FATA2019

Fast Timing Applications for Nuclear Physics and Medical Imaging Acireale 3-5 September 2019

TOF in Heavy Ion Reaction: CHIMERA detector & ISODEC experiment

Sara Pirrone

NEWCHIM – ISODEC collaboration

INFN - Sezione di Catania - Italy

Outline

Physics case and context

• Chimera detector

• ISODEC Experiment - results

Physics case and context

Heavy-ion collisions with stable and radioactive beams.

• Low energy regime E < 15 MeV/A

Fusion reaction mechanism (central collision) in competition with binary processes (ex: DIC, Quasi-Fission)

Intermediate (Fermi) energy regime (10 MeV/A < E < 100 MeV/A)

Multifragmentation reaction (central collision) in competition with neck formation (mid-peripheral collision) and binary process (peripheral collision)

HIC at low energy E/A < 15 MeV

Fusion reaction (central) in competition with

binary mechanisms (semiperipheral) dic, quasi-fission...

HIC at intermediate energies: 20 MeV<E/A< 100 MeV

CHIMERA @LNS

Charged Heavy Ion Mass and Energy Resolving array

A. Pagano et al., NPA681 (2001) 331, A.Pagano et al. Nucl. Phys. New Int. Vol. 22, 1, (2012)

In Greek Mythology.....

Chimera was a fearsome, fire-breathing monster with a lion's head, a goat's body, and a dragon's tail. She terrorized the people of Lycia until their king, lobates, asked the hero Bellerophon to slay her. lobates had an ulterior motive; his sonin-law wanted Bellerophon killed and the king was sure the Chimera would do the job. But Bellerophon called in Pegasus, the winged horse, and brought the Chimera down from above. The beast lived on in people's imaginations, and English speakers adopted her name for any similarly grotesque monster, or, later, for anything fanciful.

Chimera di Arezzo 400 BC – art of Etruscan- Museo Archeologico Nazionale - Florence

CHIMERA

Charge Heavy Ion Mass and Energy Resolving Array

Granularity	1192 telescopes			
	Si (300µm) +CsI(TI)			
Geometry	RINGS: 688 telescopes 100-350 cm			
	SPHERE: 504 telescopes 40 cm			
Angular	RINGS: 1°< θ < 30°			
range	SPHERE: 30° < θ < 176° 94% of 4π			
Identificat' on	∆Е-Е			
method	E-TOF			
	PSD in CsI(TI)			
	PSD in Si (upgrade 2008)			
Experimental	125 . St < 1 ns			
observables	δ E/E LCP (Light Charge Particles) $\approx 2\%$			
and	δE/E HI (Heavy lons) ≤ 1%			
performances	Energy, Velocity, A, Z, angular distribution			
Detection	≈ 1 MeV/A for H.I.			
threshold	≈ 2 MeV/A for LCP			

Dynamical range from few MeV/A to 100 MeV/A

Charge Identification by ΔE -E

Bethe – Bloch Formula $\Delta E \propto \Delta x (AZ^2) / E$

$$\Delta E \propto \frac{Z^2}{v^2} = \frac{Z^2(t_0 - t)^2}{l^2}.$$

Charge Identification by PSD in Silicon

Cs

E- Rise Time (PSD_Silicio)

Rise time = f(Z, E)

Rise time measurement with two discriminators with different constants eg: 30% and 90%

 \rightarrow time delay between the two triggers is linked to signal rise time

LCP identification (A,Z) by PSD in CsI(Tl)

¹²⁴Sn + ⁶⁴Ni 35 A.MeV Ring 8 telescope 03-I Fast (a.u.) 20 Be Li 18 HI 16 1500 14 He 12 1000 10. 8. 500 4. n 1400 200 400 600 800 1000 1200 0 Slow (a.u.)

E fast- E Slow PSD CsI(Tl)

Experiments with CHIMERA (2000 - up today)

- **Equation of State (EOS) of Nuclear Matter;**
- □ Neck emission, Time scale for fragment formation, fragment hierarchy,

□ Isospin influence on the reaction mechanisms.

