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ToF ID FAZIA block Synchronization Conclusions

FURBO project

FAZIA Upgrade for Radioactive Beam Operation
(INFN grant for new staff researchers)

Reduction of identification thresholds
Funtamental task to measure in future ISOL facilities
(SPES, Spiral2,. . . )
Physics of quasi-target
Different possible solutions:

time of flight implementation (discussed here)

use of thin Si detectors as first stage
use of alternative detectors
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Time of flight identification

target
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Recover mass of particles from ToF and energy
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Time of flight identification

target
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Time of flight identification (only M > 1 events)
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Proposed solution without a start detector

T oF ≡ t− t0
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Time of flight identification
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The FAZIA telescope

The telescope stages
1 300 µm reverse-mounted Si detector;
2 500 µm reverse-mounted Si detector;
3 10 cm CsI(Tl) cristal read by a photodiode.

To achieve the best possible energy resolution and A and Z identi-
fication Si detectors come from a nTD ingot cut at random angle
to avoid channeling effects.
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The FAZIA block

16 telescopes, together with front-end electronics,
form a block operating in vacuum.
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FAZIA electronics

Front-end
Analogue chain: charge preamplifiers and anti-aliasing filters

Signals are immediately digitized with 14-bit ADCs:
energy resolution is better than 1 %
from 5 MeV to 4 GeV

common clock distribution for synchronous sampling

Signals are on-line processed on FPGAs

⇓

Compactness and modularity
Very good isotopic discrimination capabilities
Thresholds suited for Fermi energies (2–10 MeV/u)

S. Valdré et al, Nucl. Instr. and Meth. A 930 (27), 2019
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Identification methods

∆E − E correlation
exploits the Bethe-Bloch energy loss relation
identification threshold due to first layer thickness

Pulse Shape Analysisa

charge collection depending on the impinging nuclei
identification threshold corresponding to ∼ 50 µm penetration

E − ToF correlation
FAZIA implementation proposed here
lowest identification threshold

a N. Le Neindre et al, Nucl. Instr. and Meth. A 701 (145), 2013
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Time of flight with FAZIA

Not the first heavy-ion experiment to implement ToFa

Our challenges:
large area (2× 2 cm2), reverse-mounted Si detectors;
signal slowed down by anti-aliasing filter;
time mark extraction from 250 MS/s sampled signals;
not using beam radiofrequency;
1 m flight base

a F. Amorini et al, IEEE T. Nucl. Sci. 55 (717), 2008
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FAZIA time mark

For time mark extraction, after some tests we decided to adopt a
digital ARC-CFDa with tD = 20 ns and f = 20 %

FAZIA time mark is digitally extracted from the acquired signal:
we used the first layer low range signal (∼ 300 MeV range,
14-bit @ 250 MS/s);
all signals are referred to the same validation time, which
must be subtracted to obtain the true time mark:

t(ev,det) = t
(ev,det)
CFD − t(ev)

val

a Even if the CFD is compensated, there is still a residual dependence on
pulse shape, thus we discriminate both mass and charge of detected particles
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Timing accuracy test in Florence
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Timing accuracy test in Florence

t
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t
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100 ns

Plexiglas (+207 ps)

Expected:
(t− tref )del = tdel
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Timing accuracy test in Florence
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FAZIAPRE experiment at LNS

40,48Ca + 12C @ 25, 40AMeV (6 FAZIA blocks)

Timing test
The same timing test performed on the test bench was repeated
during the mounting of FAZIAPRE experiment at LNS giving a mea-
sured delay of (203± 13) ps (added delay was nominally 207 ps)

Permanent infrared LED
During the FAZIAPRE experiment, the infrared LED was mounted
inside the scattering chamber and was kept on during all the shift
(at a 0.1 Hz rate) to trace channel delays



13/22

ToF ID FAZIA block Synchronization Conclusions

FAZIAPRE experiment at LNS

40,48Ca + 12C @ 25, 40AMeV (6 FAZIA blocks)

Timing test
The same timing test performed on the test bench was repeated
during the mounting of FAZIAPRE experiment at LNS giving a mea-
sured delay of (203± 13) ps (added delay was nominally 207 ps)

Permanent infrared LED
During the FAZIAPRE experiment, the infrared LED was mounted
inside the scattering chamber and was kept on during all the shift
(at a 0.1 Hz rate) to trace channel delays



14/22

ToF ID FAZIA block Synchronization Conclusions

FAZIAPRE experiment at LNS

Results of LED analysis:

fixed delays up to 4 ns between channels
(NOT EVENT DEPENDENT):

t(ev,det) = t
(ev,det)
CFD − t(ev)

val +δt(det)

delays remain almost stable (within 200 ps)
after a full restart of the electronics
simple production of a delay map to correct time marks:

t
(ev,det)
adj = t

(ev,det)
CFD +∆(det)

I also studied an alternative synchronization method
which can be used without LED pulses
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Auto-synchronization

target

t1

t0

t2
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E1,m1

d1 E2,m2

Take events with (at least) 2 well known particles

t(ev,1) = t
(ev,1)
CFD − t

(ev)
val +δt(1)

t(ev,2) = t
(ev,2)
CFD − t

(ev)
val +δt(2)
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Auto-synchronization
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Auto-synchronization (or LED)

Now we have a delay map ∆(i) ≡ δt(i) − δt(ref)

t(ev,1) = t
(ev,1)
CFD − t

(ev)
val + δt(1) t(ev,2) = t

(ev,2)
CFD − t
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val + δt(2)

⇓

t(ev,2) − t(ev,1) = t
(ev,2)
CFD + δt(2) − t(ev,1)

CFD − δt(1)

⇓

t(ev,2) − t(ev,1) = t
(ev,2)
CFD + ∆(2) − t(ev,1)

CFD −∆(1)

⇓

t(ev,2) − t(ev,1) = t
(ev,2)
adj − t(ev,1)

adj
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Time of flight identification (only M > 1 events)

target
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Time of flight identification (only M > 1 events)

target

t

t0

tref

dref

Eref,mref

Unknown mass
Eun,(Zun)

event by event
correction

T oFcor = t
(un)
adj − t

(ref)
adj + dref

√
mref

2Eref



18/22

ToF ID FAZIA block Synchronization Conclusions

Delay correction (LED or auto-sync)
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Final E − ToF correlation
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Improvement of isotope discrimination
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Summary and conclusions

Possibility to perform precise time measurements with FAZIA:
time mark jitter from ∼ 100 ps to ∼ 1 ns depending on
impinging particle
observed sampling delays between channels up to 4 ns

Auto-correlations or LED pulses to synchronize Si1 channels:
very accurate methods (error on delay correction ∼10 ps)
trace possible variations of the channel delay during the run
(less than ∼200 ps)

E − ToF correlation to reduce energy threshold for mass ID:
Z = 1, 2 isotopes separated at all energies (not seen in PSA!)
threshold clearly reduced for Z = 3− 8
non perfectly homogeneous detectors fully recovered

Opening the door to QT physics with FAZIA.
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FAZIA collaboration

Thanks for your attention
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