Large Area Picosecond Photodetector (LAPPDTM) Offers Fast Timing for NP and Medical Imaging

<u>Michael J. Minot</u>, Bernhard W. Adams, Melvin J. Aviles, Satya Butler, Camden D. Ertley, Till Cremer, Michael R. Foley, Cole J. Hamel, Alexey Lyashenko, Mark A. Popecki, Travis W. Rivera, Michael E. Stochaj

Incom, Inc., Charlton Massachusetts, USA

FATA2019

Incom Inc. - Enabling the Vision of Tomorrow

Founded 1971 (Fused Fiber Optics) Long history of Innovation ~220 Employees Three facilities: Incom East (2) - Charlton, MA (includes R&D Pilot Production Facility)

Incom West - Vancouver, WA

9/04/2019

Incom Inc. - Enabling the Vision of Tomorrow

Defense

Night Vision Biometrics

Neutron Detection

Medical

- Digital X-Ray
- Mammography
- Panoramic and Intra-oral X-Ray
- DNA sequencing
- Filtration

Display

- Gaming
- Automotive
- Audio/Video Editing
- VR/AR
- Holographic Imaging

9/04/2019

Light Field Technology

DARC glass privacy filter

Large Fiberoptic Face Plate for medical diagnostics

Curved MCP 25mm x 120mm Night Vision

Detector

- Particle Identification
- Electron Spectroscopy
- Ion Spectrometry
- Space Flight Instrumentation

LAPPD (MCP-PMT) 200mm x 200mm

LAPPD[™] Design

9/04/2019

LAPPD Advantages

LAPPD[™] is an MCP based photodetector, capable of imaging with single-photon sensitivity at high spatial and temporal resolutions in a hermetic package with an active area of 400 cm².

Incom ALD-GCA-MCP Performance

Incom's ALD-GCA MCPs are an enabling feature of LAPPD and are offered as a separate product line. Standard dimensions DIA33mm, SQ53mm, SQ60mm, SQ127mm, SQ200mm. Curved MCPs.

Incom's ALD-GCA-MCPs

10 µm pore, MCP pair, 127 × 127 mm² MgO coated C14 substrate 60:1 l/d, 13° bias angle, Gain map image ≤15%. Variability

6 μm pore ALD-GCA-MCP, 63% open area, 60:1 L/d, C5 Substrate, March 1, 2019

Standard dimensions DIA33mm, SQ53mm, SQ60mm, SQ127mm, SQ200mm. Curved MCPs.

ALD-GCA-MCP Gain vs. Extracted Charge

Photocathode QE and Uniformity

Large area PC process routinely yields QE \geq 20% with \geq 90% uniformity demonstrated in recently sealed LAPPDs

LAPPDTM Photocathodes - Na₂KSb

Borosilicate Window

Fused Silica Window

Higher QE at shorter wavelengths with UV grade fused silica Window

LAPPD Gain

Gain ~10⁷ achieved at relatively low MCP voltage of 950V-1000V per plate

Read out with DRS4 evaluation board or CAEN waveform digitizers

Gain vs. Rate

Dark Count Rate

Dark count rate ~200 Hz/cm² @ 975V, gain 7*10⁶, phe extraction voltage 200V Dark count rate ~1000 Hz/cm² @ 1000V, gain 10⁷, phe extraction voltage 200V Preliminary LAPPD & Small Format Tile B-Field Testing Bill Worstell (PI), Mark Popecki, Cole Hamel, Bernhard Adams, Bob Wagner, Junqi Xie, Ed May

70472019

Page 13

Gen-I LAPPD[™] Spatial Resolution

ALONG STRIPS

ACROSS STRIPS

Resolution= 1.3 mm

Resolution= 0.76 mm

Time Resolution LAPPD #25

Testing at Iowa State University, Matt Wetstein, ANNIE Program

"Single PE time resolutions in the 50-60 ps (σ) are observed consistent with those of commercial MCPs with comparable pore structures.

Differential time resolutions are measured as low as 5.1 ps, with the large signal limit extrapolating below 2 ps".

Nuclear Instruments and Methods in Physics Research A 795 (2015) 1-11

Time Resolution LAPPD #45

Testing at Incom Inc.

