam energy < 20 MeV/u) using SI beams from SCL3
- Beam commissioning starts for SCL2
- Installation and commissioning for IF, LAMPS, Neutron, bio-medical and muSR
 → Collaborative works with RUA (RAON Users Association) via RULC (RAON Users Liason Center)

Post RISP (2021 ~)

- Beam acceleration for ISOL → SCL3 → SCL2 → IF (ISOL+IF)
- Beam commissioning and experiments for IF, LAMPS, Neutron, bio-medical and muSR
- Ramping-up to get the 400kW beams (more 5 yrs)
- Energy upgrade to 400MeV/u (require budget)

Super Charm-Tau factory: project status

P. Logachev

5+5 Meeting, CERN, April 15

Two colliders VEPP-2000 and VEPP-4M at BINP operate with new injection complex (since 2017)

E = 400 MeV, N = 10¹¹ e+-/s

VEPP-2000

□ The world highest luminosity collider below 2 GeV (excl. phi1019 energy)

Physics at VEPP-2000

CMD-3 detector

- Main goal: study of $\gamma^* \rightarrow hadrons$ below 2 GeV,
 - in particular
- $\sigma(e^+e^- \rightarrow hadrons)$ for muon (g-2)
- measurement of p and n formfactors

SND detector

SUPER CHARM- TAU FACTORY IN NOVOSIBIRSK

Super Charm-Tau (CT) Factory is a double ring e+e- collider to be operated in the center-of-mass energy range from 2 to 6 GeV, with a peak luminosity of about 10³⁵ cm⁻²s⁻¹ (Crab Waist collision) and with longitudinally polarized electrons at the IP.

Cryostat with SC FF magnets

Accelerator present status

- Max beam energy increased from 2.5 GeV to 3 GeV
- Max peak luminosity at 3 (1) GeV is 1.9 (0.5)×10³⁵ cm⁻²s⁻¹
- Three Siberian Snakes provide longitudinally polarized e-
- Collider conceptual design is completed; no showstoppers are found

e⁻ po

CONFIGURATION AND PARAMETERS

(REVISED AFTER EXPERIENCE WITH FCC STUDY!)

123

BEAM DYNAMICS AND POLARIZATION

All essential beam physics issues were considered (optics, nonlinear beam dynamics, longitudinal polarization, IBS, etc.). No showstoppers are revealed.

Super C/tau Factory at Novosibirsk

(physics)

- Charm mixing
- CP violation in charm decays
- Rare and forbidden charm decays
- Standard Model tests in τ leptons decays
- Searches for lepton flavor violation $\tau \rightarrow \mu \gamma$
- CP/T violation searches in τ leptons decays

Requirements: $L > 10^{35}$ cm⁻² s⁻¹, longitudinal polarization, General Purpose Detector with best possible PID

If even one beam polarized, τ almost 100% longitudinally polarized near the threshold Polarization may increase sensitivity by several times!

Detector concept

Requirements

- > Occupancy 300 kHz
- Good energy and momentum resolution
- > High detection efficiency of soft tracks
- > Best possible π/K and π/μ separations
- Minimal CP detection asymmetry

FARICH: prototype tested. Record K/ π and π/μ separation achieved

SCT current status: expertise and partnership development

The conceptual design of the new facility, which had been developed at the BINP with the participation of Russian and foreign partners, was highly evaluated by Russian and foreign experts

Dedicated meeting of European Committee on Future Accelerators, ECFA in 2011 declared, in particular, that ...Committee members are all convinced by the physics case of the SCT ... Contribution of such a machine would further enhance the international role of Russia and attract a worldwide interest

International scientific organizations (CERN, JINR) and authoritative and prominent scientists (among them – Atsuto Suzuki, Rolf Heuer, Tatsuya Nakada, and Nobel Prize Winner in Physics Martin Perl) have expressed their support for the SCT. In 2012, the SCT project got highest scores with specific recommendations of the Expert Group on the Assessment of EU Cooperation with Six Russian Federal Megascience Projects (European Commission, Directorate General for Research and Innovation): ...this project would be an immensely appropriate project for Novosibirsk and it would give Russia a place at the table of a small club with world-class machines.

A number of countries and facilities have been formally involved in SCT to date (MoU/LoU, cooperation agreement etc.). These include:

- Switzerland (European Organization for Nuclear Research, CERN, Genève) – international organization
- > China (Institute of High Energy Physics, IHEP, Bejing)
- Italy (Istituto Nazionale di Fisica Nucleare, Frascati INFN-LNF)
- > Japan (High Energy Accelerator Research Organization, KEK)
- > UK (John Adams Institute for Accelerator Science, JAL)

≻ ...

SCT current status: executive progress

- In 2011, the SCT project became one of the six mega-science class projects selected by a Governmental Commission for implementation on the territory of the Russian Federation.
- In June 2017, the SCT project is included in the plan for the implementation of the first phase of the Strategy for Scientific and Technological Development of the Russian Federation (activity: formation of international collaborations, completion of design, feasibility study – should be completed till October, 2019)
- A number of agreements between Russian research organizations for development and creation of new mega-science facilities on the territory of the Russian Federation are signed
- Support from EU grant CREMLIN (Connecting Russian and European Measures for Large-scale Research Infrastructures), 2015-2018, in partnership with CERN (new project CREMLIN+ submitted in March, 2019 to EU)
- Preliminary road map and CDR are prepared, this work is go on with expanding participation of Russian and international community
- First international workshop on SCT factory May, 25-27 (Novosibirsk)
- Second international workshop on SCT factory Dec, 7-12 (Orsay)
- First Meeting of International Advisory Committee May, 26-27, 2018

