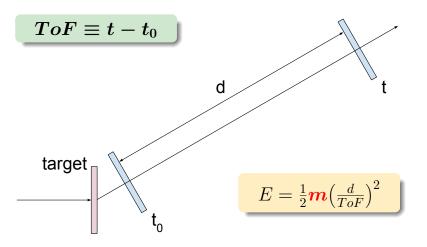
Simone Valdré INFN – Sezione di Firenze for the FAZIA collaboration

Charged particle identification using **time of flight** with FAZIA

Acireale, September 3rd - 5th, 2019

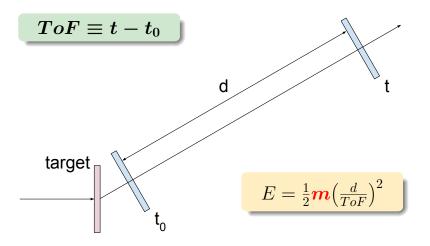
FATA 2019

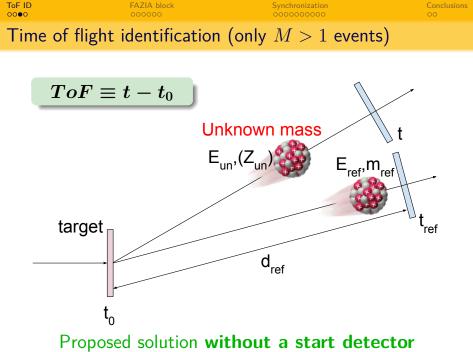
FAZIA Upgrade for Radioactive Beam Operation (INFN grant for new staff researchers)

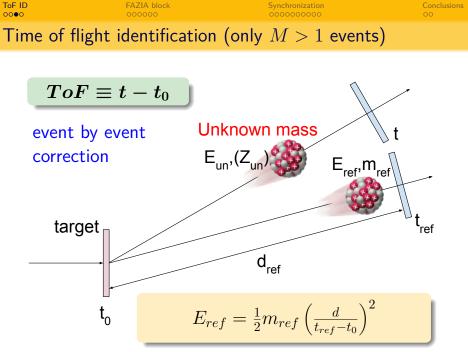

FAZIA Upgrade for Radioactive Beam Operation (INFN grant for new staff researchers)

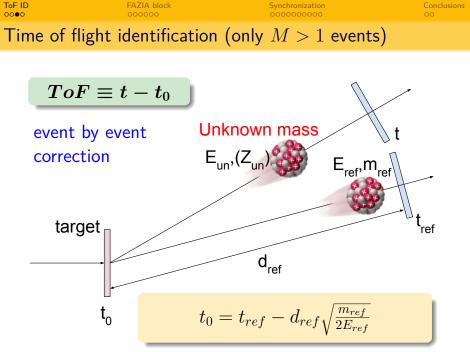
Reduction of identification thresholds

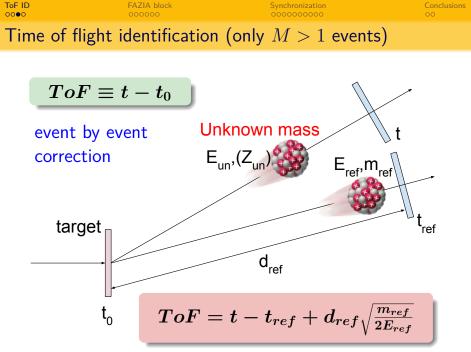
- Funtamental task to measure in future ISOL facilities (SPES, Spiral2,...)
- Physics of quasi-target
- Different possible solutions:
 - time of flight implementation (discussed here)
 - use of thin Si detectors as first stage
 - use of alternative detectors


Time of flight identification

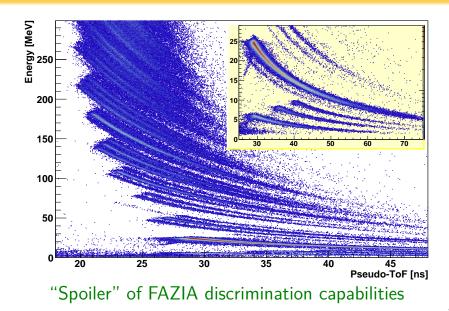

Recover mass of particles from ToF and energy




Time of flight identification



Start time mark needed!



