

The IDEA detector concept performance

Roberto Ferrari
on behalf of the INFN RD_FA collaboration

Oxford, April 16th, 2019

Requirements

Higgs physics:

recoil mass \rightarrow tracking b/c separation \rightarrow vertex 2j, 4j, $2\gamma \rightarrow$ calorimetry

 $\tau \rightarrow \rho \nu \rightarrow \text{preshower} / \text{high-granularity calorimeter}$

Physics Process	Measured Quantity	Critical Detector	Required Performance
$ZH \to \ell^+\ell^- X$	Higgs mass, cross section	Tracker	$\Delta(1/p_{\rm T}) \sim 2 \times 10^{-5}$
$H \to \mu^+ \mu^-$	$BR(H \to \mu^+ \mu^-)$	Tracker	$\oplus 1 \times 10^{-3}/(p_{\rm T}\sin\theta)$
$H \to b\bar{b}, \ c\bar{c}, \ gg$	$BR(H \to b\bar{b}, c\bar{c}, gg)$	Vertex	$\sigma_{r\phi} \sim 5 \oplus 10/(p\sin^{3/2}\theta) \ \mu \text{m}$
$H \to q\bar{q}, \ VV$	$BR(H \to q\bar{q}, VV)$	ECAL, HCAL	$\sigma_E^{ m jet}/E \sim 3-4\%$
$H \to \gamma \gamma$	$BR(H \to \gamma \gamma)$	ECAL	$\sigma_E \sim 16\%/\sqrt{E} \oplus 1\% \text{ (GeV)}$

Z, WW, tt \rightarrow mostly covered by above (Z \rightarrow excellent acceptance determination)

More inputs

High luminosity:

- \rightarrow low magnetic field (~2T) for beam emittance preservation
- → fast detector

Extremely high statistics at Z pole:

- → systematics on acceptance determination are critical
 - → silicon layer after DCH for charged acceptance and resolution
 - \rightarrow preshower for μ m-level acceptance definition for γ .s

the $\tau^{\pm} \rightarrow \rho^{\pm} \nu \rightarrow \pi^{\pm} \pi^{0} \nu$ case

$$[Z \rightarrow \tau^+\tau^-] \rightarrow [\tau^+ \rightarrow \rho^+\nu \rightarrow \pi^+\pi^0\nu]$$

Min(γ , π^+) separation (cm) (α , 2 m

High-granularity calorimetry + preshower $\rightarrow \pi^0$ identification and direction

Q: does require longitudinal segmentation?

the $\tau^{\pm} \rightarrow \rho^{\pm} \upsilon \rightarrow \pi^{\pm} \pi^{0} \upsilon$ case

$$[Z \to \tau^+\tau^-] \to [\tau^+ \to \rho^+\nu \to \pi^+\pi^0\nu]$$

1) Beam pipe (R ~ 1.5 cm)

- 1) Beam pipe ($R \sim 1.5$ cm)
- 2) VTX: 4-7 MAPS layers

- 1) Beam pipe ($R \sim 1.5$ cm)
- 2) VTX: 4-7 MAPS layers
- 3) DCH: 4 m long, R ~ 30-200 cm

- 1) Beam pipe ($R \sim 1.5$ cm)
- 2) VTX: 4-7 MAPS layers
- 3) DCH: 4 m long, R ~ 30-200 cm
- 4) Outer Silicon Layer

- 1) Beam pipe ($R \sim 1.5$ cm)
- 2) VTX: 4-7 MAPS layers
- 3) DCH: 4 m long, R ~ 30-200 cm
- 4) Outer Silicon Layer
- 5) SC coil: $R \sim 210$ cm

- 1) Beam pipe ($R \sim 1.5$ cm)
- 2) VTX: 4-7 MAPS layers
- 3) DCH: 4 m long, R ~ 30-200 cm
- 4) Outer Silicon Layer
- 5) SC coil: R ~ 210 cm
- 6) Preshower: $\sim 1 X_0$

- 1) Beam pipe ($R \sim 1.5$ cm)
- 2) VTX: 4-7 MAPS layers
- 3) DCH: 4 m long, R ~ 30-200 cm
- 4) Outer Silicon Layer
- 5) SC coil: R ~ 210 cm
- 6) Preshower: $\sim 1 X_0$
- 7) DR calorimeter: $\sim 2 \text{ m} / 7 \lambda_{\text{int}}$

- 1) Beam pipe ($R \sim 1.5$ cm)
- 2) VTX: 4-7 MAPS layers
- 3) DCH: 4 m long, R ~ 30-200 cm
- 4) Outer Silicon Layer
- 5) SC coil: $R \sim 210$ cm
- 6) Preshower: $\sim 1 X_0$
- 7) DR calorimeter: ~ 2 m / 7 λ_{int}
- 8) Yoke + muon spectrometer

1) Beam pipe ($R \sim 1.5$ cm)

2) VTX: 4-7 MAPS layers

3) DCH: 4 m long, R ~ 30-200 cm

4) Outer Silicon Layer

5) SC coil: $R \sim 210$ cm

6) Preshower: $\sim 1 X_0$

7) DR calorimeter: $\sim 2 \text{ m} / 7 \lambda$.

