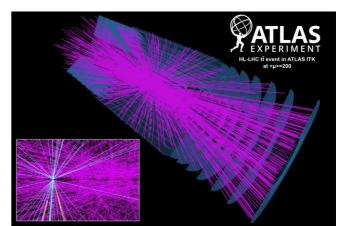
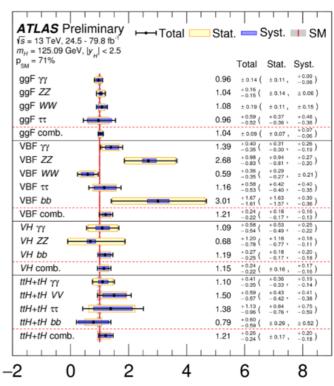
HL-LHC Higgs physics


Workshop on the Circular Electron-Positron Collider EU Edition 2019

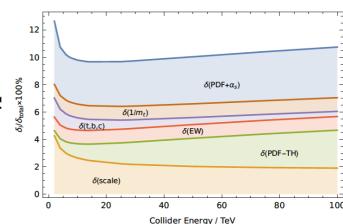
Oxford, UK, April 15 - 17, 2019 Marianna Testa LNF-INFN

High Luminosity LHC

- Operation at up to L= $7.5 \cdot 10^{34}$ Hz/cm² (LHC Run-2: $2 \cdot 10^{34}$) to collect up to L_{int} = 3000 fb^{-1}
- Up to 200 (~ 37) pp collisions per bunch crossing at HL-LHC (LHC Run2)
 - Very challenging experimental conditions
 - Extensive detector upgrades to operate under HL-LHC conditions



tt simulated event at average pile-up of 200 collisions per bunch crossing 2


Higgs Physics at (HL-)LHC

- Wide range of Higgs boson couplings explored at LHC
 - Recent observation: ttH production
 - Still unobserved H→μμ, H→Zγ decays
 - Many measurements still statistically limited
- **Precise** characterization of the Higgs boson main **priority** of **HL-LHC**. With L=3 ab⁻¹:
 - Reduced statistical uncertainties
 - Reduced experimental systematic uncertainties
 - Reduced background uncertainties from high-statistics control regions
- Crucial to also reduce theory uncertainties
 - New precision PDF sets including HL-LHC data
 - Exploit improved experimental precision and enhanced forward acceptance of upgraded detectors
 - Increasing availability of higher order theory calculations
- Crucial to also improve luminosity: aim to 1% precision

ATLAS-CONF-2019-005

Parameter normalized to SM value

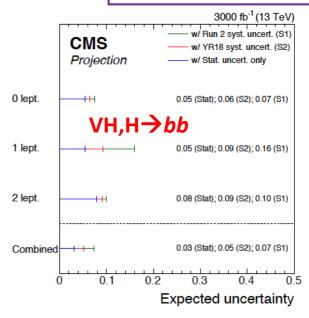
Higgs measurements@HL-LHC: methods

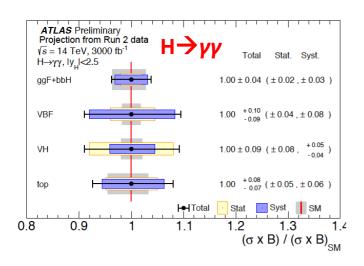
Recent new projections in the Yellow Report <u>1902.00134</u>

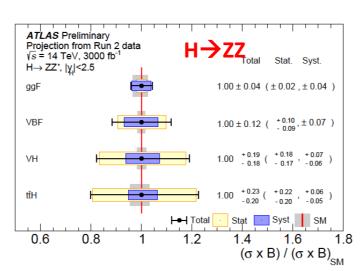
- 1. Extrapolations from Run 2 data to 3 ab⁻¹
 - Efficiencies, resolutions, fake rates assumed unchanged from the Run 2 values
 - assumption is that upgraded detectors compensate pileup effects
- 2. Analysis of simulated samples with HL-LHC conditions
 - Number of pileup interactions μ=200
 - Upgraded detectors
 - Performed for new analysis or significantly improved analysis wrt Run2 ones
- Main scenario in YR for systematic uncertainties (S2):
 - Most theoretical uncertainties scaled down by a factor ½
 - experimental uncertainties scaled down by VL until they reach a defined lower limit
- Scenario for comparison: using Run 2 systematic uncertainties (S1)
 - In all cases uncertainties due to the finite number of simulated events are neglected