Образец заголовка

•	Accelerator Complex	207 MEuro
•	Detector	91 MEuro
•	Buildings infrastructure	100 MEuro

• BINP has already invested 37 MEuro in the capital construction and injection complex

Conclusion

- Several generations of colliders and detectors s uccessfully operated at Budker INP with worldwide recognized contributions to particle phys ics
- VEPP-4M and VEPP-2000 with 3 detectors are i n operation at present → interesting physics in the coming years
- Budker INP successfully collaborates in a few o utstanding experiments outside

Status of NICA at JINR

<u>A.Kovalenko</u>, V.Kekelidze, R.Lednicky, V.Matveev, I.Meshkov,, A.Sorin, G.Trubnikov, R.Tsenov Joint Institute for Nuclear Research, Dubna

> QUARKS-2018 26 May-03 June 2018, Valday, Russia

Volga

river

NICA

NICA (Nuclotron based Ion Colider fAcility

Main targets:

- study of hot and dense baryonic matter

at the energy range of max baryonic density

- investigation of nucleon spin structure, polarization phenomena

- development of accelerator facility for HEP @ JINR : construction of collider of relativistic ions from **p** to **Au**, polarized protons and deute-rons with max energy up to $\sqrt{S_{NN}}$ = **11** GeV (Au⁷⁹⁺) and =**27** GeV (p)

NUCLOTRON BASED ION COLLIDER FACILITY

experiments at NICA

Structure and Operation Regimes

Injection complex: 4 ion sources

	Source	KRION-6T	Laser	Douplasmatron	SPI new !
to be d	particles	Au ³¹⁺	up to Mg ¹⁰⁺	p, d, He ²⁺	↑p,↑d
	particle/cycle commissioned	~2.5 109	~10 ¹¹	p, d ~5 10 ¹² He ²⁺ ~10 ¹¹	5 10 ¹¹
	repetition, Hz	10	0,5	1	0,2

QUARKS-2018, June 2, 2018

Injection complex: 2 Linacs

Linac	LU-20	HILAC new !
structure (section number)	RFQ + Alvarez type	RFQ + IH DTL(2)
mass to charge ratio A/Z	1-3	1-6
injection energy, keV/amu	150 for A/Z 1-3	17
extraction energy, MeV/amu	5 (A/Z 1-3)	3.24 (A/Z=6)
input current, mA	up to 20	up to 10

LU-20 – new fore-injector: JINR, INR, ITEP, MEPHI

QUARKS-2018, June 2, 2018

HILAC: "BEVATECH OHG"

Machines: Nuclotron (in operation since 1993)

Parameters	Nuclotron
type	SC synchrotron
particles	p, d, (p, d polarized), nuclei
injection energy, MeV/u	5 (p, d) 570-685 (<mark>Au</mark>)
max. kin. energy, GeV/u	12.1 (p); 5.6 (d); 4.4 (<mark>Au</mark>)
magnetic rigidity, T m	25 - 43.25
circumference, m	251.52
cycle for collider mode, s	1.5-4.2 (active); 5.0 (total)
vacuum, Torr	10 ⁻⁹
intensity, Au ions/pulse	1 10 ⁹
transition energy, GeV/u	7.0
RF range, MHz	0.6 -6.9 (p,d) 0.947 – 1.147 (nuclei)
spill of slow extraction, s	up to 10

modernized in 2010-2015

Machine: Booster (under construction)

		Li So Yon (South Korean Cosmonal		
Parameter	Booster	LHEP JINR, Dubna, 7 Sep., 201		
type	SC synchrotron	ampty Voko of Synchrofacatron		
particles	ions A/Z <u><</u> 3	empty Toke of Synchronasatron		
injection energy, MeV/u	3.2			
maximum energy, GeV/u	0.6			
magnetic rigidity, T m	1.6 – 25.0			
circumference, m	210.96			
cycle for collider mode, s	4.02 (active); 5.0 (total)	tunnel for Booster		
vacuum, Torr	10 -11			
intensity, Au ions/pulse	1.5 10 ⁹			
transition energy, GeV/u	3.25			
RF range, MHz	0.5 -2.53			
spill of slow extraction, s	up to 10			
	Commissioni	ng in 2019		

BINP contribution to the Booster

- tested at JINR Oct. **'14**
- commissioning 2017

fabricated and tested at BINP in 2016 delivered to JINR in April 2017 commissioned in 2017

Project status: on schedule

QUARKS-2018, June 2, 2018 A.Kovalenko for NICA Collaboration

Nuclotron development

- Solution Stable and safe operation up to maximum design energy
- So Beam time for users > 70%
- Ge Time losses < 8%</p>
- Development of cryogenic facility
- Modern automatic control system based on TANGO
- Test of stochastic cooling
- New RFQ fore-injector for LU-20

2 – 4 GHz bandwidth, the cooling of bunched and coasting deuteron and carbon beams was achieved

momentum spread of d beam

Nuclotron runs in 2015 - 2018

- Run 51 (d, Li, C)
- Run 52 (d...) *Technical*
- Run 53 (d[†], Li)
- Run 54 (d↑,p↑), C
- Run 55 (C, Ar, Kr,)

26 Jan. - 26 Mar., June 2 –July 8, Oct.19 – Dec. 25 , Feb. 1 – Mar. 24 , Feb. – April

QUARKS-2018, June 2, 2018

Nuclotron run in 2018

• Run – 55 (C, Ar, Kr,)

Feb. – April **2018**

45 T*m, 4.5 GeV/u for **Au**⁷⁹⁺

SC Magnets for Booster, Collider & SIS-100/FAIR workshop at VBLHEP JINR (bld. 217)

Serial tests of Booster magnets have started

He liquefier has been put in operation, 1000 l/h

Physics program and the setups at NICA

Exploration of the QCD PD - Density Frontier

Exploring high-density baryonic matter: maximum freeze-out density

NICA is well suited for exploring the transition between the hadronic and q-gphases at the highest baryon density. This is the top priority of the NICA program.