Optimal Transit Time Variation = 52 pS (σ), single P/E

9/04/2019

Argonne 6cm MCP-PMT with pair of INCOM 10 µm MCP Smaller pore size, without gap optimization implemented

Greatly improved rise time and timing resolution as pore size reduced

Performance	20 um pore (tube #79)	10 um pore (tube #85)
Rise time	557 ps	457 ps
Gain	6.1×10 ⁶	3.0×10 ⁶
Timing resolution (SPE)	57 ps (σ)	37 ps (σ) (laser start jitter: σ _{laser} ~30ps)

FATA2019 FAst Timing Applications for Nuclear Physics and Medical Imaging

9/04/2019

Page 17

Development of New 10 cm × 10 cm Detector "High-Rate Picosecond Photodetector" (HRPPD) First prototypes QIII 2020

Feature	Large Area Picosecond Photodetector (LAPPD TM)	High-Rate Picosecond Photodetector (HRPPD)		
Application	Picosecond TOF	PET, TOF, UV Imaging		
Detector Size	20 cm × 20 cm	10 cm × 10 cm		
UHV Package Design	X-Spacer support window -> create dead zones	X-Spacer free -> large effective area		
Detector Package	B33 Glass, Alumina Ceramic	Alumina Ceramic		
Window	Fused Silica, B33 Glass	UV Fused Silica, MgF ₂		
A Sensitivity	200 (300 for B33) - 600 nm	115 - 400 nm		
Photocathode	Bialkali	UV optimized Bialkali		
MCP Pore Size	20 μm & 10 μm	10 <i>µ</i> m		
Spacings	B-Field Optimized	B-Field Optimized		
Anode	Direct readout of conductive microstrips, or capacitive readout of pixelated anodes	High density pixelated anode with direct or capacitive readout		
Lower Tile	Side walls hermetically sealed to	Side walls hermetically sealed to		
Assembly	Anode	Anode		
Connections	Under sidewall -> 2 side abuttable	Through Anode -> 4 side abuttable with minimum dead space		

Ultralytics LAPPD Readout Card

Designers are developing high speed readout boards for LAPPD

- PSI DRS4-Based Readout solution for Incom LAPPD
- High bandwidth amplifiers coupled to DRS4 to sample pulses at each end of Anode Strips.
- Xilinx Artix7 FPGA provides reconfigurable triggering and control of the DRS4 samples
- Readout of 1024-sample full waveforms on all strip ends,
- 28 strip ends per side, 56 total
- Up to 5 GSPS
- 6-20 Watts not including FPGA

PERFORMANCE PARAMETERS

- Dual-sided, full waveform readout for all 28 LAPPD striplines
- 25 cm x 24 cm, form-factored to an Incom LAPPD
- 0.7 5 GSPS digitizing based on PSI DRS4 chips
- <u>TILMH3401</u> amplifiers for full 950 MHz DRS4 bandwidth
- 2x TI ADS52J90, 65 MSPS, 14 bit, 32 channel ADCs
- Parallel digitization of all channels at < 40 µs per event
- Reconfigurable triggering using DRS4 Transparent Mode
- Optically isolated gigabit Ethernet readout through <u>SFP+</u>
- Single 5V input for DC power
- Xilinx Artix-7 FPGA

.

.

9/04/2019

PSEC-4: 15 Gsa/s Sampling Rate Developed by U of Chicago for LAPPD

FATA2019 FAst Timing Applications for Nuclear Physics and Medical Imaging

PSEC4

die

High Speed Waveform Digitizer "AARDVARC"

AARDVARC Parameter	Specification (measured)	
Process node	130 nm	
Channels	4	
Sampling Rate	10-14.5GSa/s*	
Storage Samples/ch	32768	
Analog BW	>1GHz**	
Dynamic Range	1.0 V**	
Time accuracy	<5 ps***	
Readout	Parallel/Fast Serial	
ADC bits	12	
Power/ch	80 mW*	

Sampling a ~500ps pulse at ~10 GSa/s

High performance waveform digitizer at 10-14GSa/s Picosecond timing resolution Long analog buffer for large experiments (3-5 μ s)

On-chip digital control and signal processing

Low cost CMOS technology

Applications include LAPPD

9/04/2019

Fermilab Test Beam LAPPD Trials July 2-6, 2019

A Collaboration between U of Chicago, FNAL, Incom Inc., and the ANNIE Program

Test Beam trials of LAPPDs #42 and #43 during the week of July 2-6, 2019, prior to beam shutdown. Results still pending: testing resulted in measurement of ~1000s of charged particle events synchronized to beam spills with two LAPPD and 120 channels of PSEC4 readout.