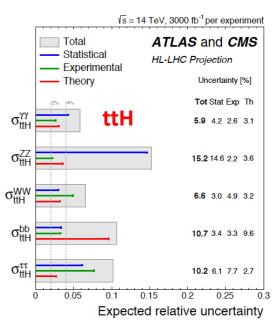
 Uncertainity component | Percentage Uncertainty | Percenta

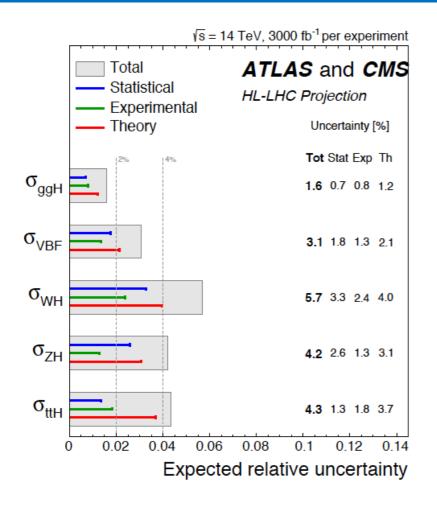
Example:

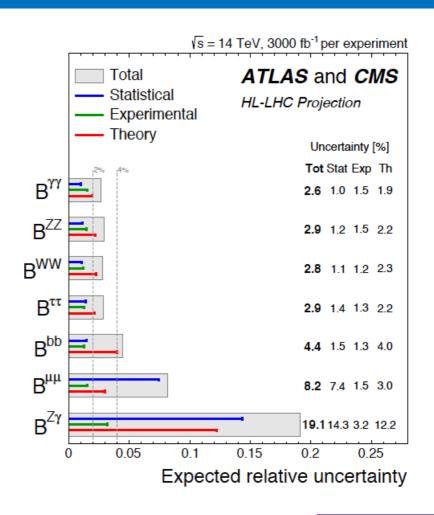

Jet systematics uncertainties expected at HL-LHC


Uncertainity component	Percentage Uncertainty (Baseline Estimate)	Percentage Uncertainty (Optimistic Estimate)
Absolute JES scale Pileup	1% - 2% 0 - 4%	1% - 2% 0 - 2%
JET flavour composition	0 - 1%	0 - 0.5%
JET flavour response	0 - 1.5%	0 - 0.8%

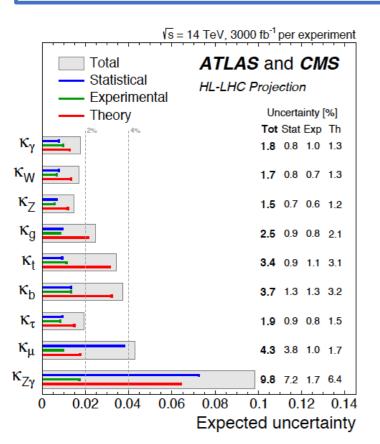

Higgs couplings: single channels


- Projection of combined measurements of Higgs boson couplings using data collected in Run2
 - main production: ggF, VBF, VH, ttH
 - decay modes: γγ, ZZ, WW, bb, ττ, μμ, Zγ
- Most channels dominated by systematic uncertainties:
 - exception: $ttH, H \rightarrow \gamma \gamma$, ZZ and VH, $H \rightarrow ZZ$, $\gamma \gamma$
- Rare H→μμ decay mode expected to be observed
 - and precisely measured!
- Expected evidence for rare $H \rightarrow Z\gamma$ decay

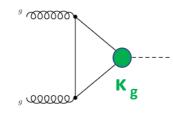


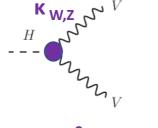


Combined Higgs cross section and BR measurements


YR2018 1902.00134

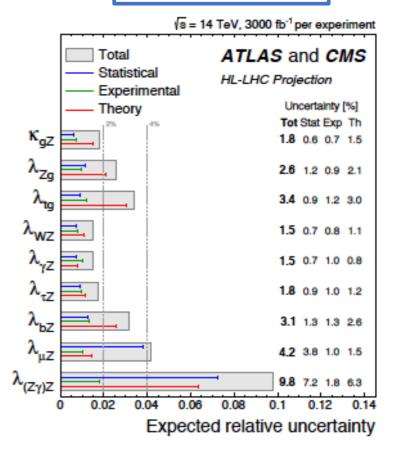
- BR H $\rightarrow \mu\mu$ and BR H $\rightarrow Z\gamma$ statistically limited
- Other branching ratios and cross sections dominated by theoretical uncertainties