8) Yoke + muon spectrometer

Material budget

 $\% X_0$ vs. $\cos \theta$

F. Bedeschi's talk

Vertex Detector

Build on ALICE ITS technology

 $\sim 20 \times 20 \ \mu m \ MAPS$ $\sim 3 \ \mu m \ spatial \ resolution$

$$X_0$$
: 0.15-1.0 % (in-out)

- $\sim 20 \text{ mW/cm}^2 \text{ (in-out)}$
- > 100 kHz readout (or even faster)

F. Bedeschi's talk

p (GeV)

p (GeV)

Pixel Detector R&D

ARCADIA: System-grade Demonstrator

Advanced Readout CMOS Architectures with Depleted Integrated sensor Arrays

- INFN CSNV Call Project: budget 1MEur
- Active sensor thickness in the range 50
 μm to 500 μm or more
- Operation in full depletion with fast charge collection by drift
- Small charge collecting electrode for optimal signal-to-noise ratio
- Scalable readout architecture with ultralow power capability (O(10mW/cm²)
- Easy compatibility with standard CMQS processes.
- Deliverable: full-size system-ready demonstrator of a low-power High-density pixel matrix CMOS monolithic sensor

Critical to avoid liquid cooling

```
Ultra-light Drift Chamber (< 1\% X_0)
gas: He 90% - iC<sub>4</sub>H<sub>10</sub> 10%
4 m long, \sim 1 cm drift length

fast (drift time \sim400 ns)
good spatial resolution (\sigma_{xy} < 100 µm)
```

Ultra-light Drift Chamber ($< 1\% X_0$)

gas: He 90% - iC₄H₁₀ 10%

4 m long, \sim 1 cm drift length

fast (drift time ~400 ns) good spatial resolution (σ_{xy} < 100 μm)

Ultra-light Drift Chamber (< 1% X₀)

gas: He 90% - iC₄H₁₀ 10%

4 m long, \sim 1 cm drift length

fast (drift time ~400 ns) good spatial resolution (σ_{xy} < 100 μm)

$$L = 1.7 \text{ m}$$
, $N_{\text{meas}} = 112$ \rightarrow $\Delta(1/P_{\text{T}}) \approx 7 \times 10^{-5} / \text{ GeV (standalone)}$

See F. Grancagnolo's talk

Ultra-light Drift Chamber (< 1% X₀)

gas: He 90% - iC₄H₁₀ 10%

4 m long, \sim 1 cm drift length

fast (drift time \sim 400 ns) good spatial resolution (σ < 100 um)

Transverse womentum nesolution

Ultra-light Drift Chamber ($< 1\% X_0$)

gas: He 90% - iC₄H₁₀ 10%

4 m long, \sim 1 cm drift length

excellent PId w/ cluster counting

 $dE/dx \sim 4\%$ $dN/dx \sim 2\%$

Tested w/ beam in September 2018

Solenoid

1) Ultra-thin & transparent

$$\rightarrow \sim 30 \text{ cm} (0.74 \text{ X}_0 \text{ at } \eta = 0)$$

2) Around tracker $R_{in} \sim 2 \text{ m}$

 \rightarrow saving (with respect to R_{cal} \sim 4 m):

factor ~ 4.2 in stored energy

factor ~ 2.1 in cost

Property	Value
Magnetic field in center [T]	2
Free bore diameter [m]	4
Stored energy [MJ]	170
Cold mass [t]	8
Cold mass inner radius [m]	2.2
Cold mass thickness [m]	0.03
Cold mass length [m]	6

See H. Ten Kate's talk at FCCee workshop

Preshower & Muon Detectors

Preshower: $\sim 120 (240) \text{ m}^2 \text{ of } 2D (1D) \text{ readout planes}$ Muon spectrometer: $\sim 900 (1800) \text{ m}^2 \text{ of } 2D (1D) \text{ readout planes}$

```
    → new generation (fusion) MPDG
    → micro-resistive Well (μ-RWELL)
    → resolution < ~ 40 μm</li>
```

Tested w/ beam in September 2018

See G. Morello's talk

Preshower

2 triple-GEM detector Study of material budget impact → no effect on calorimeter resolution

vs.

of preshower clusters

Tested w/ beam in September 2018

Dual-readout Calorimeter

Build on DREAM/RD52 experience

- → fibre sampling solution
 - → high transverse granularity

Dual-readout Calorimeter

Build on DREAM/RD52 experience

→ fibre sampling solution
 → high transverse granularity

em resolution close to $10\%/\sqrt{E}$

Dual-readout Calorimeter

 $E(GeV) \xrightarrow{5}$

Energy resolution (%)

