Fast Timing Applications for Nuclear Physics and Medical Imaging Acireale 3-5 September 2019

Accademia di Scienze Lettere e Belle Arti degli Zelanti e dei Dafnici Via Marchese di Sangiuliano, 17 - 95024 Acireale (Catania)

Performance of the ToF detectors in the **FOOT** experiment

Giacomo Traini

on behalf of the FOOT collaboration

giacomo.traini@roma1.infn.it

FATA 2019, 3-5 September 2019, Acireale (IT)

FOOT (FragmentatiOn Of Target)

The FOOT is a fixed target experiment, whose goal is to measure fragmentation cross-sections of interest for hadrontherapy and radioprotection in space, with a precision of ~5%.

Hadrontherapy

- Goal: more accurate knowledge of fragmentation processes to improve the treatment quality.
- Projectile fragmentation: ¹²C, ¹⁶O beams @ 200-400 MeV/u , direct kinematic
- Target fragmentation in proton-therapy: same beams, inverse kinematic

Radioprotection in space

- Goal: more accurate knowledge of fragmentation processes to optimise the spacecraft shielding in the long term missions.
- ¹²C, ¹⁶O, ⁴He, beams @ 700 MeV/u, direct kinematic

FOOT (FragmentatiOn Of Target)

The FOOT is a <u>fixed target experiment</u>, whose goal is to measure fragmentation cross-sections of interest for hadrontherapy and radioprotection in space, with a precision of ~5%.

The same the same or and	UNCARN				
Tana tana tana tana tana tana tana tana		Phys	Beam	Target	Energy (MeV/u)
Processor - P Parram Alogno - CLAN DELEMINO	IDHA-HERCEGOVIN	Target Frag. PT	¹² C	C, C ₂ H ₄	100-200
And a series of Conference of Party Convert Bandar Torrent of Confer	and a	Target Frag. PT	¹⁶ O	C, C ₂ H ₄	100-200
	Viester	Beam Frag. PT	¹² C	с, с ₂ н ₄ , рмма	200-350
	Bori Brode	Beam Frag. PT	¹⁶ O	с, с ₂ н ₄ , рмма	200-400
Athenenia - Athene Athenenia - Athene Athenenia - Sendinia - Tyrothemake how	- Connet	Beam Frag. PT	⁴ He	с, с ₂ н ₄ , рмма	150-250
Nagoya University (Japan), GSI (Germany),	Catonan Stantaum Stantaum Regio & Catabria	Rad. Prot.space	⁴ He	с, <mark>с₂н</mark> 4, рмма	500-1000
Aachen University (Germany), IPHC	nia veue	Rad. Prot.space	¹² C	с, <mark>с₂н</mark> 4, рмма	500-1000
Strasbourg (France), CNAO (Italy),		Rad. Prot.space	¹⁶ O	C, C ₂ H ₄ , PMMA	500-1000
10 INFN sections/labs	_				

The FOOT setup

Sub-detector	Main features
Start Counter	250 µm plastic scintillator, SiPM read-out
Beam monitor	Drift Chamber Ar-CO ₂
Target	C, C ₂ H ₄ (2-5 mm)
Vertex	4 layers of Silicon Pixel detector, MIMOSA28 20x20 μm^2
Magnet	Halbach geomertry, 0.8-0.9 T
Inner Tracker	2 layers of Silicon Pixel detector, 20x20 µm ²
Outer tracker	3 layers of Micro Strip detector, 125 µm ²
ΔΕ - ΤοϜ	plastic scintillator 3 mm thick
Calorimeter	matrix of ~ 300 BGO crystals

- Goal: measurement of
 Ekin, Z, A of fragments
- Optimised for Z>=3 fragments, angular acceptance of the apparatus ± 10°
 - Table-top experiment,easily movable to fit withthe limited space oftreatment andexperimental rooms

Needed detector performance: σ(p)/p ~ 5%, σ(ToF) < 100ps, σ(E_{kin})/E_{kin} ~ 2%