Combined Higgs coupling measurements


Coupling modifiers for production process or decay mode j

$$\kappa_j^2 = \sigma_j / \sigma_j^{\text{SM}} \quad \text{or} \quad \kappa_j^2 = \Gamma^j / \Gamma_{\text{SM}}^j.$$

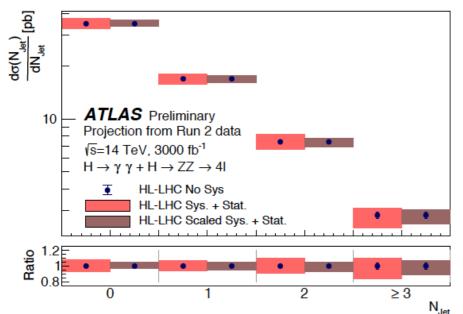
$$\sigma_{ggF} = \kappa^2_g \sigma_{ggF}(SM)$$



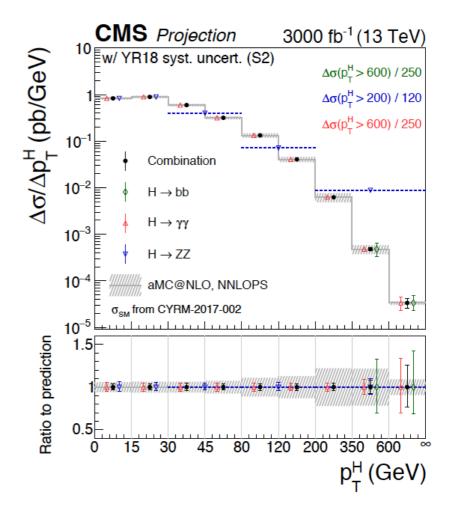
$$\Gamma_{W,Z} = \kappa^2_{W,Z} \Gamma_{W,Z} (SM)$$

Ratio of coupling modifiers

$$\lambda_{ij} = \kappa_i/\kappa_j$$


- Uncertainties on the κ 's **2-5%**, apart from Z γ . Mostly limited by theoretical uncertainties
- Uncertainties on λ_{ij} 1.5-4%, a part $\lambda_{Z\gamma Z}$
- $\lambda_{\gamma Z}$ best measured allows to probe new particles in the H $\rightarrow \gamma \gamma$ loop

Differential cross sections

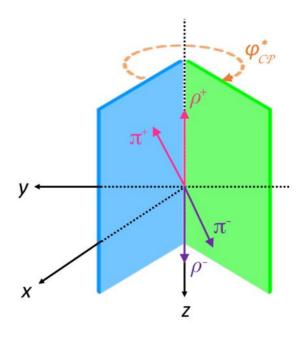

Projection of H→γγ and H→ZZ→4l differential cross sections

Measurement of p_T^H distribution

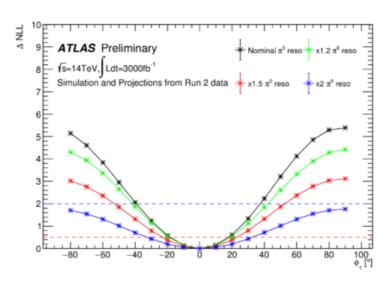
- probes perturbative QCD calculations
- gives information about (new) particles contributing to the gluon fusion loop
- high p_T ^H region sensitive to new physics effects