Physics objectives

- Bulk properties, EOS
 particle yields & spectra, ratios, femtoscopy, flow
- In-Medium modification of hadron properties
 onset of low-mass dilepton enhancement
- Deconfinement (chiral) phase transition at high r_B
 - enhanced strangeness production
- QCD Critical Point
 - event-by-event fluctuations & correlations
- Chiral Magnetic (Vortical) effect, L polarization
- Hypernuclei

New issues: NICA White Paper, SQM proceedings

Physics targets for the exploration of first order phase transitions in the region of the QCD phase diagram accessible to NICA & CBM and possible observable effects of a "mixed phase culminates this year in the release of the "NICA White Paper" as a Topical Issue of the **EPJ A** (July2016).

The European Physical Journal

QUARKS-2018, June 2, 2018

zed by European Physical Societ Hadrons and Nuclei Topical Issue on Exploring Strongly Interacting Matter at High Densities - NICA White Paper edited by David Blaschke, Jörg Aichelin, Elena Bratkovskaya, Volker Friese, Marek Gazdzicki, Jørgen Randrup, Oleg Rogachevsky, Oleg Tervaev, Viacheslav Toneev From: Three stages of the NICA accelerator comple by V. D. Kekelidze et al. Deringer

volume 52 · number 8 · august · 2016

A.Kovalenko for NICACollaboration

111 contributions,**188** authorsfrom **24** countries

New issue of the ESFRI Roadmap

Main Research Infrastructure in Particle and Nuclear Physics

Present and future HI experiments

Present and future HI F.T. experiments

Baryonic Matter at Nuclotron (BM@N)

experiment at Nuclotron extracted beams

- ✓ strange / multi-strange hyperon and hypernuclei production at the threshold
- ✓ hadron femtoscopy
- ✓ short range correlations
- </ event-by event fluctuations
- ✓ in-medium modifications of strange & vector mesons in dense nuclear matter
- \checkmark electromagnetic probes, states decaying into γ , e (with ECAL)
- QUARKS-2018, June 2, 2018 A.Kovalenko for NICA Collaboration

BM@N plans

year	2016	2017 FebMar.	2017 NovDec.	2019	2020 +		
beam	d (∱)	C, Ar	Kr	Au	Au, p		
maximum intensity, Hz	1M	1M	1M	1M	10M		
trig. rate, Hz	10k	10k	20k	20k	50k		
central tracker	6 GEM half pl.	8 GEM half pl.	10 GEM half pl.	8 GEM full pl.	12 GEM or 8+2Si		
expiment status	techn. run	techn. run	physics run	physics stage 1	physics stage 2		
			beam: E _{kin} = 3.5, 4.0, 4.5AGeV				

Present and future HI collider experiments

MultiPurpose Detector (MPD)

Main target:

- study of hot and dense baryonic matter at the energy range of max net baryonic density

PPC BSU, Minsk, Belarus; ٠ WUT, Warsaw, Poland; •

INR, RAS, Russia;

QUARKS-2018, June 2, 2018

MEPhI, Moscow, Russia.

MPD Collaboration:

JINR, Dubna;

•

•

•

SS, HU, Huzhou, Republic of South Africa.

A.Kovalenko for NICACollaboration

MPD detector for Heavy-Ion Collisions @ NICA

A.Kovalenko for NICACollaboration

QUARKS-2018, June 2, 2018

Vitkovice Heavy Machinery, Ostrava

Support rings: Ø 6.63 m, 43.7 tons each need to have holes machining, sandblasting, painting

Cradles 2 main parts are in progress: 1.47x4.15x7.68, m; 34 tons in total

Two 80/20 tons Cranes by "URALKRAN" are rea^Ad^py^{pendix 2}

NICA schedule

	2015	2016	2017	2018	2019	2020	2021	2022	2023
Injection complex									
Lu-20 upgrade									
HI Source									
HI Linac									
Nuclotron									
general development									
extracted channels									
Booster									
Collider									
startup configuration									
design configuration									
BM@N									
l stage									
II stage									
MPD									
solenoid									
IPC, IOF, ECal (barrel)									
Civil engineering									
MPD Hall									
SPD Hall									
collider tunnel									
HEBT Nuclotron-collider									
Cryogenic									
for Booster									
for Collider									

running time

In the medium-term prospect the NICA complex will be the only facility in Europe providing unique high intensity ion beams (from **p** to **Au**, **p** and **d**) **in the energy range** from **2 – 27 GeV** (c.m.s.), which could be used for both fundamental and applied researches.

Researches at the NICA complex will contribute to

- discovery and study of new forms of nuclear matter;
- comprehensive study of nucleon spin structure;
- applied researches, like irradiation of biological objects by heavy ion beams (space mission program) etc.