10

20

50 100

Čerenkov

 \bullet $S + \check{C}$

▼ Scintillation

 ∞

Build on DREAM/RD52 experience

- → fibre sampling solution
 → high transverse granularity
- em resolution close to $10\%/\sqrt{E}$
- had resolution $\sim 30-40\%/\sqrt{E}$

Recoil mass (Delphes)

ZH
$$(Z \rightarrow \mu^+ \mu^-)$$

F. Bedeschi's talk

Invariant mass (Delphes)

Delphes Simulation

e⁺ei → ZH → e⁺eib Б

--ILD

-CLIC

-IDEA

110

120 13 Z mass [GeV]

Calorimetry open issues

SiPM readout:

linearity and cross-talk

- → solution seems very close
- → unprecedented spatial (lateral) resolution

same likely true for dynamic range and channel

grouping

Calorimetry open issues

SiPM readout (2):

digitiser (ASIC) & feature extraction (FPGA)

→ get shower longitudinal development

$$[\Delta x \sim 5 \ cm \Rightarrow \Delta t \sim 100 \ ps]$$

→ started looking at neural network implementation

More controversial issues

A non exhaustive list:

- 1) absorber
- 2) calibration and energy reconstruction for single hadrons and jets
- 3) longitudinal segmentation & particle id
- 4) alternative approaches (i.e. tiles vs. fibres)
- 5) Geant4 simulation validations!

(few more details in backup slides)

Particle id

Problem for closeby particles (e.g. photons and charged pions)

Started looking at

$$\tau^{\pm} \longrightarrow \rho^{\pm} \nu \longrightarrow \pi^{\pm} \pi^{0} \nu$$

with deep learning (convolutional neural network) algorithms

- a) produced events with "time-stamped" photo-electrons
- b) added scintillation decay-time
- c) propagated through SiPM
- d) output to be crunched by neural network for training
 - \rightarrow e) then study performance

Fibres vs. tiles

```
    → + tiles : fully tunable longitudinal segmentation
    → + tiles : no attenuation length issues
    → + tiles : no fibre-to-fibre fluctuation issues
    → + tiles : simpler and cheaper
    → + fibres : lateral segmentation
    → + fibres : highly homogeneous and compact
    → + fibres : higher sampling frequency
    → lower sampling fraction - f samp
    → lower volume
```

$$\sigma_{samp} \sim 2.7\% \times \sqrt{(d/f_{samp})}$$
 :
$$\sigma_{samp} \sim 10\% \iff f_{samp} \sim 7\% \times d(mm)$$

Fibres vs. tiles

Tiles: Cherenkov light yield?

needs study and prototyping

Summary

IDEA detector concept optimised for CepC with

- a) ultra-light tracker
- b) ultra-light solenoid coil
- c) dual-readout calorimeter outside

Detector elements based on proven techniques but G4 simulations need nevertheless validation

Still R&D ongoing to optimise design, sort and validate options with testbeams simulations and sw developments mechanical engineering and electronics

Performance seems to properly match requirements for CepC/FCCee

Backup

Calorimeter absorber choice

absorber : active volume = 62 : 38

	Iron	Brass (Cu260)	Lead
ρ (gr/cm³)	5.31	5.71	7.46
λ _N (cm)	23.7	23.3	24.7
χ ₀ (cm)	2.75	2.35	0.9
R _M (cm)	2.48	2.38	2.32
$\rho \times \lambda_N^3$ (kg)	71	72	113
$\lambda_{N}: \chi_{0}$	8.6	9.9	27.6

Lead:

 $(-) \sim 60\%$ more mass

(+) a factor of ~ 3 in longitudinal separation of em and hadronic showers

Absorber choice

Investigating:

performance (resolution, PId)

construction (and cost) mechanical issues got few small pieces both 3D printed and electrical discharge machined → analysing results

impact on magnetic field

Lead absorber

→ forward with Iron

3D printing @ LNGS

First test: cylinder w/ 45 mm radius and 15 mm thick

Next:

produce two, 75 mm long, 50x50 mm² square modules with alignment nose

- Test w/ copper
- Test w/ iron
- QC of modules, alignment and fibre shoving

Hadronic energy performance

Working on both

- a) standard "dual-readout" approach
- b) machine-learning technique

DR method

average reconstructed energy is

slightly overestimated:

Machine Learning

With machine learning
The energy is on average correctly reproduced:

Soft hadrons are present also in the trained database

Hadronic energy performance

Simulations need to be validated w/ realistic containment prototypes!

Longitudinal segmentation

Prototype w/ staggered fibres

- a) "HAD" section \rightarrow E (short fibres)
- b) "EM" section \rightarrow E (long fibres) E (short fibres)

Calibration?

See I. Vivarelli's talk

Longitudinal segmentation

- a) calibrate long fibres w/ electrons
- b) cross-calibrate short fibres w/ pions