Precision 5-15% depending on N_{iet} bin

Precision ~10% for p $_{T}^{H}$ > 350 GeV, statistically limited

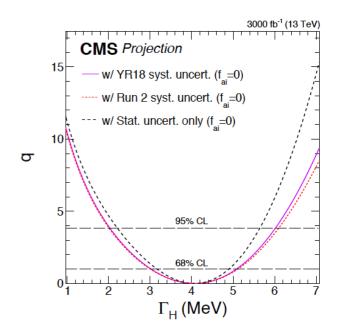

CP nature of the Higgs boson coupling to $\tau\tau$ leptons at HL-LHC

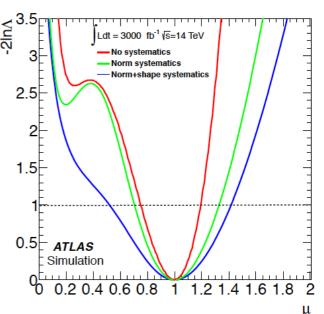
- SM predictions: Higgs boson is scalar JCP =0++
- CP state already probed with many diboson couplings
 - CP-odd contributions to the bosonic production/decay strongly suppressed in many BSM models
- Fermonic decays more sensitive:
 - CP-odd contributions at the same level as the CPeven ones


$$\mathcal{L} = g_{\tau\tau}(\cos(\phi_{\tau})\overline{\tau}\tau + \sin(\phi_{\tau})\overline{\tau}i\gamma_5\tau)h,$$

SM: $\phi_{\tau} = 0$

maximal CPV: ϕ_{τ} =90



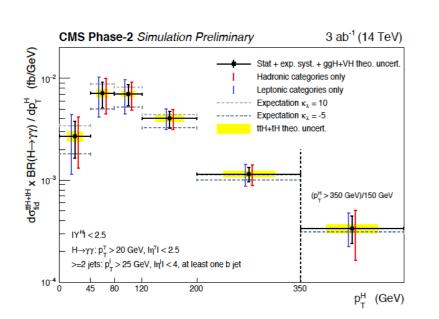

- Strategy: Use $\tau \rightarrow \rho \nu \rightarrow \pi^{\pm} \pi^{0} \nu$ decay
 - measurement of acoplanarity angle between charged and neutral π
 - Sensitive to ϕ_{τ}
 - Use substructure τ information
- Results at HL-LHC:
 - $\Delta \phi_{\tau} = \pm 18\%$ (± 33%) with Run2 (twice worse Run2) π^{0} energy resolution
 - Pseudoscalar hypothesis excluded even with 1.5 π^0 resolution

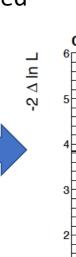
Higgs Boson width

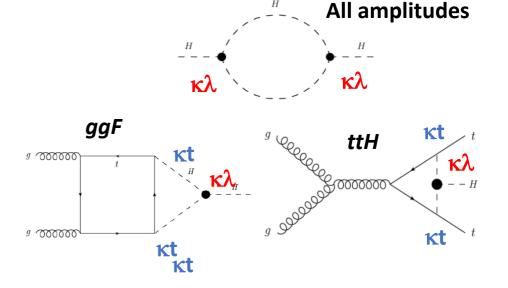
- SM expectation $\Gamma_H = 4 \text{ MeV}$
- At hadron collides, direct measurement via invariant mass of products is challenging
 - Detector resolution limits precision to ~ 1 GeV
- Strategy: Comparison of on- and off-shell rates in
 H→ZZ→4l can constrain the Higgs boson width
 - Assumption: same on shell and off-shell couplings
- Current constraints using Run1+Run2 data: $\Gamma < 14.4 \text{ MeV (ATLAS)}, \Gamma < 9.2 \text{ MeV (CMS)}$
- Projection to $3ab^{-1}$:**4.** $1^{+1.0}_{-1.1}$ ($^{+1.5}_{-2.1}$) MeV for CMS (ATLAS)
 - ATLAS projection of Run 1 analysis, larger theoretical uncertainties than in CMS projection
- Combined constraint 4. $1^{+0.7}_{-0.8}$ MeV assuming CMS sensitivity

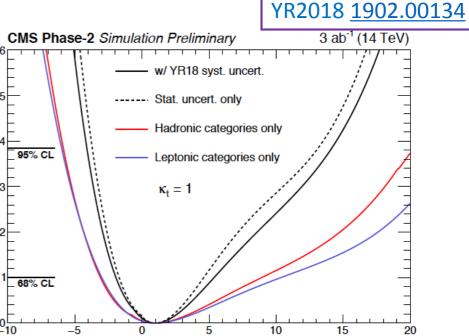
Higgs Boson mass

- Current ATLAS+CMS: $m_H = 125.18 \pm 0.16 \text{ GeV } pdg 2018$
 - Using H \rightarrow ZZ* \rightarrow 4l and H $\rightarrow \gamma \gamma$
 - $H \rightarrow \gamma \gamma$ limited by uncertainty on photon energy scale
- Detailed studies for the muons, electrons and photons calibration at HL-HC not yet done
- Precision of 10-20 MeV plausible