NICA operation in Polarized Mode (1)

Polarization control for p and d in NICA collider

	number	B _{max} , T	L, m	BL, T ≃ m
Main tune shifts solenoid	8	7,3	5,5	0**40
Weak solenoid for polarization control (red)	6	1,5	0,4	0₩0,6

Study of nucleon spin structure

must confirm the sum rule:

$$\frac{1}{2} = \frac{1}{2}\Sigma_q + \Sigma_g + L_q + L_g.$$

NICA collider will provide collisions of protons and deuterons with all combinations of polarization – *transversal and longitudinal*

It will allow to measure all 8 intrinsic-transverse-momentum dependent PDFs (at leading twist) in one experiment

Matveev-Muradyan-Tavkhelidze-Drell-Yan mechanism and SIDIS processes – are good tools for these measurements

Direct photons production

(gluon polarization)

QUARKS-2018, June 2, 2018

A.Kovalenko for NICACollaboration

RF Government disposal

ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ

РАСПОРЯЖЕНИЕ

от 27 апреля 2016 г. № 783-р

москва

О подписании Соглашения между Российской Федерации и международной научно-исследовательской организацией О ядерных исследований о создании и экс сверхпроводящих колец на встречных пуч

1. В соответствии с пунктом 1 стать "О международных договорах Российскої представленный Минобрнауки России соглас Минфином России, Минэкономразвития I межправительственной научно-исследова Объединенным институтом ядерных исследова между Правительством Российской Феде межправительственной научно-исследова Объединенным институтом ядерных ис и эксплуатации комплекса сверхпроводящих тяжелых ионов NICA (прилагается). конфигурации комплекса сверхпроводящих колец на встречных пучках тяжелых ионов NICA до 2020 года в размере 8800 млн. рублей (в ценах 2013 года) за счет средств федерального бюджета. 4. Минобрнауки России выделить в 2016 году 4837,9 млн. рублей

3. Определить вклад Российской Федерации в создание базовой

В

едеральным

скую

OB

международную

в целях финансового

их колец на встречных

жетных ассигнований,

м числе за 2016 год

ьеме 2340 млн. рублей,

ачиная с формирования

последующие периоды

джетные ассигнования

ии "Развитие науки и

ния вклада Российской

лекса сверхпроводящих

финансирования

организацию

законом

Agreement between the RF Government and the Joint Institute for Nuclear Research

has been signed on June 3-d

2. Поручить Минобрнауки России провести переговоры с международной межправительственной научно-исследовательской организацией Объединенным институтом ядерных исследований и по достижении договоренности подписать от имени Правительства Российской Федерации указанное в пункте 1 настоящего распоряжения Соглашение, разрешив вносить в прилагаемый проект изменения, не имеющие принципиального характера.

колец на встречных пучках тяжелых ионов NICA до размера, указанного в пункте 3 настоящего распоряжения.

Д.Медведев

2947103

Concluding remarks NICA complex has a potential for competitive research in dense baryonic matter and spin physics The construction of accelerator complex is going well in close cooperation with many laboratories The construction of both detectors BM@N & MPD is going close to the schedule, SPD project and spin physics program are under preparation NICA recognized as a part of European research infr. NICA got a status of mega-project developed at RF **NICA** is open for new participants

Thank you!

EIC Accelerator Overview and R&D

Ferdinand Willeke, BNL EICUG Annual Meeting, Paris 2019

Electron Ion Collider

Outline

- Requirements
- Design concepts
- Luminosity
- Polarization
- Hadron Cooling
- Beam Dynamics Consideration
- R&D
- Summary

Electron lon Collider

Electron Ion Collider (EIC) Physics Questions

Nuclear Physics Community compiled an EIC WHITE PAPER^{*}) (2014/5):

- How are quarks, gluons & their spins distributed in space & momentum in nucleus?
- How do nucleon properties emerge from quarks and gluons and their interactions?
- How do color-charged quarks, gluons & colorless jets, interact with a nuclear medium

177

Electron Ion Collider.

- How do confined hadronic states emerge from quarks & gluons
- How do the quark-gluon interactions create nuclear binding?
- How does dense nuclear environment affect the quarks-gluons correlations & interactions?
- Does gluon density in nuclei saturate @ high energy result in gluonic matter with universal properties?

*) A. Accardi et al, Eur. Phys. J. A529:268 (2016)

Requirements on EIC Performance

The EIC is designed to meet the requirements set forth in NSAC Long Range Plan, which was emphasized by the NAS report:

- Highly polarized (~70%) electron and nucleon beams
- Ion beams from deuterons to the heaviest nuclei (uranium or lead)
- Variable center of mass energies from ~20 ~100 GeV, upgradable to ~140 GeV
- High collision luminosity $\sim 10^{33} 10^{34}$ cm⁻²s⁻¹
- Possibilities of having more than one interaction region

There are two proposals:

- JLEIC to be constructed at Jefferson Lab
- **eRHIC** to be constructed at Brookhaven National Lab

Both design benefit from existing Nuclear Physics infrastructure and are based on the same accelerator principles:

- Electron Storage Rings with frequent injection of fresh polarized beams
- Hadron storage rings with strong cooling or alternatively frequent injections

179

Electron Ion Collider.