- **Clusters in nuclei**
- **Given Series Dynamical Fission**
- Reactions and Structure Unstable nuclei
- Nuclear Astrophysics and Exotic States

New facilities (FRIBS) and detectors (FARCOS correlator – neutron detectors)

Review : E. De Filippo and A. Pagano EPJ A50, 32, 2014

CHIMERA- International collaborations

Kolcata

۲

ISODEC Experiment ^{78,86}Kr + ^{40,48}Ca at E = 10 AMeV

First experiment at low energy by using CHIMERA. The most of the particles are stopped in the Silicon detector

1) **PSD** Silicon detector charge identification

2) TOF measurement - velocity measurement mass identification reaction mechanism disentangling

ISODEC Experiment ⁷⁸Kr + ⁴⁰Ca \rightarrow ¹¹⁸Ba* "n-poor" ⁸⁶Kr + ⁴⁸Ca \rightarrow ¹³⁴Ba* "n-rich" E = 10 AMeV

Study of the influence of the isospin and of the neutron enrichment of the CN, on the reaction mechanism, on the decay process and on the formation and emission of complex fragments (IMF, $Z \ge 3$)

	¹¹⁸ Ba	¹³⁴ Ba				
E*(MeV)	215	270				
V _B (MeV)	90	87				
(N/Z) _{tot}	1.11	1.39				
ΔN=16 neutrons						
S. P. et al., Eur. Phys. J. A 55 (2019) 22						

S. Pirrone et al., Journal of Physics: Conf. Series 515 (2014) 012018
G. Politi et al., JPS Conf. Proc. Vol. 6 (2015) 030082
B. G. Nuovo Cimento C39 (2016) 275

IMF Isotopic Identification

PSD in Silicon

$\Delta E-E$, Si-CsI(Tl)

S.P. et al, Journal of Physics- Conf. Series 515 (2014) 012018

Average Velocity for fragments Z=3-38 in the CM frame

- Independent from emission angle and decreasing with Z → equilibrated process
- Good agreement with Viola systematic for fission (D.J. Hinde, NPA472 (1987) 318)
- Regular behavior slightly disregarded for Z>30, maybe due to a dynamical mechanism contribution

Signature of a binary process dominated by the Coulomb interaction

Angular distributions of fragments in CM frame

- 1/sin9 behavior, expected for a production via a long lived system -> fission like mechanism from equilibrated source
- Z > 28 stronger contribution at smaller angles, confirming a not fully equilibrated binary mechanism

Angular distributions in the LAB frame for Z > 40

Strongly forward peaked /bell shape - expected for Evaporation Residues - ER Gomez Del Campo et al, PRC 19 (1979) 2170

IMF Charge Distribution (n-poor n-rich systems)

- Fragments production globally favored for n-poor system
- Odd-even staggering behaviour, more pronounced in the n-poor system

In agreement with: I. Lombardo et al., PRC 84 (2011) 024613 G. Casini et al., PRC 86 (2012) 011602

 Charge distribution not symmetric with respect to Z_{CN}/2=28→ presence of dynamical process

$\begin{array}{ll} \mbox{Further information from Complete Events} \\ \mbox{multiplicity} \geq 2 & 0.8 \ M_{CN} \leq \ M_{tot} \leq 1.1 \ M_{CN} & 0.6 \leq p_{tot}/p_{beam} \leq 1 \end{array}$

Correlation between fragment mass and parallel velocity

Evaporation Residues and Fission Like fragments are evident in both systems

Cross sections measurements

	σ_{ER}	σ_{FL}	σ_{fus}	σ^{qp}_{reac}
	(mb)	(mb)	(mb)	(mb)
$^{78}\mathrm{Kr}\mathrm{+}^{40}\mathrm{Ca}$	455 ± 70	850 ± 120	$1305 {\pm} 190$	$2390{\pm}250$
$\rm ^{86}Kr+ ^{48}Ca$	400 ± 60	$530{\pm}85$	$930{\pm}145$	2520 ± 260

S. P. et al., Eur. Phys. J. A (2019) 55, 22

- Fusion-Evaporation process is comparable for the two systems
- Fission-Like process prevails for the n-poor system
- Difference σ_{Reac} σ_{Fus} more pronounced for the n-rich system (more DIC)

- The ISODEC experiment realized by using the CHIMERA array is only an example among the many experiments that benefits of the TOF technique in the field of Nuclear Physics.
- R3B@GSI or ALICE@CERN are other important examples in a different energy range.
- The TOF technique (in general) can get improvement from the Nuclear Physics studies, and the mutual collaboration among different communities will be a great resource for the future.

NEWCHIM – ISODEC Collaboration

S. Pirrone¹, G. Cardella¹, E. De Filippo¹, E. Geraci^{1,2}, B.Gnoffo^{1,2},
G. Lanzalone^{3,5}, N.S. Martorana^{2,3}, A. Pagano¹, E.V. Pagano³, M. Papa¹,
G. Politi^{1,2}F. Rizzo^{2,3}, P. Russotto³, M. Trimarchi^{1,4}

1) INFN, Sezione di Catania, Italy

2) Dipartimento di Fisica e Astronomia «Ettore Majorana» Università di Catania, Italy
3) INFN, Laboratori Nazionali del Sud, Catania, Italy
4) Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Italy
5) Università degli Studi "Kore", Enna, Italy