ToF ID	FAZIA block	Synchronization	Conclusion
000●	000000	000000000	00
Time of fligh	nt identification		

ToF	ID
000	0

The FAZIA telescope

The telescope stages

- 300 µm reverse-mounted Si detector;
- 500 μm reverse-mounted Si detector;
- I0 cm Csl(Tl) cristal read by a photodiode.

To achieve the best possible energy resolution and A and Z identification Si detectors come from a nTD ingot cut at random angle to avoid channeling effects.

The FAZIA telescope

The telescope stages

- 300 µm reverse-mounted Si detector;
- 500 μm reverse-mounted Si detector;
- I0 cm Csl(Tl) cristal read by a photodiode.

To achieve the best possible energy resolution and A and Z identification Si detectors come from a nTD ingot cut at random angle to avoid channeling effects.

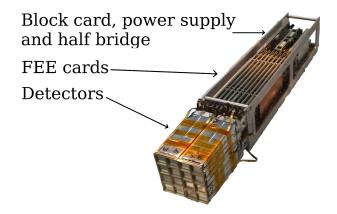


The FAZIA telescope

The telescope stages

- 300 µm reverse-mounted Si detector;
- 500 μm reverse-mounted Si detector;
- I0 cm Csl(Tl) cristal read by a photodiode.

To achieve the best possible energy resolution and A and Z identification Si detectors come from a nTD ingot cut at random angle to avoid channeling effects.



FAZIA block

Synchronization

Conclusions

The FAZIA block

16 telescopes, together with **front-end electronics**, form a **block** operating in **vacuum**.

ToF ID 0000	FAZIA block	Synchronization 000000000	Conclusions 00
FAZIA ele	ectronics		
Front-ei	nd		
 An 	alogue chain: charge pr	eamplifiers and anti-aliasi	ng filters

S. Valdré et al, Nucl. Instr. and Meth. A 930 (27), 2019

ToF ID	FAZIA block	Synchronization	Conclusions	
0000	○○●○○○	000000000	00	

FAZIA electronics

Front-end

- Analogue chain: charge preamplifiers and anti-aliasing filters
- Signals are immediately digitized with 14-bit ADCs:
 - $\bullet\,$ energy resolution is better than $1\,\%\,$ from 5 MeV to 4 GeV
 - common clock distribution for synchronous sampling

S. Valdré et al, Nucl. Instr. and Meth. A 930 (27), 2019

ToF ID	Synchronization	Conclusions
FAZIA elec		

Front-end

- Analogue chain: charge preamplifiers and anti-aliasing filters
- Signals are immediately digitized with 14-bit ADCs:
 - $\bullet\,$ energy resolution is better than $1\,\%\,$ from 5 MeV to 4 GeV
 - common clock distribution for synchronous sampling
- Signals are on-line processed on FPGAs

S. Valdré et al, Nucl. Instr. and Meth. A 930 (27), 2019

ToF ID 0000	FAZIA block ○○●○○○	Synchronization	Conclusions
FAZIA ele	ectronics		

Front-end

- Analogue chain: charge preamplifiers and anti-aliasing filters
- Signals are immediately digitized with 14-bit ADCs:
 - $\bullet\,$ energy resolution is better than $1\,\%\,$ from 5 MeV to 4 GeV
 - common clock distribution for synchronous sampling
- Signals are on-line processed on FPGAs

₩

- Compactness and modularity
- Very good isotopic discrimination capabilities
- Thresholds suited for Fermi energies (2-10 MeV/u)

S. Valdré et al, Nucl. Instr. and Meth. A 930 (27), 2019

ToF ID	FAZIA block	Synchronization	Conclusions
0000		000000000	00
Identificat	ion methods		