JLEIC Layout

- Full-energy top-up injection of highly polarized electrons from CEBAF ⇒ High electron current and polarization
- Full-size high-energy booster ⇒
 Quick replacement of colliding ion beam ⇒
 High average luminosity
- High-rate collisions of strongly-focused short low-charge low-emittance bunches similarly to record-luminosity lepton colliders ⇒ High luminosity
- Multi-stage electron cooling using demonstrated magnetized cooling mechanism ⇒
 Small ion emittance ⇒
 High luminosity

- Figure-8 ring design ⇒
 High electron and ion polarizations, polarization manipulation and spin flip
- · Integrated full acceptance detector with far-forward detection sections being parts of both machine and detector
- Upgradable to 140 GeV CM by replacing the ion collider bending dipoles only with 12 T magnets

eRHIC

Hadrons up to 275 GeV

eRHIC is using the existing RHIC complex: Storage ring (Yellow Ring), injectors, ion _____ sources, infrastructure,

- Need only few modifications for eRHIC
- Todays RHIC beam parameters are close to what is required for eRHIC
- Electrons up to 18 GeV

Electron Ion Collider.

- Electron storage ring with up to 18GeV → E_{cm} = 20 GeV -141 GeV installed in RHIC tunnel. Beam current are limited by the choice of installed RF power 10 MW.
- Electron beams with a variable spin pattern accelerated in the on-energy, spin transparent injector: Rapid Cycling Synchrotron with 1-2 Hz cycle frequency in the RHIC tunnel
- Polarized electron source and 400 MeV s-band injector linac in existing tunnel
- Design meets the high luminosity goal of L = 10³⁴ cm⁻²s⁻¹

Key EIC Machine Parameters

as required by the NSAC LRP & NAS

Parameter	Unit	JLEIC	eRHIC
Center of Mass Energies	[GeV]	20-100 a)	20-140
Ion Species		p to U	p to U
Number of Interaction Regions		2	2
Hadron Beam Polarization		85%	80%
Electron Beam Polarization		80%-85%	80%
Maximum Luminosity	[10 ³⁴ cm ⁻² s ⁻¹]	1.55	1.3

a) upgradable to 140 GeV

High Luminosity Implementation

As both designs, JLEIC and eRHIC are storage ring designs, the same ingredients are required for large luminosity

- Large bunch charge
- Many bunches → large total beam currents
 - ➔ crossing angle collision geometry
- Small beam size at collision point achieved by

* small emittance

- Small hadron emittance requires strong hadron cooling (or frequent injection)
- * and strong focusing at IR (small β)
 - \rightarrow required short bunches \rightarrow need strong cooling

Beam-Beam Limit: Transverse beam density at collision point limited by the detrimental effect of the corresponding nonlinear lens

Electron lon Collider.

EIC Luminosity

IR Designs can be adjusted to obtain peak luminosity at different center of mass energies. The curves below show luminosity vs E_{cm} with IRs optimized for high or low center of mass energy. With two IRs, in principle both optimization can coexist in the same machine

Strong Hadron Cooling and High Luminosity

For high luminosity operation of the EIC strong hadron cooling is desirable if not necessary to avoid rapid decay of the luminosity caused by emittance blow-up due to intrabeam scattering

The two proposals operate at different ranges of hadron energy and the cooling systems are optimized accordingly.

- JLEIC uses a multi-turn magnetized bunched electron beam cooling ring fed by an energy recovery linac to balance IBS growth time between 15 and 40 minutes. This cooling increases the luminosity at lower energies, however JLEIC is not relying in this cooling for reaching NSAC goals, as it can use short fills with rapid turn arounds for achieving high average luminosity quoted as 1·10³⁴ cm⁻²s¹.
- eRHIC has only modest IBS growth rates of t>2h for highest luminosity. It uses micro-bunched electron cooling as an option but does not rely on cooling to operate at highest luminosity as there is an on-energy for frequent injections available which results in an average luminosity which is still 90% of the peak luminosity.

185

Electron Ion Collider.

Strong Hadron Cooling Scheme for JLEIC

- Magnetized electron beam for higher cooling efficiency
- Cooling electron beam is energy-recovered to minimize power consumption
- 11-turn circulator ring with 1 amp of beam current relaxes electron source requirements
- · Fast harmonic kicker to kick electrons in and out of the circulator ring
- · Pre-cooling a low energy is essential to achieve the anticipated performance

eRHIC Strong Hadron Cooling

- Micro-bunched cooling is a novel scheme based on available technology
- For eRHIC, strong cooling as desirable but not necessary for high luminosity (especially high average luminosity) as the hadron beam could be replaced frequently on-energy using the existing second ring of present RHIC. As the JLEIC scheme, this option requires electron cooling at low energy.

187

Electron Ion Collider.

Alternative to Strong Hadron Cooling in eRHIC

- eRHIC maximum luminosity of 1.10³⁴ cm⁻²s⁻¹ does not depend on the feasibility of strong hadron cooling.
- Since RHIC has a second superconducting ring, the Blue Ring, on-energy injections into the collider ring, the Yellow Ring will replace the hadron bunches after one hour of storage.
- Transfer takes 13 μs and will preserve the total charge in both machines, no transient injection effect.

- The emittance growth between injections is so small that an average luminosity of 0.9·10³⁴ cm⁻²s⁻¹ will be achieved.
- The required small vertical emittance ϵ_{Ny} = 0.5 µm will be achieved with standard DC electron beam cooling in the AGS.

188

Electron Ion Collider.

No new hardware for spin transparency is required

eRHIC Rapid Cycling Synchrotron Polarization

Ingenious optical design: High periodicity arcs and unity transformation in the straights suppresses all systematic depolarizing resonances up to $G\gamma$ =45

- → resonance free acceleration up >18 GeV
- → no loss of polarization on the entire ramp up to 18 GeV (100 ms ramp time)

Need well aligned quadrupoles and rms orbit ≤ 0.5 mm and good reproducibility

➔ Well within the present state of the art of orbit control and achieved today by NSLS-II Booster synchrotron

189

Electron Ion Collider.

