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Major trends

• HL-LHC upgrade
– Require new ASICs + timing measurements (< 50ps) for event pileup 

mitigation

• Better detector timing resolution for PET
– Intrinsic time resolution of SiPM is improving ( SPTR ~100ps range)
– CTR <100ps : increase sensitivity, dose reduction & direct 3D imaging (10ps) 

• High channel integration &  compact (4-side abutable SiPM, TSV)
– less space & low power budget for higher number of channels 

• Cost effective
– Order of magnitude in number of channels, not in budget…
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Institution & companies

• Heidelberg, Germany
• IN2P3, France

– Micrhau, Omega, LAL

• CEA, IRFU, France
• CERN, Switzerland
• Bari, Italy
• FPACS, AGH, Krakow, Romania
• Hawaii, USA
• Chicago, USA
• PSI, Switzerland
• Sherbrooke, canada
• ICC-UB, Spain

• IDEAS
• PetSys
• Weeroc

Research Institutes & Universities Companies

Not exhaustive list
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SCA WAVEFORM DIGITIZER INTEGRATED CIRCUIT

Waveform sampling & stretching time to get ps resolution
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Waveform digitizers  [S. Ritt]

• 4 channels
5 GSPS
1 GHz BW
8 bit (6-7)
15k€

4 channels
5 GSPS
1 GHz BW
11.5 bits
900€
USB Power

FADCs
• 8 bits – 3 GS/s – 1.9 W ® 24 Gbits/s
• 10 bits – 3 GS/s – 3.6 W ® 30 Gbits/s
• 12 bits – 3.6 GS/s – 3.9 W ® 43.2 Gbits/s
• 14 bits – 0.4 GS/s – 2.5 W ® 5.6 Gbits/s

1.8 GHz!
24x1.8 Gbits/s

PX1500-4: 
2 Channel
3 GS/s
8 bits

1/10 k€/ch
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How is timing resolution affected?
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Underlying technology

Courtesy : Gary Varner7



Recent ASIC : SAMPIC v3 

Courtesy: Dominique Breton/Eric Delagnes & al à See talk by D. Breton : Fast electronics for TOF in Nuclear Physics 8



SAMPIC v3 Time Resolution

Courtesy: Dominique Breton/Eric Delagnes & al à See talk by D. Breton : Fast electronics for TOF in Nuclear Physics 9



Example of ASIC in development (Univ of Hawaii)   

Pushing towards fs resolution

Courtesy : Gary Varner 10



Waveform digitizer worldwide state of the art

Courtesy : Gary Varner 11



MICROELECTRONICS CIRCUITS

Things you can use to build a system based on detector readout
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Readout ASIC (SiPM, Si Diode & LGAD)
Circuit name Institute # ch. Input Info

NINO CERN 8 Current Differential, ToT, ToF, 32 ch.

PETA6 ZITI,Heidelberg 36 Current Integrator, ADC,TDC

PETIROC2 IN2P3/Omega-Weeroc 32 Voltage ADC, TDC, 2 Trigger, ToF

Triroc1 IN2P3/Omega-Weeroc 64 Current ADC,TDC, 2 trigger

PARISROC2 IN2P3/Omega 16 Voltage SoC for large PM area

TOFPET2 Petsys 64 Current ToT, TDC 25ps bin, ToF

STIC KIP,Heidelberg 64 Current ToT, 2 threshold, ToF

MuTrig KIP,Heidelberg 32 Current Differential,TDC, 2 threshold

Flextot/HRFlextot ICC-UB 32 Current Differential,TDC, 2 threshold

ALTIROC IN2P3/Omega, LAL,LPC, 
SLAC…

25 Current ToA, TOT

HGCROC IN2P3/Omega, LLR, 
IRFU, Imperial, CERN….

32 Current ADC, ToA, TOT

SKIROC2_CMS IN2P3/Omega, CERN… 64 Current ADC, ToA, TOT
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Timing needs in particle physics

• HL-LHC à time of arrival for events pileup mitigation
• Medical imaging  (PET) à Single photo electron timing resolution & Coincidence Timing Resolution
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Timewalk and Jitter

prop to 
1/√BW
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High Speed configuration
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NINO for PET

Application for TOF-PET
[P . Jarron, E. Auffray, S.E. Brunner, M. Despeisse, E. Garutti, M. Goettlich, H. Hillemanns, P. Lecoq, T. Meyer, F. Powolny, W. Shen, H.C. 

Schultz-Coulon, C. Williams  - Time based readout of a silicon photomultiplier (SiPM) for Time Of Flight Positron EmissionTomography 
(TOF-PET) - 2009 IEEE Nuclear Science Symposium Conference Record,  p. 1212  and NIM 617 (2010), p. 232

Differential connection of NINO to SiPM
NINO followed by CERN 25 ps HPTDC
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NINO timing performances

Nemallapudi et al, "Single photon time resolution of state of the art SiPMs" J. Instrum. 2016
Gundacker et al, “High-frequency  SiPM readout  advances  measured coincidence time resolution limits in TOF-PET”, Phys. Med. Biol. 2019
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Single-Ended Front-end Channel

Discriminator

Low Impedance
Front-End
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Charge Integrator & ADC

IRamp
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• Input impedance < 10Ω
• Adjustable input DC potential ± 0.4V
• Trim Threshold per channel
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STiC : basic readout principle (Heidelberg, Wei Shen)

• 64-ch SiPM readout ASIC for ToF applications
• UMC 0.18µm CMOS 
• Time + (linearized) Energy based on TDCs
• Analog Frontend + TDC + Digital
• SiPM bias tuning (~500mV) 
• jitter < 20 ps
• Coincidence Resolution ~ 210ps FWHM
• Energy Resolution ~ 11%
• SiPM Dark Counts pile-up suppression
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511keV

1.27MeV

Na22  β+ decay à coincidence with LSO 3.1x3.1x15 mm3 +MPPC-S10625-33-50

Energy Spectrum Timing Coin.