$\Delta E - E$ correlation

- exploits the Bethe-Bloch energy loss relation
- identification threshold due to first layer thickness

Pulse Shape Analysis^a

- charge collection depending on the impinging nuclei
- $\bullet\,$ identification threshold corresponding to $\sim 50\,\mu m$ penetration

^a N. Le Neindre et al, Nucl. Instr. and Meth. A 701 (145), 2013

ToF ID	FAZIA block	Synchronization	Conclusions
0000		000000000	00
Identificat	tion methods		

$\Delta E - E$ correlation

- exploits the Bethe-Bloch energy loss relation
- identification threshold due to first layer thickness

Pulse Shape Analysis^a

- charge collection depending on the impinging nuclei
- $\bullet\,$ identification threshold corresponding to $\sim 50\,\mu m$ penetration

E - ToF correlation

- FAZIA implementation proposed here
- lowest identification threshold

^a N. Le Neindre et al, Nucl. Instr. and Meth. A 701 (145), 2013

ToF	ID
000	0

FAZIA block

Synchronization

Conclusions

Time of flight with FAZIA

Not the first heavy-ion experiment to implement ToF^a

^a F. Amorini et al, IEEE T. Nucl. Sci. 55 (717), 2008

Synchronization

Conclusions

Time of flight with FAZIA

Not the first heavy-ion experiment to implement ToF^a

Our challenges:

- large area $(2 \times 2 \text{ cm}^2)$, reverse-mounted Si detectors;
- signal slowed down by anti-aliasing filter;
- time mark extraction from 250 MS/s sampled signals;
- not using beam radiofrequency;
- 1 m flight base

^a F. Amorini et al, IEEE T. Nucl. Sci. 55 (717), 2008

ToF ID	FAZIA block	Synchronization	Conclusions
0000	00000	000000000	00
FAZIA tim	ne mark		

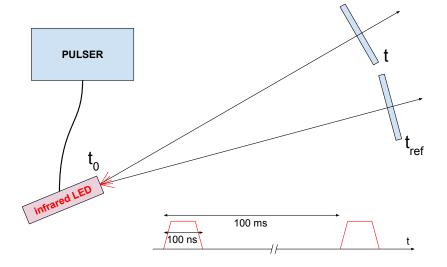
For time mark extraction, after some tests we decided to adopt a digital ARC-CFD^a with $t_{\rm D}=20\,{\rm ns}$ and $f=20\,\%$

^a Even if the CFD is compensated, there is still a residual dependence on pulse shape, thus we discriminate both **mass** and **charge** of detected particles

ToF ID	FAZIA block	Synchronization	Conclusions
0000	00000	000000000	00
FAZIA tim	ie mark		

For time mark extraction, after some tests we decided to adopt a digital ARC-CFD^a with $t_{\rm D}=20\,{\rm ns}$ and $f=20\,\%$

FAZIA time mark is digitally extracted from the acquired signal:


- we used the first layer **low range** signal (\sim 300 MeV range, 14-bit @ 250 MS/s);
- all signals are referred to the same validation time, which must be subtracted to obtain the true time mark:

$$t^{(\text{ev,det})} = t_{\text{CFD}}^{(\text{ev,det})} - t_{\text{val}}^{(\text{ev})}$$

^a Even if the CFD is compensated, there is still a residual dependence on pulse shape, thus we discriminate both **mass** and **charge** of detected particles

ToF ID	FAZIA block	Synchronization	Conclusions
0000		••••••••	00

Timing accuracy test in Florence

ToF ID 0000	FAZI.	A block DOO	Synchronization •••••		Conclusions	
Timing accuracy test in Florence						
		Expecte	d:			
		Expecte $(t - t_{ref})_0$	= 0			
	PULSER		/	t		