The FOOT setup

Sub-detector	Main features				
Start Counter	250 µm plastic scintillator, SiPM read-out				
Beam monitor	Drift Chamber Ar-CO ₂				
Target	C, C ₂ H ₄ (2-5 mm)				
Vertex	4 layers of Silicon Pixel detector, MIMOSA28 20x20 μm^2				
Magnet	Halbach geomertry, 0.8-0.9 T				
Inner Tracker	2 layers of Silicon Pixel detector, 20x20 µm ²				
Outer tracker	3 layers of Micro Strip detector, 125 µm ²				
ΔΕ - ΤοϜ	plastic scintillator 3 mm thick				
Calorimeter	matrix of ~ 300 BGO crystals				

- **Goal**: measurement of **Ekin, Z, A** of fragments
- Optimised for Z>=3 fragments, angular acceptance of the apparatus ± 10°
 - Table-top experiment,easily movable to fit withthe limited space oftreatment andexperimental rooms

Needed detector performance: σ(p)/p ~ 5%, σ(ToF) < 100ps, σ(E_{kin})/E_{kin} ~ 2%

ToF for fragment Z identification $\Delta E \text{ in SCN}$ $-\frac{dE}{dx} = \frac{\rho \cdot Z}{A} \frac{4\pi N_A m_e c^2}{M_U} \left(\frac{e^2}{4\pi\epsilon_0 m_e c^2}\right)^2 \frac{z^2}{\beta^2} \left[\ln\left(\frac{2m_e c^2 \beta^2}{I \cdot (1-\beta^2)}\right) - \beta^2\right]$

ToF

Energy deposited ΔE vs ToF

Fragment	Z	$\sigma(Z)$ [%]		
Н	1.01 ± 0.06	6.26		
He	2.02 ± 0.06	3.06		
Li	3.03 ± 0.07	2.46		
Be	4.05 ± 0.09	2.20		
В	5.07 ± 0.10	2.06		
С	6.09 ± 0.12	1.97		
N	7.12 ± 0.14	1.91		
0	8.17 ± 0.15	1.86		

Reconstructed Z

The Z resolution ranges between **2% (¹⁶O)** and **6%** (H)

ToF for fragment A identification

Acireale, 3-5 September 2019

Start Counter detector

Goals:

- Incoming ions counter
- ▶ Trigger
- ▹ ToF start

Requirements:

- Minimise the fragmentation probability inside the detector active medium
- ToF resolution below 100 ps

Active mean:

- Plastic scintillator EJ-228, 5 x 5 cm²,
 250µm thick, incapsulated in an aluminum frame
- Enclosed in a tight-light box with 2 thin aluminum (0.4 µm)+mylar windows (4µm)

Start Counter read-out

- Read-out performed by 48 SiPM ASD-NUV3S-P, (8 boards of 6 SiPM connected in series)
- The SiPMs are side-coupled to the scintillator, instrumenting 3.6/5 cm per side

ΔE - ToF detector

Goals:

- ΔE measurements for fragment Z identification
- ▶ Trigger
- ▶ ToF end

Requirements:

- ▶ Energy resolution at level of 5%
- Time of Flight resolution below 100 ps

Active mean:

- 20x20 bars of plastic scintillator EJ-200, 2x44x0.3 cm³, hold by an aluminum frame
- Each bar is wrapped with and ESR specular reflector

10

ΔE - ToF read-out

Each bar side is coupled to 2 SiPM (MPPC by Hamamatsu) with 3x3 mm² active area, biased and readout by a single channel.

The 80 channels are powered and read-out with the same system base on the Wavedream board

WaveDAQ system

Test @ CNAO with ¹²C ion beams

- ¹²C energies ranging between 115 MeV/u and 400 MeV/u
- Setup (a) for energy calibration and ToF resolution evaluation
- Setup (b) for Z identification studies.
 Target material: PVT

$\Delta E-$ ToF charge resolution

Development and characterisation of a ΔE - ToF detector prototype for the FOOT experiment -Nuclear Inst. and Methods in Physics Research, A 916 (2019) 116–124

- Energy resolution 6-7% with Carbon ions, up to 14% with proton beams (test beam @ the Trento proton-therapy center)
- The resolution is crucial for the accuracy on the fragment Z reconstruction!