Goals:

- Provide particle ID for all particles in the test-beam facility as a permanent diagnostic tool
- Factor of >100 improvement on present TOF system
- Fully characterize LAPPD sensitivity/resolution to charged particles

With support of the DOE, Office of HEP, Dr. Helmut Marsiske

JLABs Telescope Light Gas Cherenkov for SoLID

Dr. Junqi Xie, Dr. Zein-Eddine Meziani (ANL), Alexandre Camsonne, Mark Jones (JLABs), Dr. Mark Popecki, Dr. Camden Ertley (Incom Inc)

Background:

Unprecedented luminosity for SoLID imposes new requirements on detector technology, trigger design and data acquisition.

Goals and objective:

- 1. Investigate hit patterns for Cherenkov photons that belong to good particle tracks.
- 2. Understand how the MAPMTs and MCP-PMT/LAPPD behave in a very high-rate environment.
- 3. Evaluate DAQ electronics in such environment.

Setup:

- 1. LAPPD #41 On Loan from Incom Inc.
- 2. Hall C "open" environment
- 3. Particles: scattered electrons, photons, neutrons
- 4. Radiator medium: CO₂
- 5. Trigger: scintillator & calorimeter
- 6. DAQ: FADC

Preliminary Indications:

Confirmed Cherenkov event with multiple adjacent stripline readout (Nhit = 5 or 6)

Medical Imaging Applications of LAPPDs

First Proton Waveforms

Portable LAPPD Telescope

Time-of-Flight PET Development

9/04/2019

Time of Flight Positron Emission Tomography Detecting Prompt Cherenkov Luminescence

A basic science detector study focused on using the LAPPD to detect the prompt Cherenkov emissions from BGO and optimize timing performance.

Best avenue for improving performance of PET scanners is to increase timing resolution to spatially constrain events

Image courtesy of Paul Lecoq, CERN

Detector material: Good Cherenkov radiator - high refractive index - high transparency High stopping power @511 keV

+ Very fast imaging photodetector LAPPD

BGO produces 10-15 prompt Cherenkov photons per 511 keV interaction – timing limited by photodetector

Stan Majewski, Sun II Kwon, Simon Cherry, UC Davis, Bill Worstell, PicoRad Imaging LLC Michael Minot, Incom Inc.

9/04/2019

PicoRad Imaging NIH SBIR with UC Davis

Stan Majewski, Sun II Kwon, Simon Cherry, UC Davis, Bill Worstell, PicoRad Imaging LLC Michael Minot, Incom Inc.

A pilot project with academic partner UC Davis to validate proof-of-concept Target: ≤ 50ps FWHM TOF with DOI correction

LAPPD DAQ for Positron EmissionTomography

- 1. LAPPD as low-cost, low noise Time of Flight photodetector
- 2. Reach beyond 100 ps FWHM coincidence timing resolution
- 3. Real-time feature extraction
 - Energy, timing and position
 - Dual-ended stripline readout offers new prospects for extraction strategies
 - Deal with pileup at standard PET rates
 - Real-time implemention for routine use (reduce saved data size)
 - Explore alternatives to waveform sampling

4. Share architecture with other high energy physics experiments

Marc-André Tétrault, Ph.D., Eng. In collaboration with PicoRad

Summary & Conclusions

- I. GEN I Incom LAPPD Pilot Production is now underway
 - A.GEN I LAPPD Available Today!
 - Artifacts are being resolved as production volume and experience increases.
 - Providing early adopters a means to explore potential of PSEC timing.
 - B. "Typical" performances meet early adopter needs:
 - Gain ~10⁷
 - Mean QE ~ 26.1% @ ~80% uniformity
 - $_{\odot}$ Time Resolution <52 Psec (σ), and mm spatial resolution
- II. Design optimization is underway for lower TTS, and enhanced B-field tolerance includes 10-micron ALD-GCA-MCPs, and MCP gap spacing.
- III. A good candidate for medical diagnostic including PET and Proton Therapy as well as use in collider, neutrino and rare decay experiments