Polarization in the electron storage ring

- Solenoid based Spin rotators → longitudinal spin in collisions (arcs: vertical polarization)
- High initial polarization of 85% will decay towards equilibrium polarization P_{∞} due to Sokolov-Ternov effect
- P_{∞} of 40-50% achievable (HERA experience and eRHIC simulations)
- Time evolution of high polarization of bunches injected into the eSR at 18 GeV (worst case)
 RCS cycling rate = 2Hz → on average, every bunch refilled in 2.2 min

JLEIC High Electron Polarization

- Two highly polarized bunch trains maintained by top-off
- Universal spin rotator
 - Minimizes spin diffusion by switching polarization between vertical in arcs and longitudinal in straights
 - Sequence of solenoid and dipole sections
 - Geometry independent of energy
 - Two polarization states with equal lifetimes
 - Basic spin match

 Advantage of figure-8 geometry: negligible depolarization demonstrated by spin tracking

electrons

Courtesy: V Morozov, A Servi Electron Ion Collider.

191

eRHIC Hadron Polarization

eRHIC will fully benefit from present RHIC polarization and near future upgrades

Measured RHIC Results:

- Proton Source Polarization 83 %
- Polarization at extraction from AGS 70%
- Polarization at RHIC collision energy 60%

Planned near term improvements:

AGS: Stronger snake, skew quadrupoles, increased injection energy

→expect 80% at extraction of AGS

RHIC: Add 2 snakes to 4 existing no polarization loss

→ expect 80% in Polarization in RHIC and eRHIC

Expected results obtained from simulations which are benchmarked by RHIC operations

192

³He in eRHIC with six snakes

Achieved 85% polarization in 3He ion source Polarization preserved with 6 snakes for up to twice the design emittance

Deuterons in eRHIC:

Requires tune jumps in the AGS, then benchmarked simulation show 100% Spin transparency No polarization loss expected in the eRHIC hadron ring

Ion Polarization in JLEIC

- Figure-8 concept: Spin precession in one arc is exactly cancelled in the other
- Spin stabilization by small fields: ~3 Tm vs. < 400 Tm for deuterons at 100 GeV
 - Criterion: induced spin rotation >> spin rotation due to orbit errors
- 3D spin rotator: combination of small rotations about different axes provides any polarization orientation at any point in the collider ring
- No effect on the orbit

Interaction Region Design

The interaction regions are the most challenging part of a EIC design.

- It needs to fit several essential components into a relatively small area
- Such as: Strong focusing, spin rotators, crab cavities, auxiliary detectors, mask and collimators, diagnostic equipment
- The accelerator components should not compromise the detector acceptance
- Design has to take into account that there are beam dynamics constraints: IR chromaticity and related dynamic aperture issues, beam-beam tune shift, tight tolerances for magnet errors, residual crab cavity effects, ...

EIC High Luminosity with a Crossing Angle

crossing angle is necessary to avoid parasitic collisions due to short bunch spacing, make space for machine elements, improve detection and reduce detector background, q =50 mrad (JLEIC), 25mrad (eRHIC)

However, crossing angle causes

- Low luminosity
- Beam dynamics issues
 - Crab Crossing

Effective head-on collision restored and most severe beam dynamic issue resolved

Both JLAB and BNL developed prototypes which have been tested with beam in the Cern-SpS

Courtesy V. Morozov and Andrei Seryi

195

Electron Ion Collider.

JLEIC Full Acceptance IR Layout

- 50 mrad crossing angle
- Forward hadron detection in three stages
 - Endcap

٠

•

Roman pots End caps Small dipole covering angles up to $\sim 3^{\circ}$ hadrons • Far forward, ~10 mrad, electrons for particles passing through +50 mradSecondary accelerator quads focus Low-Q2 tagger Low Q^2 tagger Small-angle electron detection Large beta functions in the IR up to 4 km but manageable chromatics and dynamic Central detector aperture +10 mradCourtesy V., Morozov, A. Servi Electron Ion Collider. 196

Full Acceptance eRHIC IR Layout

<u>Design</u>

- All superconducting magnets
- Only 5 magnets need collared Nb-Ti coils
- All other magnets can be built with **direct wind** of Nb-Ti wire
- Full acceptance e.g. P_t =200 MeV/c-1.3 GeV/c Neutrons 4 mrad
- Large Aperture Dipole
 with instrumented gap
- Modest IR chromaticity Hadrons up to β<200m
- Manageable dynamic aperture optimization

Electron Ion Collider.

EIC Beam Dynamics Challenges

- Proton Beam Stability (emittance growth, halo forming) in presence of strong, crab-enhanced beam-beam effects, strong chromatics
- Electron cloud in the hadron vacuum, suppression of secondary emission yield
- Fast Ion instability for the electron beam
- Multi-bunch stability and feedback: Feedback noise and hadron emittance growth
- Impedance optimization in the IR
- Dynamic aperture with extreme beta in the IR

On-Going EIC R&D Effort

Component Development

- Crab Cavity design development and prototyping
- IR magnet development and prototyping
- HOM damping for RF structure development
- Variable coupling high power forward power couplers development
- Effective in situ Cu coating of the beam pipe (BNL hadron only)
- High average current electron gun development
- Polarized ³He source
- Bunch by bunch polarimetry

Accelerator Physics R&D

- Strong hadron cooling CeC, cooling development (simulation and experimental)
- Strong hadron cooling bunches electron beam cooling (simulation and experimental)
- ERL development for strong hadron cooling
- Test of suppression of intrinsic depolarizing resonances
- Study of collisions with different revolution frequencies (JLAB only)
- Experimental verification of figure-8 configuration
- Study of residual crab cavity effect on beam emittance

Instrumented accelerator magnet

Crab cavity

Crabbed beam dynamics Electron lon Collider.