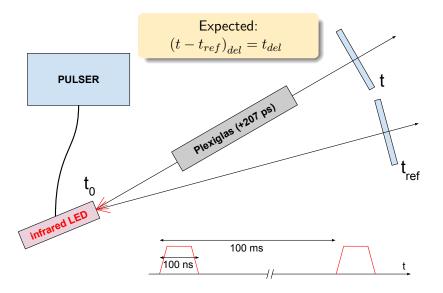
100 ms

100 ns

infrared LED

t

t _{ref}

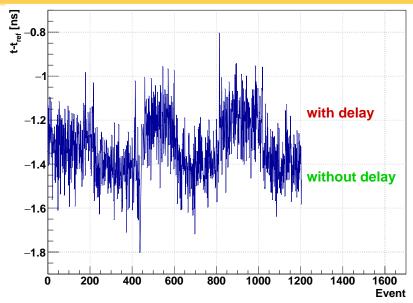

ToF	ID
000	0

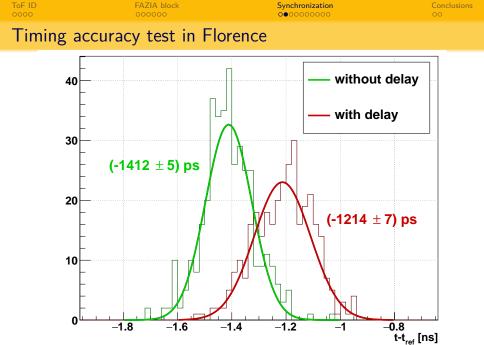
FAZIA block

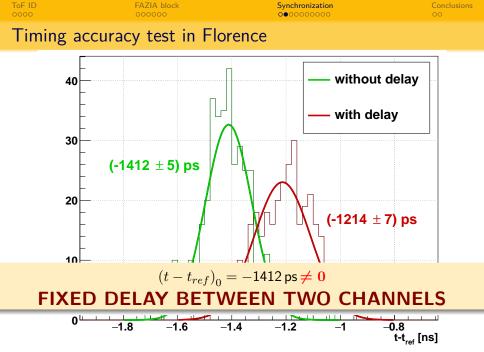
Synchronization

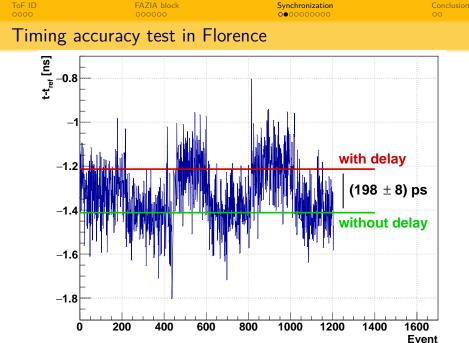
Conclusions

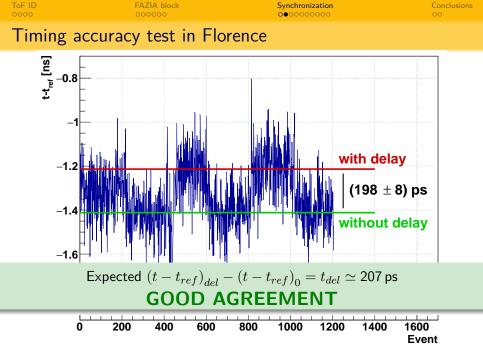
Timing accuracy test in Florence




FAZIA block


Synchronization


Conclusions


Timing accuracy test in Florence

Synchronization

Conclusions

FAZIAPRE experiment at LNS

40,48 Ca + 12 C @ 25, 40 AMeV (6 FAZIA blocks)

Timing test

The same timing test performed on the test bench was repeated during the mounting of FAZIAPRE experiment at LNS giving a measured delay of (203 ± 13) ps (added delay was nominally 207 ps)

Synchronization

Conclusions

FAZIAPRE experiment at LNS

40,48 Ca + 12 C @ 25, 40 AMeV (6 FAZIA blocks)

Timing test

The same timing test performed on the test bench was repeated during the mounting of FAZIAPRE experiment at LNS giving a measured delay of (203 ± 13) ps (added delay was nominally 207 ps)