IV. We support early adopters to make LAPPD available for test & evaluation.

Current Funding & Personnel Acknowledgements

- <u>DOE</u>, <u>DE-SC0015267</u>, NP Phase IIA "Development of Gen-II LAPPDTM Systems For Nuclear Physics Experiments"
- <u>DOE</u>. <u>DE-SC0011262</u>. Phase IIA "Further Development of Large-Area Microchannel Plates for a Broad Range of Commercial Applications"
- <u>DOE DE-SC0017929</u>, Phase II- "High Gain MCP ALD Film" (Alternative SEE Materials)
- <u>DOE DE-SC0018778</u>, Phase II "ALD-GCA-MCPs with Low Thermal Coefficient of Resistance"
- <u>NASA 80NSSC19C0156</u>, Phase II "Curved Microchannel Plates and Collimators for Spaceflight Mass Spectrometers"
- **DOE Phase I.** Development of Advanced Photocathodes for LAPPDs
- <u>NASA Phase I</u>. Improvement of GCA center to edge of high spatial/timing resolution applications
- <u>DOE (HEP, NP, NNSA, SBIR) Personnel</u>: Dr. Alan L. Stone, Dr. Helmut Marsiske, Dr. Kenneth R. Marken Jr. Dr. Manouchehr Farkhondeh, Dr. Michelle Shinn, Dr. Elizabeth Bartosz, Dr. Gulshan Rai, Dr. Donald Hornback, Dr. Manny Oliver, Dr. Claudia Cantoni, Carl C. Hebron.

BACK-UP SLIDES

For more information

Michael J. Minot Director R&D, Incom Inc. mjm@incomusa.com Office: 508-909-2369 Cell: 978-852-4942

Grazie!

Special Thanks to Angelo Pagano for his support in making this presentation possible

9/04/2019

Incom Measurement & Test Workshops

Next Workshop Dates Sep 10-12, 2019 Feb 11-13, 2020 May 12-14, 2020	Workshop #5, Feb 12-14, 2019 Jack McKisson, Electronical Eng. JLAB, Dr. Anatoli Arodzero, Director, Detection Division, RadiaBeam Technologies, LLC Evan Angelico, University of Chicago
<u>Workshop #4,</u> <u>October 9 – 11th, 2018</u> • Mitaire Ojaruega (NGA-DOD) • Kevin Richard Jackman (NGA-DOD) • Varghese Anto Chirayath, (Physics, UTA)	Workshop #3, <u>May 15-17th, 2018</u> • Junqi Xie (ANL) • Mickey Chiu, (BNL) • Carl Zorn, (Jefferson Lab) • Wenze Xi, (Jefferson Lab) • Camden Ertley(UC B, now Incom)
<u>Workshop #2,</u> <u>January 24-26, 2018</u> • Matthew Malek (University of Sheffield) • Matt Wetstein (ISU – ANNIE Program) • Lindley Winslow, Julieta Gruszko (MIT, NuDot) • Albert Stebbins (Fermilab, Cosmology Group) • Andrew Brandt, Varghese Chirayath (UTA) • Klaus Attenkofer (BNL, now Scientific Director at ALBA Synchrotron)	<u>Workshop #1,</u> <u>November 13 – 16th, 2017</u> • Kurtis Nishimura (U of Hawaii / Sandia) • Josh Brown (Sandia) • Julieta Gruszko (MIT)

Prototype Pricing - Available Now

- One price for all buyers.
- Provide program managers (PIs) with meaningful low volume (1-10 units) discounts.
- Encourages PIs to aggregate needs within their organization, department, or programs for tiles purchased, invoiced, billed and delivered to the same address.
- Provide visibility toward future high volume pricing (hundreds of units, for example).
- Full Manufacturing High Volume
 Price Target = \$10,000 / LAPPD.

# Sold	Unit Price		Sales	
1	\$	50,000	\$ 50,000	
2	\$	47,044	\$ 94,088	
3	\$	43,440	\$ 130,319	
4	\$	41,461	\$ 165,842	
5	\$	40,111	\$ 200,557	
6	\$	39,095	\$ 234,571	
7	\$	38,284	\$ 267,988	
8	\$	37,611	\$ 300,890	
9	\$	37,038	\$ 333,343	
10	\$	36,540	\$ 365,398	
20	\$	36,100	\$ 721,995	
50	\$	33,334	\$ 1,666,694	
75	\$	30,000	\$ 2,250,007	
100	\$	28,633	\$ 2,863,335	
300	\$	27,702	\$ 8,310,468	
500	\$	24,414	\$ 12,206,898	
750	\$	23,021	\$ 17,265,691	
1000	\$	21,972	\$ 21,972,132	

9/04/2019