199

Conclusion

- Designs of EIC made significant progress since the last EICUG meeting
- There is good collaboration on accelerator physics and accelerator R&D between accelerator laboratories
- The two designs rely for the most part on established accelerator technology
- Crab cavity, IR magnets, and ERL are close to state of the art strong hadron cooling is beyond, but is well mitigated
- BNL and JLab are committed to working together and with the community to advance the EIC.

200

Electron Ion Collider.

• We welcome further collaboration with our European colleagues

Overview of JLEIC – The EIC at Jefferson Lab

201

From the EIC White Paper:

- □ Highly polarized (~70%) electron and light ion beams
- Ion beams from protons, to deuterons, to the heaviest nuclei (uranium or lead)
- ❑ Variable center of mass energies from ~20 ~100 Gev, upgradable to ~140 GeV
- \Box High collision luminosity of ~10³⁴ cm⁻²s⁻¹
- Possibilities of having more than one interaction region

- Electron complex
 - CEBAF as a full energy injector
 - Electron collider ring (ECR): 3-12 GeV/c
- Ion complex
 - Ion source, SRF linac: 150 MeV for proton s
 - Low Energy Booster (LEB): 8.9 GeV/c
 - High Energy Booster (HEB): 13 GeV/c
 - Ion collider ring (ICR): 200 GeV/c
- Up to two detectors at minimum background I ocations

Element	Туре	Electron Complex	Ion Complex
Length of Beamline		2,669 m	5,416 m
Dipole Magnets	Normal-Conducting	369	252
	Superconducting	-	258
Quadrupole Magnets	Normal-Conducting	515	394
	Superconducting	6	196
Sextupole Magnets	Normal-Conducting	148	48
	Superconducting	-	56
Correctors Magnets	Normal-Conducting	321	164
	Superconducting	-	55
Solenoids Magnets	Superconducting	10	6
Kickers	Normal-Conducting	2	6
BPMs		321	337

Accelerating and Bunching – Summary

		# Cavitie s	Cavities per unit	Fwd Pwr per cavity (kW)
Electron Collider Ring	Acceleration – Normal Conducting	16**	1	500**
	Acceleration – SRF	12	4	600
	Crab Cavities – SRF	6	3	40
Low Energy Booster	Acceleration/Bunch Control	3	1	50
High Energy Booster	Acceleration/Bunch Control	7	1	100
Ion Collider Ring	Acceleration/Bunch Control – Normal Conducting	3	1	120
	Bunch Control – SRF	26	4	120
	Crab Cavities – SRF	24	6	30
Electron Cooling	DC Cooler (LEB)	1	4	50
	DC Cooler (HEB)	1	1	50
	Bunched Beam (ICR) – ERL	15	2	50

** - PEP-II Cavities and HPAs

Technical Components – Electron Complex

- CEBAF Full Energy Injector no new elements
- Electron Collider Ring 2,336m Length
 - -Arcs 167 Dipoles, 167 Quadrupoles, 148 Sextupoles, 167 Correctors
 - Straights 46 Dipoles, 274 Quadrupoles, 154 Correctors, 8 superconductin g Spin Rotator solenoids
 - -321 BPMs, other instrumentation, and vacuum elements
 - 16 RF Cavities with associated HPA and PS from PEP-II
 - -12 SRF Cavities (3 cryomodules) with associated HPA and PS (new)
 - -2 normal conducting kickers and beam dump
- Many of the normal conducting magnets are expected to be PEP-II reuse

Technical Components – Electron Complex

- Electron Transfer Line 333m Length
 - -156 Dipoles, 68 Quadrupoles
 - Instrumentation and vacuum elements
- Interaction Region
 - -6 superconducting final focusing quadrupoles with nested skew quadrupoles
 - -2 superconducting solenoids (to counteract detector solenoid)
 - -SRF Crab Cavities

Technical Components – Ion Complex

- Ion Injector and SRF Linac 150 MeV p, 40 MeV/u Pb⁶⁷⁺
 - -SRF QWR and HWR Based on FRIB linac design
 - IH-DTL with FODO
 - -Separate heavy ion and light ion RFQs
- Low Energy Booster (LEB) 604m Length, Figure-8 design
 - -E_{kin} = 150 MeV 8.9 GeV
 - -104 Dipoles, 144 Quadrupoles, 32 Sextupoles, 57 Correctors
 - -57 BPMs, other instrumentation, and vacuum elements
 - -2 Kickers for injection/extraction
 - -3 Normal-Conducting Cavities for acceleration and bunch control
 - -DC Electron Cooling with 1 cooling solenoid for heavy ions
- High Energy Booster (LEB) 2,336m Length, Figure-8 design
 - -E_{kin} = 8.9 GeV 13 GeV
 - -124 Dipoles, 202 Quadrupoles, 16 Sextupoles, 107 Correctors
 - -107 BPMs, other instrumentation, and vacuum elements
 - -2 Kickers for injection/extraction
 - -7 Normal-Conducting Cavities for acceleration and bunch control
 - -DC Electron Cooling with 1 cooling solenoid

