

Lucia Sabbatini Coordinator of the LATINO team

D. Alesini, A. Gallo, V. Pettinacci, A. Falone with support of Administration, Technical Division, SIDS, ...

LATINO

a Laboratory for Advanced Technologies for INnOvation

a Research Infrastructure hosted at LNF open to external users for both research and economic activities

- Winner of the call «Open Research Infrastructure» (Regione LAZIO)
 POR FESR 2014-2020
- Main goal: reindustrialization of the Region
- KET (Key Enabling Technologies): Advanced Manufacturing System
- Roadmap: 24 months: installation of the infrastructure
 - 5 years: monitoring of economic sustainability
- Cofunding: total budget of the project **2.5M**€ (1.6 RL + 0.9 INFN) (to be used for instrumentation and civil engineering)

LATINO

a Laboratory for Advanced Technologies for INnOvation

focus on technologies developed for particle accelerators

- First phase: set up the infrastructure (July 2018 June 2020)
- Beginning of activities: one year from now
- Organized in 4 Laboratories:
 - Radio Frequency
 - Magnetic Measurements
 - > Vacuum and Thermal Treatments
 - > Mechanical Integration

RADIO FREQUENCY LAB

RESP: A. GALLO

X band high power plant to test and characterize accelerating structures and components at 12 GHz

1 μs pulses at peak power of 50MW

100 ns pulses at peak power of 200MW with pulse compressors

A network analyser to characterize devices and components up to 100 GHz

- RF structure high power test
- High frequency RF measurements
- RF devices characterization

(main applications: medical accelerators, telecommunications, material science)

MAGNETIC MEASUREMENTS LAB

RESP: L. SABBATINI

A rotating coil for accurate magnetic field measurements of multipoles

Relative accuracy of integrated main harmonic 3 10⁻⁴ Positioning accuracy 30 µm

Stretched wire measurement bench

A stretched wire bench for magnet fiducialization, integral field measurements, higher order multipoles

Centering accuracy 2 µm, Integrated field precision 0.2 G m

- Harmonic analysis of multipolar fields
- Field maps with Hall probe
- Integral magnetic field measurements and fiducialization
- Magnetic design of electromagnets

(main application: medical and research accelerators)

VACUUM AND THERMAL TREATMENTS LAB

RESP: D. ALESINI

An outgassing measurement system to characterize vacuum materials

UHV, low outgassing: diameter 250mm, height 500mm

HV, high outgassing: diameter 200mm, height 300mm

Residual gas analyzer: 200 amu, sensitivity up to 2 10⁻¹⁴ mbar

An ultra-high vacuum furnace for thermal treatments and brazing

Diameter 50cm, length 1.5m

T≈900°C, p≈10⁻⁷ mbar

External heater

- Ultra high vacuum or controlled atmosphere thermal treatments
- · Brazing in ultra-high vacuum
- Specific outgassing measurements of samples

(main application: aerospace, treatment of superconducting material)

MECHANICAL INTEGRATION LAB

RESP: V. PETTINACCI

An architectonic laser scanner for environment and plants

Range of measurements >140m

Positioning precision @10m: 1.5 mm

A stereoscopic laser scanner for mechanical components Cameras with 6Mpixel Field of view 460mm

- Building and utilities CAD reconstruction for space management and integration analysis
- Mechanical components quality inspection and dimensional survey
- Reverse engineering applications

(main application: industrial plants, high precision mechanics)

CIVIL ENGINEERING

(RESP. TECHINCAL DIVISION – S. CANTARELLA – S. INCREMONA – U. ROTUNDO)

The LATINO laboratories will be hosted at LNF in buildings #38 and #7. Budget has been allocated to renovate the infrastructures.