128 – ch frontend detector system :   2 STiCs wire-bonded on 2 MCMs then 
BGA-soldered on 1 FEB,  MPPCs connected by Flexprint,  yield > 96%

STiC

MCM

STiC

MCM

FEB

Flexprint

SiPM connector
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Petiroc 2
• 32 ch SiPM GHz readout ASIC, dual polarity, 100 fC-400 pC,  6 mW/ch
• 32 trigger outputs and multiplexed data output
• Embedded 10 bit ADC and 20 ps TDC
• Dual threshold : first photons and energy
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PETIROC2 timing performances

CTR ~ 127.3 ps FWHM  (FBK NUV-HD &  LSO:Ce,Ca 2x2x3 mm3)

SPTR ~ 90.7 ps FWHM  (FBK NUV 1x1mm2)
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TOFPET2 (Petsys Electronics)

• Designed in standard CMOS 110 nm technology.
• Signal amplification and discrimination for each of 64 independent 

channels.
• Separately configurable t1, t2 and energy thresholds for each channel.
• Rejects dark counts without triggering, allowing to handle large dark counts 

rates.
• Configurable charge integration time up to one microsecond.
• Quad-buffered TDCs and charge integrators for each channel. 
• The first branch is used for timing measurement. 
• The second branch can either be used for time-over-threshold (ToT) or 

charge measurement with a Wilkinson ADC.
• Dynamic range: 1500 pC.
• TDC time binning: 30 ps.
• Gain adjustment per channel in the charge branch: 1, 1/2, 1/4, 1/8.
• On-chip charge calibration pulse generator with 6-bit programmable 

amplitude.
• Main clock frequency: 160-200 MHz.
• Configurable digital data output over 1, 2, or 4 LVDS data links at 2x the 

main clock frequency and single data rate (SDR) or double data rate (DDR).
• Max output data rate per ASIC: 3.2 Gb/s.
• Max event  rate per channel: 600 kevents, 80 bits per event.
• Power dissipation per channel: 8.2 mW, for the recommended settings

Bugalho et al, "Experimental characterization of the TOFPET2 ASIC" JINST 14 P03029 2019
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TOFPET2 – Timing measurement

HPK S14160-3050HS & LSO:Ce,Ca

LSO:Ce,Ca 3x3x20mm3 LSO:Ce,Ca 2x2x3mm3

HPK S14160-3050HS

Bugalho et al, "Experimental characterization of the TOFPET2 ASIC" JINST 14 P03029 2019
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Altiroc1 - 25 ps time resolution ASIC for ATLAS HGTD
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Altiroc1 – Jitter measurement
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Altiroc0_v2  - Testbeam (2018)
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Conclusion

• Whatever FEE is used (SCA WS or single point read-out), microelectronics is now the 
mainstream choice for large system design

• Strong push for high speed front-end > GHz
– Essential for timing measurements
– Several configurations to get GBW > 10 GHz
– Optimum use of SiGe bipolar transistors

• Voltage sensitive front-end
– Easiest : 50Ω termination, many commercial amplifiers (mini circuit…)
– Beware of power dissipation

• Current sensitive front-end
– Potentially lower noise, lower input impedance
– Largest GBW product

• In all cases, importance of reducing stray inductance
• Deep submicronic technology will allow disruptive results from FEE for both power and 

timing
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Thank you
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Readout configuration
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Circular analog memories: basic principles 

An analog memory can record waveforms at very high sampling rate (>>GS/s) 
After trigger, they are digitized at a much lower rate with an ADC (~20 MHz)

• A write pulse is running along a folded delay line (DLL).
• It drives the recording of signal into analog memory cells.
• Sampling stops upon trigger.
• Readout can target an area of interest, which can 

be only a subset of the whole channel
• Dead time due to readout has to remain as small 

as possible (<100ns / sample).
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Switched Capacitor Array (Analog Memory)

Shift RegisterClock

IN

Out

“Time stretcher” 
GHz ® MHz

Waveform 
stored

Inverter “Domino” ring chain
0.2-2 ns

FADC 
33 MHz

10-100 mW

dts dtd



Design constraint 1

Courtesy : Gary Varner36



Design constraint 2

Courtesy : Gary Varner37



Design constraint 3

Courtesy : Gary Varner38



NINO

Chip designed by CERN group for ALICE TOF RPCs
[ F. Anghinolfi, P. Jarron et al. NINO: an ultra-fast and low-power front-end amplifier/discriminator ASIC designed for the 
multigap resistive plate chamber, NIM A, 2004, Vol. 533 page 183-187 ]

8 channels amplifier and discriminator
Common grid current conveyor, high speed differential discriminator
High speed time measurement (10 ps), Amplitude through time over threshold technique
Pd = 25 mW/ch,  Manufactured in IBM 0.25 um
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