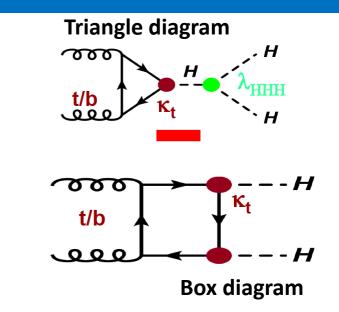

YR2018 <u>1902.00134</u>

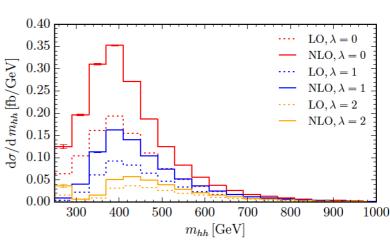

- ATLAS extrapolation from Run2 m_H = 124.79 ± 0.36 (stat.) ± 0.05 (syst.) GeV, assuming:
 - improvement in μ momentum resolution from the new inner tracker
 - Improvement in uncertainty in μ momentum scale


	$\Delta_{\mathrm{tot}} \; (\mathrm{MeV})$	$\Delta_{ m stat} \; ({ m MeV})$	$\Delta_{\rm syst} \ ({ m MeV})$
Current Detector	52	39	35
μ momentum resolution improvement by 30% or similar	47	30	37
μ momentum resolution/scale improvement of 30% / 50%	38	30	24
μ momentum resolution/scale improvement 30% / 80%	33	30	14


Differential cross sections: probing Higgs-self coupling

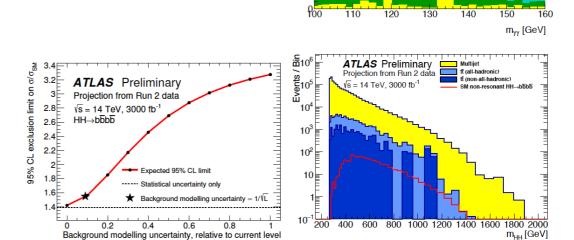
- Single-Higgs production depends on self coupling via one-loop corrections
- Corrections to the tree-level cross-sections depend on:
 - production mode → mainly ttH, tH, VH
 - kinematics properties of the event
- Study on ttH(→γγ) differential cross-section measurement:
 - At 95% CL: -4.1<κ λ <14.1 if only κλ varied


Higgs-self coupling


- Motivation for Higgs-selfcoupling λ
 - Shape of Higgs potential
 - Probe EW Symmetry Breaking mechanism
 - Probe new physics
- Non-resonant HH production sensitive to λ :
 - rare process of the SM: $\sigma(gg \rightarrow HH) \approx 0.1\% * \sigma(gg \rightarrow H)$
 - destructive interference between box and triangle diagram
 - Strong dependence of inclusive cross section and m_{hh} shape on λ

- ggF: NNLO calculation with finite m_t effects at NLO
- -8% wrt YR4, used in previous projections

\sqrt{s} [TeV]	NNLO _{FTa} [fb]	m_t unc.	PDF unc.	α_S unc.	PDF+ α_S unc.
14	$36.69^{+2.1\%}_{-4.9\%}$	±2.7%	±2.1%	±2.1%	±3.0%

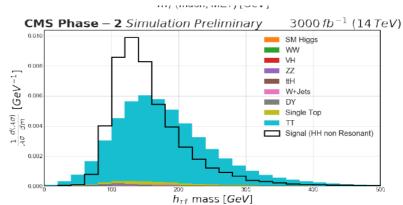

Higgs-self coupling: input channels

• HH→bbγγ:

- Small BR: 291 events with 3ab ⁻¹
- Low bkg
- Photon resolution critical

• HH→4b:

- Large BR: ~37k events with 3ab⁻¹
- Large QCD bkg
- Large dependence on background modelling uncertainty


ATLAS Simulation Preliminary

Reducible

Stat. Und

• HH→bbττ:

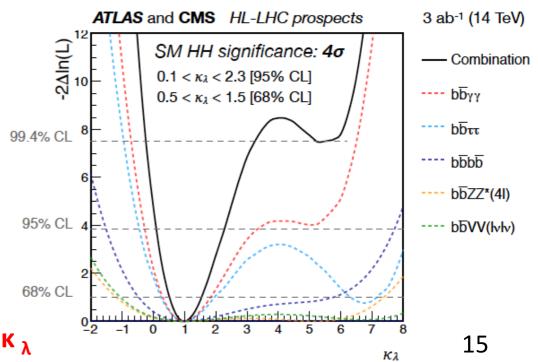
- Sizeable BR: ~8k events with 3ab -1
- · Relatively low background
- Incomplete reconstruction of the event due to the presence of neutrinos
 - → Challenging separation from tt and Drell-Yan bkg

• HH→bbVV (IIvv), HH→bbZZ(II) projections by CMS only

YR2018 1902.00134

HH production and Higgs-self coupling

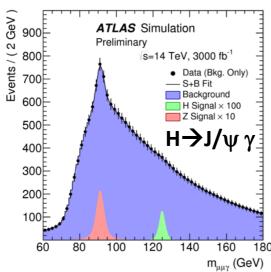
- Expected significance of HH production with(without) systematics at HL-LHC
 - 4σ (4.5σ) expected with ATLAS+CMS!
- Measurement of μ (SM signal injected):
 - ~30% (25%) with (without) systematics


	Statistical-only		Statistical + Systematic	
	ATLAS	CMS	ATLAS	CMS
$HH \to b\bar{b}b\bar{b}$	1.4	1.2	0.61	0.95
$HH \to b\bar{b}\tau\tau$	2.5	1.6	2.1	1.4
$HH \to b\bar{b}\gamma\gamma$	2.1	1.8	2.0	1.8
$HH \to b\bar{b}VV(ll\nu\nu)$	-	0.59	-	0.56
$HH \to b\bar{b}ZZ(4l)$	-	0.37	-	0.37
combined	3.5	2.8	3.0	2.6
	Combined		Combined	
	4.5	5		4.0

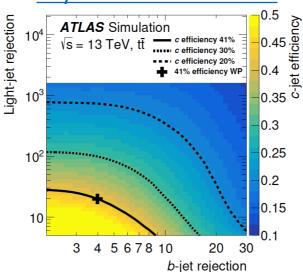
YR2018 <u>1902.00134</u>

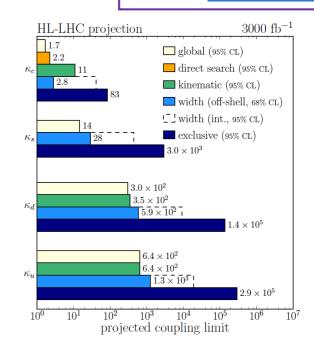
- $0.52(0.57) < \kappa_{\lambda} < 1.5$ without/with systematics
- 2nd minimum is excluded at 99% thanks to m_{HH} shape information