Permanent infrared LED

During the FAZIAPRE experiment, the infrared LED was mounted inside the scattering chamber and was kept on during all the shift (at a 0.1 Hz rate) to trace channel delays

FAZIA block

Synchronization

Conclusions

FAZIAPRE experiment at LNS

Results of LED analysis:

Synchronization

Conclusions

FAZIAPRE experiment at LNS

Results of LED analysis:

• fixed delays up to 4 ns between channels (NOT EVENT DEPENDENT):

$$t^{(\text{ev,det})} = t^{(\text{ev,det})}_{\text{CFD}} - t^{(\text{ev})}_{\text{val}} + \delta t^{(\text{det})}$$

Synchronization

Conclusions

FAZIAPRE experiment at LNS

Results of LED analysis:

• fixed delays up to 4 ns between channels (NOT EVENT DEPENDENT):

$$t^{(\text{ev,det})} = t_{\text{CFD}}^{(\text{ev,det})} - t_{\text{val}}^{(\text{ev})} + \delta t^{(\text{det})}$$

• delays remain almost **stable** (within 200 ps) after a full restart of the electronics

ToF ID 0000 Synchronization

Conclusions

FAZIAPRE experiment at LNS

Results of LED analysis:

• fixed delays up to 4 ns between channels (NOT EVENT DEPENDENT):

$$t^{(\text{ev,det})} = t_{\text{CFD}}^{(\text{ev,det})} - t_{\text{val}}^{(\text{ev})} + \delta t^{(\text{det})}$$

- delays remain almost **stable** (within 200 ps) after a full restart of the electronics
- simple production of a **delay map** to correct time marks:

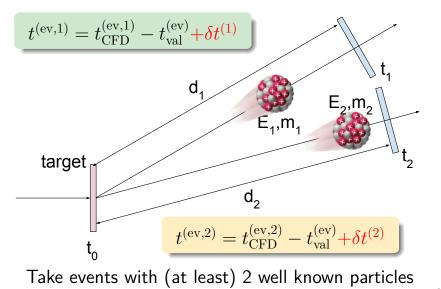
$$t_{\rm adj}^{(\rm ev,det)} = t_{\rm CFD}^{(\rm ev,det)} + \Delta^{(\rm det)}$$

FAZIAPRE experiment at LNS

Results of LED analysis:

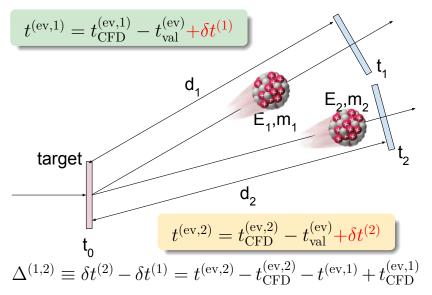
• fixed delays up to 4 ns between channels (NOT EVENT DEPENDENT):

$$t^{(\text{ev,det})} = t_{\text{CFD}}^{(\text{ev,det})} - t_{\text{val}}^{(\text{ev})} + \delta t^{(\text{det})}$$


- delays remain almost **stable** (within 200 ps) after a full restart of the electronics
- simple production of a **delay map** to correct time marks:

$$t_{\rm adj}^{\rm (ev,det)} = t_{\rm CFD}^{\rm (ev,det)} + \Delta^{\rm (det)}$$

I also studied an alternative synchronization method which can be used **without LED pulses**


ToF ID	FAZIA block	Synchronization	Conclusions
0000	000000	00000000	00

Auto-synchronization

ToF ID FAZIA	block Synchronization	Conclusions
0000 00000	0000000000	00

Auto-synchronization

15/22

ToF ID 0000 FAZIA block

Synchronization

Conclusions

Auto-synchronization (or LED)

Now we have a **delay map** $\Delta^{(i)} \equiv \delta t^{(i)} - \delta t^{(ref)}$