CIVIL ENGINEERING

(BUILDING #38)

- New magnet cooling system (improve efficiency and performances)
- Replacement of the main doors
- Renewal of the floor

CIVIL ENGINEERING

(BUILDING #7)

- Bunker for X band with ancillary systems
- X band cooling system
- HVAC for the building

ORGANIZATION CHART

Manager: management, coordination, interaction with Users

Laboratories: leaded by INFN technologists

Personnel of Accelerator Division Services to support the activities

Support for Secretariat and Administration activities

ECONOMIC ACTIVITIES

- Business plan (with the support of a consultant) to analyze:
 - Industrial areas of applications
 - Target users
 - Market approach
 - Economic feasibility (expected income, sustainability, operational costs)
 - Rules governing the access
- Letter of interest from small and medium enterprises
 - ASG superconductors, CECOM, COMEB, DG-Technology, Fantini Sud, ITEL, ITELCO, KYMA, MoriMeccanica, National Instruments, Ormet, SIT, TecnoAlarm, TSC, Zanon
- LNF Working group on separate accounting system (organized by External Funds Service)

STATUS OF THE PROJECT

- ✓ First Milestone accomplished: "start" of the project within 6 months (i.e. orders placed for 50% of the budget)
- ✓ Overall Budget in line within expectation (small variations allowed within items)
- ✓ Manager

Work in progress on:

Website http://latino.lnf.infn.it/

GANTT

BUDGET

LABORATORY	INSTRUMENT	Proposal (K€)	Current (K€)	Status
Radio Frequency	Modulator	583	592	Order placed (deliver 01/20)
	LLRF	84	74	
	Network analyser	293	200	Order placed (deliver 07/19)
Magnetic Measurements	Stretched wire	180	64	Order placed (deliver 09/19)
	Rotating coil	666	500	
Vacuum and Thermal Treatments	Ultra high vacuum oven	192	250	
	Outgassing system	185	163	Order placed (deliver 10/19)
Mechanical Integration	Architectonic laser scanner	56	50	Delivered
	Stereoscopic laser scanner	36	48	Delivered
Civil Engineerging	Building #7	261	395	
	Building #38	105	109	Order placed (end 09/19)
TOTAL		2.641	2.445	

S-CURVE

NEXT FUTURE

- Items to be purchased (design and administrative issues ongoing): furnace, Low Level RF system, rotating coil
- Civil works: Start summer 2019, expected delivery spring 2020

Contributions at conferences and Dissemination:

- ➤ IPAC 2019: Talk at the Industry Session (May)
- ➤ IPAC 2019: Poster (May)
- > AIV (Associazione Italiana di Scienza e Tecnologia): Talk (May)
- > IOD (ILO Industrial Opportunities Days): 2 Talks (June)
- NanoInnovation: Talk (June)
- AMICI meeting (September)
- Industrial Seminar (LNF): Vacuum and Magnets Technologies (May)
- Kickoff meeting with Industries: to be organized in 2020 with Regione LAZIO

LATINO is part of a broader Technology Transfer projects development at LNF

REFERENCES

- M. Florio, S. Forte, E. Sirtori, Cost-Benefit Analysis of the Large Hadron Collider to 2025 and Beyond (2015)
 - http://arxiv.org/pdf/1507.05638v1.pdf
- 2. EUCARD2 study group, Applications of Particle Accelerators in Europe (2015) http://apae.ific.uv.es/apae/wp-content/uploads/2015/04/EuCARD_Applications-of-Accelerators-2017.pdf
- 3. Oxford Economics, The economic impact of physics research in UK: MRI scanners Case Study (2012) http://www.stfc.ac.uk/files/the-economic-impact-of-physics-research-in-the-uk/
- 4. Institute of Physics, UK Physics Research Driving Innovation and Growth (2014) https://www.iop.org/publications/iop/2014/file 63111.pdf
- 5. Società Italiana di Fisica, The impact of Physics on the Italian Economics Final report by Deloitte, (2014)

 https://www.sif.it/static/SIF/resources/public/files/report 2014/SIF-Final-Report.pdf
- 6. R. Crescenzi, S. Iammarino, A. Rodríguez-Pose Multinazionali, Imprese Locali e Sviluppo Economico nella Regione Lazio (Luglio 2016)
- 7. Banca d'Italia: Roma. Economie regionali. L'economia del Lazio. (2015)
- 8. Banca d'Italia: Roma. Economie regionali. L'economia del Lazio. (2016)
- 9. http://www.lazioinnova.it/bandi-post/sostegno-alle-infrastrutture-aperte-la-ricerca/
- 10. http://latino.lnf.infn.it/