Technical Components – Ion Complex

- Ion Collider Ring 2,336m Length
 - -Arcs: 208 Dipoles, 112 Quadrupoles, 56 Sextupoles
 - -Straights: 50 Dipoles, 74 Quadrupoles, 53 Correctors
 - -337 BPMs, other instrumentation, and vacuum elements
 - -2 Kickers for injection/extraction and beam dump
 - -26 SRF Cavities (7 cryomodules) for Bunch Control
 - -3 Normal-Conducting Cavities for Acceleration and Bunch Control
 - -All magnets are superconducting
- Interaction Region
 - 6 Final Focusing Quadrupoles, 4 Skew Quadrupoles, 2 Anti-solenoids, 2 Co rrectors
 - -3 Spectrometer Dipoles (part of the detector system)
 - SRF Crab Cavities

Technical Components – Ion Complex

- Transfer lines:
 - $-Linac \rightarrow Low Energy Booster$
 - -Low Energy Booster \rightarrow High Energy Booster
 - Total: 24 Dipoles, 48 Quadrupoles, all magnets are normal-conducting
- Bunched Beam Cooling with ERL
 - Magnetized Gun
 - -50 MeV Linac Cryomodule
 - -2 Fast Kickers
 - Chirper/Dechirper
 - -Beam Dump
 - 10 Dipoles, 15 Quadrupoles, 2 x 180° Sector Bends
 - $-4 \times 15m$ superconducting solenoids (in the ion collider ring)

Other Systems

- Electrical Utilities: 67.5 MVA peak load
- Low Conductivity Water (LCW) for cooling of normal conducting ma gnets, power supplies, HPAs
- Cryogenics
 - 12.0kW @ 4.5K equivalent plant
 - -2.1K required for all SRF
 - -4.5K distribution with sub-atmospheric return from systems requiring 2.1K

Conventional Facilities

- 67 buildings with 110k sq ft
 - Service buildings (for accelerator components)
 - Access buildings (service buildings with a crane-serviced drop hatch to tunn el elevation)
 - Counting house
 - Cryogenics plant
- Tunnel
 - -3.5 km of shallow tunnel (30ft construction depth)
 - -Vaults for two detectors
- Infrastructure
 - -Power distribution
 - -ICW and LCW
 - -Roads

Now to CD0: Pre-project

- Pre-project R&D: **validation** of basic design technology and further **risk reduction** (JLEIC bas eline design minimizes project risk)
- Pre-project activities (site evaluation and environmental impacts, configuration management)
- Collaboration on EIC (National Labs: BNL, ANL, SLAC, LBL, Universities, International, EICUG)
- Preparation of a pre-CDR (COMPLETE), to prepare for full CDR

CD0 to CD1: On-project

- On-project R&D (value engineering for performance optimization and cost reduction)
- Delivery of full CDR

Backup Slides

Basic Design

- High luminosity: high collision rate of short low-charge low-emittance bunches
 - Small beam size
 - Small $\beta^* \Rightarrow$ Short bunch length Low bunch charge, high repetition rate
 - Small emittance \Rightarrow Cooling
 - Similar to **lepton colliders** such as KEK-B with L > 2×10^{34} cm⁻²s⁻¹

$$L = f \frac{n_1 n_2}{4\pi \sigma_x^* \sigma_y^*} \sim f \frac{n_1 n_2}{\varepsilon \beta_y^*}$$

• High polarization: Figure-8 rings

- Net spin precession zero
- Spin easily controlled by small magnetic fields for any particle species

• Optimal integration IR and total acceptance detector (including far-forward acceptance)

Technical risk minimization

adopt established technology where possible, focus technology demonstration in few selected areas

CEBAF as Injector

- Commissioned in Spring 2014
- Operated at 12 GeV in Fall 2015
- First Physics Run in Spring 2016
- Exciting science fixed target program
 - Fixed-target program compatible with concurrent JLEIC operations
- JLEIC injector
 - Fast fill of collider ring
 - Full energy
 - ~85% polarization
 - Enables top-off

• Circumference of 2,336 m

- 150 MeV p, 40 MeV/u Pb⁶⁷⁺
- Separate light/heavy ion RFQs/LEBTs
- Improved NC FODO DTL with IH structure
- SRF based on ANL/FRIB QWR/HWR designs
 - Active collaboration with ANL

son Lab

Ion Collider Ring

- Circumference of 2,336 m
- Superconducting Cos *θ* magnets
- SRF: bunching RF, electron cooler ERL, crabbing

Detector Region Layout

JLEIC Bunched Beam Electron Cooler

Parameter	Value	Units
Electron energy	20-109	[MeV]
Charge	$1.6 (3.2)^{\dagger}$	[nC]
CCR pulse frequency	476.3	[MHz]
Gun Frequency	43.3	[MHz]
Bunch length (top-hat)	4/23	$[\mathrm{cm}/^{\circ}]$
Thermal (Larmor) emittance	$<\!19$	[mm-mra
Cathode spot radius	3.1	[mm]
Cathode magnetic field	0.05	[T]
Normalized hor. Drift emittance	36	[mm-mra
rms Energy spread (uncorr)	$3{\times}10^{-4}$	[—]
Energy spread (p-p corr.)	6×10^{-4}	[—]
Cooler solenoid field	1 - 2	[T]
Electron beta in cooler	36	[cm]
Solenoid length	4×15	[m]
Bunch shape	Beer can	[—]