Time of Flight evaluation

- Waveforms are fitted with a LogNormal distribution
- CFD algorithm to extract the arrival time of the single channels in the acquisition window (~200 ns)
- Start Counter time (t_ST)-> weighted average between channels according to their resolution
- ΔE ToF time of single bar (t_TW) -> arithmetic average of the up-down channels

FAst Timing Application 2019

CFD optimisation

- ΔE ToF: using a CFD algorithm to extract the arrival time we minimise the time walk due to the different signal amplitudes depending on the fragment position along the bar
- Start Counter: time walk due to the high released energy fluctuations

- The time jitter between the sampling clock (due to the internal WaveDream routing) has to be taken into account
- Linear fit on the all the clock rising edges are performed to extrapolate period and phase. The <u>clk phase is subtracted when computing the ToF</u>

ToF Resolution

- The results match with the FOOT requirements!
- ▷ ΔE- ToF contribution 35-50 ps
- Start Counter contribution
 60 -100 ps

$\Delta E\text{-}$ ToF energy calibration

$\Delta E\text{-}$ ToF fragment identification

- MC simulation is useful to know which species are produced
- All the 6 Z predicted by the simulation can be distinguished! The Z resolution in the range 8-20% (to be optimised)

ΔE -ToF detector scan

Time and energy resolution compatible with that measured in the previous test beam

Х

FAst Timing Application 2019

Acireale, 3-5 September 2019

ΔE -ToF detector scan

∆E-ToF detector scan

Signal collected at the two sides of the bar as a function of the beam position (irradiation has been performed at 2 cm step, at the center of each bar).

Test beam @ GSI with 160 beam

- First campaign involving different sub-detectors: test for trigger and DAQ
- Apparatus still not completed: no magnetic field, inner-outer tracking system and calorimeter missing
- Charge-changing cross section measurements could be performed

Test beam @ GSI with ¹⁶O beams 885.6 ± 17.3 A Counts / 0.04 [ns] 000 200 200 28.12 ± 0.00 μ 0.07975 ± 0.00100 600 Preliminary σ 120 ToF resolution [ps] Preliminary 110 500 100 ▼ 400 300 90 200 ▼ 80 **100**⊢ 70 0 28 27 29 ¹²C beam 60 ToF [ns] 50 ¹⁶O beam The measures ToF resolution 40 (~80 ps) matches with the expectations! 30^{Ľ⊥} 100 250 300 150 200 350 400 Beam energy [MeV/u]

FAst Timing Application 2019

Acireale, 3-5 September 2019

Conclusions and future perspectives

- The FOOT experiment has started in 2017, and few months ago the first datataking @GSI facility with a partial setup has been performed. The detectors performance matches with expectations!
- The Microstrip detector, the calorimeter and the magnet development is ongoing. The full FOOT setup will be available in 2021.
- Next data-taking campaign are coming: @GSI (spring)2020, @CNAO(2020, to be scheduled)

The FOOT collaboration (a very very small part)

FAst Timing Application 2019

The hadrontherapy rationale

- Beam penetration is a function of the beam energy (60-250 MeV for protons, 100-400 MeV/u for ¹²C).
- The dose is mainly released in the Bragg peak, at the end of the beam travel in the patient, allowing to better spare the healthy tissues wrt the conventional radiotherapy
- The biological damage is related to the released energy, ionization density and type of projectile used

Role of fragmentation in hadrontherapy

Projectile fragmentation (for Z>1 ion beams)

- ~ same velocity but different mass wrt the primary particles—> longer range causing a long undesired tail beyond the Bragg peak
- Mixed particle field of different cell killing effectiveness, considered in ¹²C treatment but scarse validation data. Effect to be studied with alternative beams ⁴He, ¹⁶O

<u>Target fragmentation</u>

- Low energy fragments (range ~ 10 µm)
- Most abundant fragment expected: He, C, Be, O, N
- No experimental data for Z>3 ions and MC models not reliable.
- Biological impact: the radio biological effectiveness (RBE) is proportional to the dE/dx (--> increases with the charge Z²)