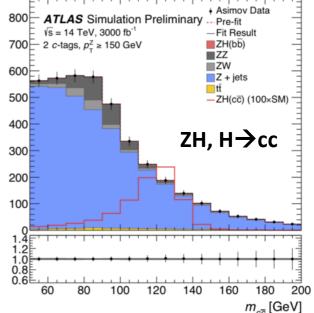
Not all channels optimized to measure K



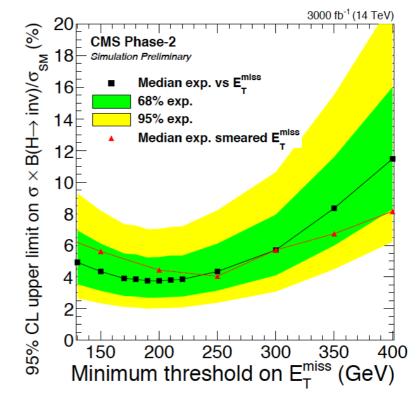
Higgs coupling to light quarks

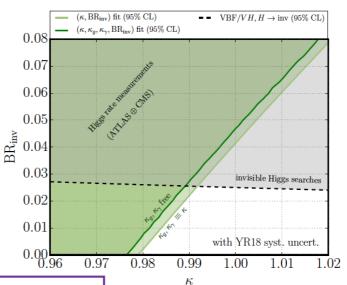

YR2018 1902.00134


- Yukawa couplings of the Higgs boson to the first and second generation quarks
 - Run2: only upper limits
 - Challenging: Small BR, large hadronic bkg, c-jet tagging
- **Indirect measurements:**
 - direct global fits, diff. cross section, width
- Inclusive searches: VH, H \rightarrow cc. SM BR H \rightarrow cc = 2.9 %
 - HL-LHC projection: $\sigma(pp \rightarrow ZH) \times B(H \rightarrow cc) < 6.3 \text{ SM}$
 - Exclusive searches: $H \rightarrow J/\psi \gamma$
 - SM prediction: BR($H \rightarrow J/\psi \gamma$) ~3 $\times 10^{-6}$
 - HL-LHC projection: $\sigma(pp \rightarrow H) \times B(H \rightarrow J/\psi \gamma) < 14$ SM

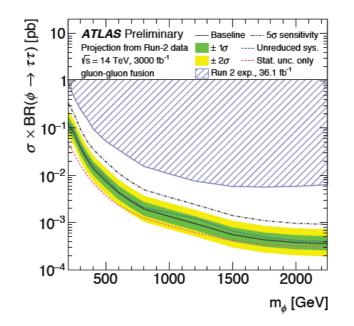


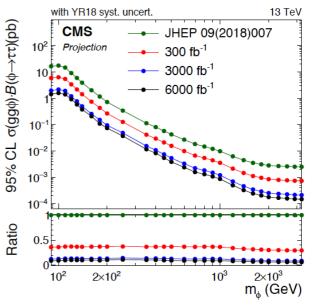
PhysRevLett.120.211802

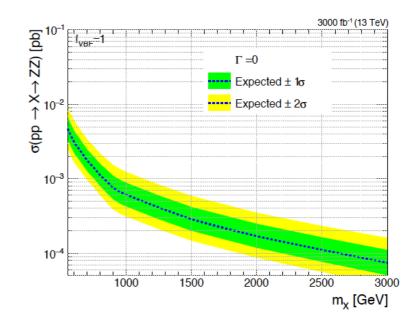




Higgs to invisible decays


- SM BR H \rightarrow invisible = 0.1 %
- Run2: BR_{inv} < 26 (22%) obs., exp 17(17)% for ATLAS(CMS)
- Experimentally challenging: pile-up effects degradation in E_T miss, tagging of VBF jets
- VBF channel most sensitive
- At HL-LHC (CMS) B inv < 3.8% at 95% CL
 - Limited by syst. exp. uncertainties
 - Degradation of E_T miss resolution does not impact the sensitivity significantly
- Assuming same sensitivity of experiments for VH and VBF, and using ATLAS projection with VH:
 - B inv < 2.5% at 95% CL
- Using Higgs rate measurements, and assuming universal Higgs couplings modifiers:
 - BR_{inv} (κ ==1) < 4.2%




Searches for additional heavy Higgs states

- Search for φ→ττ decay
- MSSM benchmark mode
 - Coupling to down-type quark enhanced
- With 3 ab⁻¹ large limit improvement wrt to Run2
 - Especially at high mass
- Significant impact of systemat
 - Dominated by fake τ and high p_τ τ reco+ID

- Search for X→ZZ decay
- With 3 ab⁻¹ X 10 limit improvement wrt Run2 for m_x > 1TeV
- At HL-LHC still statistically limited

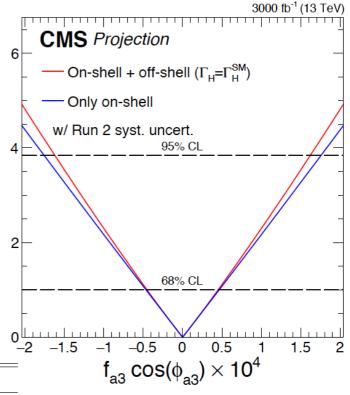
Anomalous HVV couplings

b

Amplitude describing the interaction of a spin-0 particle and and two spin-one gauge bosons

$$A(\text{HVV}) \sim \left[a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}} q_{\text{V1}}^2 + \kappa_2^{\text{VV}} q_{\text{V2}}^2}{\left(\Lambda_1^{\text{VV}}\right)^2} \right] m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* + a_2^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + \left(a_3^{\text{VV}}\right) f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu},$$