 ToF ID
 FAZIA block
 Synchronization
 Co

 0000
 00000
 00000
 00000
 00000

Now we have a delay map
$$\Delta^{(i)} \equiv \delta t^{(i)} - \delta t^{(ref)}$$

$$t^{(\rm ev,1)} = t^{(\rm ev,1)}_{\rm CFD} - t^{(\rm ev)}_{\rm val} + \delta t^{(1)}$$

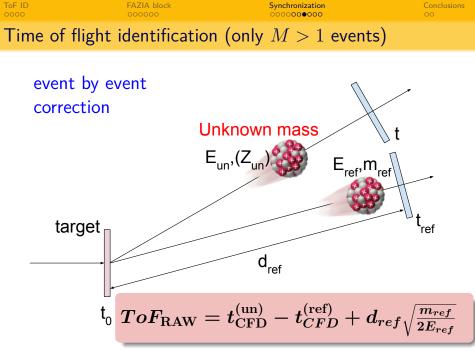
$$t^{(\text{ev},2)} = t^{(\text{ev},2)}_{\text{CFD}} - t^{(\text{ev})}_{\text{val}} + \delta t^{(2)}$$

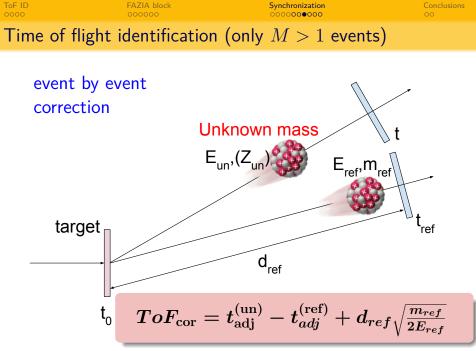
Now we have a **delay map**
$$\Delta^{(i)} \equiv \delta t^{(i)} - \delta t^{(ref)}$$

Now we have a **delay map**
$$\Delta^{(i)} \equiv \delta t^{(i)} - \delta t^{(ref)}$$

$$\underbrace{t^{(\text{ev},1)} = t^{(\text{ev},1)}_{\text{CFD}} - t^{(\text{ev})}_{\text{val}} + \delta t^{(1)}}_{\downarrow} \qquad \qquad \underbrace{t^{(\text{ev},2)} = t^{(\text{ev},2)}_{\text{CFD}} - t^{(\text{ev})}_{\text{val}} + \delta t^{(2)}}_{\downarrow}$$

$$\underbrace{t^{(\text{ev},2)} - t^{(\text{ev},1)} = t^{(\text{ev},2)}_{\text{CFD}} + \delta t^{(2)} - t^{(\text{ev},1)}_{\text{CFD}} - \delta t^{(1)}}_{\downarrow}$$

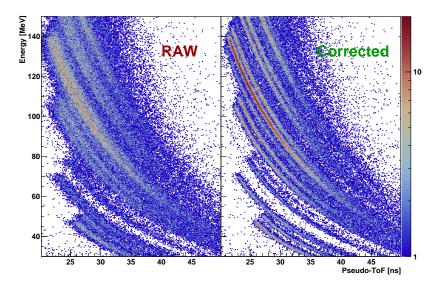

$$\underbrace{t^{(\text{ev},2)} - t^{(\text{ev},1)} = t^{(\text{ev},2)}_{\text{CFD}} + \Delta^{(2)} - t^{(\text{ev},1)}_{\text{CFD}} - \Delta^{(1)}$$


 ToF ID
 FAZIA block
 Synchronization
 Conclusions

 0000
 00000
 000000
 000000

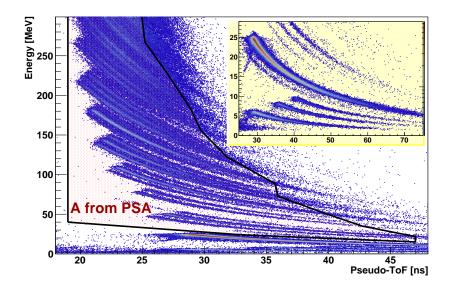
Now we have a delay map
$$\Delta^{(i)} \equiv \delta t^{(i)} - \delta t^{(ref)}$$