Target fragmentation in proton-therapy

	••	
$\left(\cdot \right)$	F	
•	· ř	•
		·/

Proton	Tissue (¹² C, ¹⁶ 0)	Target fragments:				
		low er	nergy	Fragment	E (MeV)	Range (µm)
		\rightarrow \square and sho	rt range	¹⁵ O	1.0	2.3
				¹⁵ N	1.0	2.5
				¹⁴ N	2.0	3.6
Fragments		Inverse		¹³ C	3.0	5.4
<u>remain in the</u>		<u>kinematic</u>		¹² C	3.8	6.2
target!		approach		¹¹ C	4.6	7.0
			•	¹⁰ B	5.4	9.9
C	C, C₂H₄ target			⁸ Be	6.4	15.7
Tissue (~2 g/cm ²)			⁶ Li	6.8	26.7
(¹² C, ¹⁶ O)		Beam fro	agments:	⁴ He	6.0	48.5
higher energy and longer range		energy	³ He	4.7	38.8	
			jer runge	² H	2.5	68.9
fragmenta	tion probability	<u>~ 10-3</u>	-	(1		1 .

 $\Lambda(\underline{P}_{\text{beam}})$ Lab. Frame \blacksquare Patient Frame

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\mathrm{E}}(\mathrm{H}) = \frac{1}{4} \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\mathrm{E}}(\mathrm{C}_{2}\mathrm{H}_{4}) - 2\frac{\mathrm{d}\sigma}{\mathrm{d}\mathrm{E}}(\mathrm{C}) \right)$

By applying a **Lorentz transformation** we switch from the laboratory frame to the "patient frame"

The **cross section** on ¹H is computed by **subtraction**

The FOOT emulsion setup

- Section1: target plates (C/C₂H₄) interspersed with emulsion films —> vertex detector
- Section2: emulsion films only —> <u>charge identification</u> for low Z fragments
- Section3: lead planes interspersed by emulsion films: momentum measurement and isotopic ID

- **Low Z fragments** are emitted @ large angles (up to 75° wrt the beam direction)
- Kinematic quantities and fragment identification provided by tracks of fragment reconstructed in the emulsions (automatic scanning performed by a microscope)

FLUKA Cross-section measurement

To check the validity of the target cross

$$\frac{d\sigma_f}{dE_{\rm kin}} = \frac{Y_f - BKG_f}{N_{\rm ion} \cdot N_{\rm t} \cdot \Omega_{E_{\rm kin}} \cdot \varepsilon_f}$$

¹⁶O (200 MeV/u) -> C₂H₄

sections combination method we evaluated both the cross section on hydrogen target and the cross section obtained from the difference method.

Data taking @ GSI: emulsions

34

The emulsion scanning is ongoing @ Naples with a dedicated microscope providing an automatic scanning procedure.

FAst Timing Application 2019

Role of fragmentation in radioprotection in space

- Long term missions in space expose the astronauts to a huge dose release
- The fragments produced in the shielding material of the He, C, O components of Galactic Cosmic Rays significantly contribute to the total dose—> the choice of the spacecraft shielding material is crucial for the long term missions far from Earth
- An accurate knowledge of the He, C, O fragmentation x-sections is needed to design efficient shields

Mars mission: dose ~300 times larger than that absorbed on Earth, 3% risk of Cancer death

~87% of **protons**, ~12 % **He** ions, ~1% heavier ions (mainly **O,C,N**), peaked in the **700 MeV/u - 1 GeV/u energy** range

GSI first results

Beam monitor

- Ar-CO2 Drift chamber
- 6+6 orthogonal layers of wires, 3 cells per layer (hit resolution ~ 150 µm on ¹²C beam)
- Provides the beam direction (~mrad resolution) and position
- It could be used to reject the fragmentation events ins the start counter

Tracking region

Magnet

- Halbach cylindrical geometry Uniform dipolar magnetic field
- B proportional to In(R_{out}/R_{in})

B ~ 0.8 -0.9 T

MSD

- Silicon Micro Strip detector
- S layers 9 x 9 cm
- ▶ 125 µm pitch
- < 30 µm resolution</p>

- MIMOSA28 Chips
- 50 µm thick, 20.9 µm pitch
- Vertex detector: 4 layers 2 x 2 cm²
- Inner tracker: 2 layers, 8 x 8 cm
- First two stages of the tracking system

Calorimeter

~300 BGO crystals

- SiPM readout + Waveform digitiser DAQ
 - 1-4 % energy resolution (test beam @CNAO, GSI)