- Coupling a1(a2) describe the tree-level(loop-induced) interaction of a CP even scalar
- Coupling a3 describes the interactions of a CP odd scalar, SM a3 = 0
- Λ is scale of NP


Fit fractional contribution to on-shell $H \rightarrow ZZ$

$$f_{a3} = \frac{|a_3|^2 \sigma_3}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3 + \tilde{\sigma}_{\Lambda 1} / (\Lambda_1)^4 + \dots}, \qquad \phi_{a3} = \arg\left(\frac{a_3}{a_1}\right),$$

Parameter	Scenario	Projected 95% CL interval
$f_{a3}\cos\left(\phi_{a3}\right)$	Only on-shell	$[-1.8, 1.8] \times 10^{-4}$
$f_{a3}\cos\left(\phi_{a3}\right)$	On-shell and off-shell	$[-1.6, 1.6] \times 10^{-4}$

Run1+Run2 1901.00174.pdf

Parameter	Scenario	Observed	Expected
$f_{a3}\cos(\phi_{a3})$	on-shell	$-0.0001^{+0.0004}_{-0.0015}$ [-0.163, 0.090]	$0.0000^{+0.0019}_{-0.0019} [-0.082, 0.082]$
	any Γ_{H}	$0.0000^{+0.0003}_{-0.0010}$ [-0.0165, 0.0087]	$0.0000^{+0.0015}_{-0.0015} [-0.038, 0.038]$
	$\Gamma_H = \Gamma_H^{SM}$	$0.0000^{+0.0003}_{-0.0009} [-0.0067, 0.0050]$	$0.0000^{+0.0014}_{-0.0014} [-0.0098, 0.0098]$

YR2018 1902.00134

Conclusions

The precise determination of Higgs boson properties, and their connection to electroweak symmetry breaking is a primary target of the HL-LHC physics program

What we expect:

- main Higgs boson couplings at the percent level
- Rare $H \rightarrow \mu\mu$, $H \rightarrow Z\gamma$ decays visible
- HH production: sensitivity of 4σ
- ...

To reach this goal, need to

- reach the expected reduction of experimental and theoretical uncertainties
- face challenging experimental conditions with unprecedented pileup levels
- build new detectors

→ Hard and exciting work for the next ~15 years!

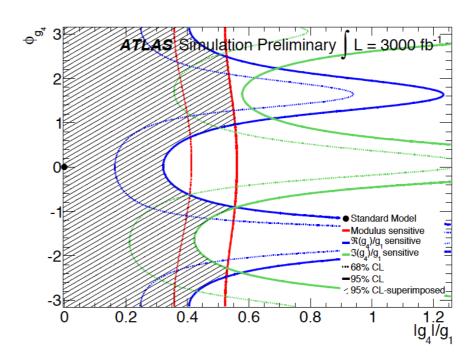
Backup

Spin and parity

Amplitude describing the interaction of a spin-0 particle and and two spin-one gauge bosons

$$A(\mathbf{X}_{J=0} \to \mathbf{V} \mathbf{V}) = v^{-1} \left(g_1 m_V^2 \epsilon_1^* \epsilon_2^* + g_2 f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + g_3 f^{*(1),\mu\nu} f_{\mu\alpha}^{*(2)} \frac{q_\nu q^\alpha}{\Lambda^2} + g_4 f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \right)$$

- Coupling g1(g2) describe the tree-level(loop-induced) interaction of a CP even scalar
- Coupling g4 describes the interactions of a CP odd scalar
- Coupling g3 can be absorbed into g2
- SM prediction, CP-conserving tree-level interaction:g1 > 0 and $g_{2,3,4} = 0$.


ATL-PHYS-PUB-2013-013

Parametrization:

$$f_{g_i} = \frac{|g_i|^2 \sigma_i}{|g_1|^2 \sigma_1 + |g_2|^2 \sigma_2 + |g_4|^2 \sigma_4}; \quad \phi_{g_i} = \frac{|g_i|^2 \sigma_i}{|g_1|^2 \sigma_1 + |g_2|^2 \sigma_2 + |g_4|^2 \sigma_4};$$

 $f_{\rm g4}$ < 0.037 and $f_{\rm g2}$ < 0.12 at 95% CL for 3000 fb⁻¹

Sensitive test of the tensor structure of $\rightarrow ZZ^*$ couplings a the high luminosity Li