$$\begin{array}{c} t^{(\mathrm{ev},1)} = t^{(\mathrm{ev},1)}_{\mathrm{CFD}} - t^{(\mathrm{ev})}_{\mathrm{val}} + \delta t^{(1)} \\ \downarrow \\ t^{(\mathrm{ev},2)} - t^{(\mathrm{ev},1)} = t^{(\mathrm{ev},2)}_{\mathrm{CFD}} + \delta t^{(2)} - t^{(\mathrm{ev},1)}_{\mathrm{CFD}} - \delta t^{(1)} \\ \downarrow \\ t^{(\mathrm{ev},2)} - t^{(\mathrm{ev},1)} = t^{(\mathrm{ev},2)}_{\mathrm{CFD}} + \Delta^{(2)} - t^{(\mathrm{ev},1)}_{\mathrm{CFD}} - \Delta^{(1)} \\ \downarrow \\ t^{(\mathrm{ev},2)} - t^{(\mathrm{ev},1)} = t^{(\mathrm{ev},2)}_{\mathrm{CFD}} + \Delta^{(2)} - t^{(\mathrm{ev},1)}_{\mathrm{CFD}} - \Delta^{(1)} \\ \downarrow \\ t^{(\mathrm{ev},2)} - t^{(\mathrm{ev},1)} = t^{(\mathrm{ev},2)}_{\mathrm{adj}} - t^{(\mathrm{ev},1)}_{\mathrm{adj}} \end{array}$$

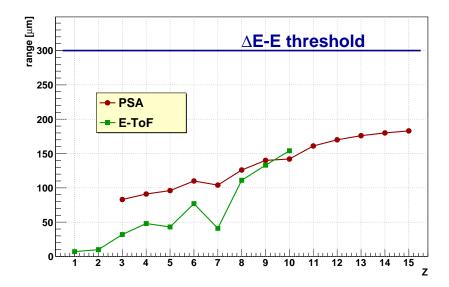


FAZIA block

Synchronization


Conclusions

Delay correction (LED or auto-sync)



ToF ID 0000	FAZIA block	Synchronization	Conclusions 00

Final E - ToF correlation

ToF ID	FAZIA block	Synchronization	Conclusions
0000	000000	000000000	• O
~	· · · · · · · · · · · · · · · · · · ·		

- Possibility to perform precise time measurements with FAZIA:
 - time mark jitter from $\sim 100\,\text{ps}$ to $\sim 1\,\text{ns}$ depending on impinging particle
 - $\bullet\,$ observed sampling delays between channels up to $4\,ns$

ToF ID	FAZIA block	Synchronization	Conclusions
0000	000000	000000000	•0

- Possibility to perform precise time measurements with FAZIA:
 - + time mark jitter from $\sim 100\,\text{ps}$ to $\sim 1\,\text{ns}$ depending on impinging particle
 - observed sampling delays between channels up to 4 ns
- Auto-correlations or LED pulses to synchronize Si1 channels:
 - very accurate methods (error on delay correction ${\sim}10\,{
 m ps})$
 - $\bullet\,$ trace possible variations of the channel delay during the run (less than ${\sim}200\,\text{ps})$

ToF ID	FAZIA block	Synchronization	Conclusions
0000	000000	000000000	•0

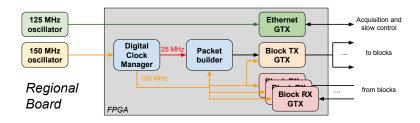
- Possibility to perform precise time measurements with FAZIA:
 - + time mark jitter from $\sim 100\,\text{ps}$ to $\sim 1\,\text{ns}$ depending on impinging particle
 - observed sampling delays between channels up to 4 ns
- Auto-correlations or LED pulses to synchronize Si1 channels:
 - very accurate methods (error on delay correction ${\sim}10\,{
 m ps})$
 - $\bullet\,$ trace possible variations of the channel delay during the run (less than ${\sim}200\,\text{ps})$
- E ToF correlation to reduce energy threshold for mass ID:
 - Z = 1, 2 isotopes separated at all energies (not seen in PSA!)
 - threshold clearly reduced for ${\cal Z}=3-8$
 - non perfectly homogeneous detectors fully recovered

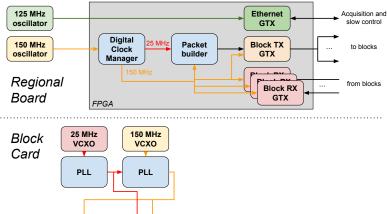
ōF ID	FAZIA block	Synchronization	Conclusions
0000	000000	000000000	•0

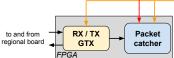
- Possibility to perform precise time measurements with FAZIA:
 - + time mark jitter from $\sim 100\,\text{ps}$ to $\sim 1\,\text{ns}$ depending on impinging particle
 - observed sampling delays between channels up to 4 ns
- Auto-correlations or LED pulses to synchronize Si1 channels:
 - very accurate methods (error on delay correction ${\sim}10\,{
 m ps})$
 - $\bullet\,$ trace possible variations of the channel delay during the run (less than ${\sim}200\,\text{ps})$
- E ToF correlation to reduce energy threshold for mass ID:
 - Z = 1, 2 isotopes separated at all energies (not seen in PSA!)
 - threshold clearly reduced for ${\cal Z}=3-8$
 - non perfectly homogeneous detectors fully recovered
- Opening the door to QT physics with FAZIA.

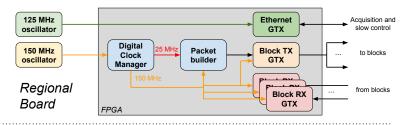
FAZIA block

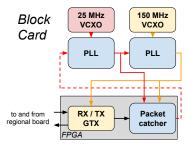
Synchronization

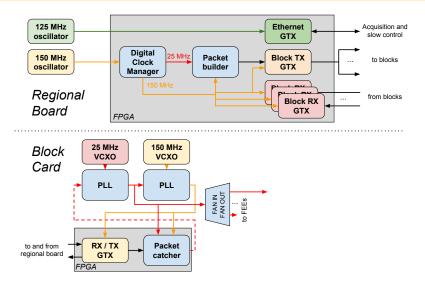

Conclusions

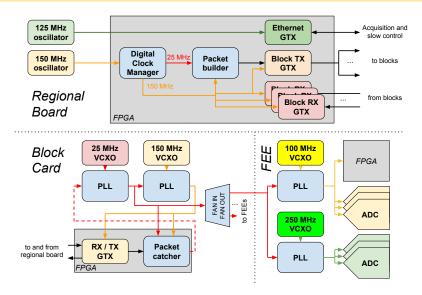

FAZIA collaboration




Thanks for your attention


Backup slides





FAZIA collaboration

Publications

Backup

- S. Barlini et al, Nucl. Instr. and Meth. A 600 (644-650), 2009
- L. Bardelli et al, Nucl. Instr. and Meth. A 654 (272), 2011
- S. Carboni et al, Nucl. Instr. and Meth. A 664 (251), 2012
- N. Le Neindre et al, Nucl. Instr. and Meth. A 701 (145), 2013
- S. Barlini et al, Nucl. Instr. and Meth. A 707 (89), 2013
- S. Barlini et al, Phys. Rev. C 87 (054607), 2013
- S. Piantelli et al, Phys. Rev. C 88 (064607), 2013
- R. Bougault et al, Eur. Phys. Jour. A 50 (47), 2014
- G. Pasquali et al, Eur. Phys. Jour. A 50 (86), 2014
- A. J. Kordyasz et al, Eur. Phys. Jour. A 51 (15), 2015
- F. Salomon et al, J. Instrum. 11 (C01064), 2016
- D. Gruyer et al, Nucl. Instr. and Meth. A 847 (142), 2017
- G. Pastore et al, Nucl. Instr. and Meth. A 860 (42), 2017