Detecting Point Sources in Planck CMB maps with needlets and multiple testing

Javier Carrón Duque

javier.carron@uniroma1.it

Collaborators: Nicola Vittorio, Domenico Marinucci, Alessandro Buzzelli

Department of Physics Università Tor Vergata

28 May 2019

《曰》 《國》 《臣》 《臣》

590

E

Introduction	Methodology	Results	Conclusions
0000000	000000	000000	0000

Outline

1. Introduction

- Cosmic Microwave Background
- Needlets and multiple testing
- 2. Methodology
 - STEM algorithm
 - Implementation
- 3. Results
 - Simulations
 - Planck Data
- 4. Conclusions and future work

3

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Introduction	Methodology	Results	Conclusions
●0000000	000000	000000	0000

Outline

1. Introduction

- Cosmic Microwave Background
- Needlets and multiple testing
- 2. Methodology
 - STEM algorithm
 - Implementation
- 3. Results
 - Simulations
 - Planck Data
- 4. Conclusions and future work

Introduction	Methodology	Results	Conclusions
000000	000000	000000	0000
Conta Mission Deal			

Cosmic Microwave Background (CMB)

- A lot of information can be extracted from a good observation of the CMB.
- There have been 3 multifrequency satellite missions: COBE (1989), WMAP (2001), and Planck (2009).

Introduction	Methodology	Results	Conclusions
000000	000000	000000	0000
C INC DI	and the second		

Cosmic Microwave Background (CMB)

- A lot of information can be extracted from a good observation of the CMB.
- There have been 3 multifrequency satellite missions: COBE (1989), WMAP (2001), and Planck (2009).
- Furthest observation with photons (~ 377 000 years after initial singularity).

Introduction	Methodology	Results	Conclusions
000000	000000	000000	0000
Cosmic Microwave Background	d		
Foregrounds			

Two types:

- Diffuse galactic radiation: free-free, synchrotron, thermal dust, spinning dust ...
- Point sources: radio galaxies, dusty galaxies.

3

Introduction	Methodology	Results	Conclusions
000000	000000	000000	0000
Cosmic Microwave Backgrou	ind		
Foregrounds			

Two types:

- Diffuse galactic radiation: free-free, synchrotron, thermal dust, spinning dust...
- Point sources: radio galaxies, dusty galaxies.
- Planck observed in 9 different bands from 30 GHz to 857 GHz.
- They are combined to extract the CMB temperature maps.
- Four algorithms to clean the maps:

Introduction 0000000	Methodology 000000	Results 000000	Conclusions 0000
Needlets and multiple testing			
Needlets I			

• Functions defined over the sphere, used to filter the map.

$$\psi_j(x,\xi) := \sum_{\ell} \frac{b(\frac{\ell}{B^j})}{\sum_{m=-\ell}^{\ell} Y_{\ell m}(x) \overline{Y}_{\ell m}(\xi)}$$

Introduction	Methodology	Results	Conclusions
000000	000000	000000	0000
Needlets and multiple testing			
Needlets I			

• Functions defined over the sphere, used to filter the map.

$$\psi_j(x,\xi) := \sum_{\ell} b(rac{\ell}{B^j}) \sum_{m=-\ell}^{\ell} Y_{\ell m}(x) \overline{Y}_{\ell m}(\xi)$$

Six advantages

- 1. Do not rely on tangent plane approximation.
- 2. Calculated from spherical harmonics.
- 3. Simple reconstruction formula.
- 4. Different scales are uncorrelated.

Introduction	Methodology	Results	Conclusions
0000000	000000	000000	0000
Needlets and multiple testing			
Needlets II			

Six advantages

- 5. Very concentrated in pixel space.
- 6. Localised in multipole space.

Introduction	Methodology	Results	Conclusions
00000000	000000	000000	0000
Needlets and multiple testing			
Needlet filtering			

CMB temperature map

β-map

▲ □ ▶ ▲ 급 ▶ ▲ 클 ▶ ▲ 클 ▶ 질 ♡ Q (~)
ASI COSMOS - 28 May 2019 8 / 26

Javier Carrón Duque (Tor Vergata)

Introduction 0000000	Methodology 000000	Results 000000	Conclusions
Needlets and multiple testing			
Multiple testing			

- Let us imagine two scenarios:
- We have a map with a maximum with a high intensity x.
- Assuming a gaussian map, we expect to find 1 maximum at intensity x in the entire map.
- The maximum x is compatible with gaussianity, it may be a random fluctuation.

Introduction	Methodology	Results	Conclusions
0000000	000000	000000	0000
Needlets and multiple testing			
Multiple testing			

- Let us imagine two scenarios:
- We have a map with a maximum with a high intensity x.
- Assuming a gaussian map, we expect to find 1 maximum at intensity x in the entire map.
- The maximum x is compatible with gaussianity, it may be a random fluctuation.
- Assuming a gaussian map, we expect to find 1 maximum at intensity x in the entire map.

Introduction 0000000	Methodology 000000	Results 000000	Conclusions
Needlets and multiple testing			
Multiple testing			

- Let us imagine two scenarios:
- We have a map with a maximum with a high intensity x.
- Assuming a gaussian map, we expect to find 1 maximum at intensity xin the entire map.
- The maximum x is compatible with gaussianity, it may be a random fluctuation.
- Assuming a gaussian map, we expect to find 1 maximum at intensity xin the entire map.
- But we have now 1000 maxima at intensity x.
- Each maximum x is compatible with gaussianity, but the maxima population is not.

Sac

Introduction	Methodology	Results	Conclusions
0000000	000000	000000	0000
Needlets and multiple testing			

Benjamini-Hochberg approach

- 1. We obtain the values of the maxima.
- 2. For each value x, we count the number of maxima in the map at intensity x or higher: n(x).
- 3. For each value x, we calculate the expected number of maxima at intensity x or higher, assuming gaussianity: N(x).
- 4. If there is x_0 such that $N(x_0) < n(x_0)$, we report the first $n(x_0)$ maxima.

イロン 不良 とうせい うせいしゅ

Introduction	Methodology	Results	Conclusions
0000000	000000	000000	0000
Needlets and multiple testing			

Benjamini-Hochberg approach

- 1. We obtain the values of the maxima.
- 2. For each value x, we count the number of maxima in the map at intensity x or higher: n(x).
- 3. For each value x, we calculate the expected number of maxima at intensity x or higher, assuming gaussianity: N(x).
- 4. If there is x_0 such that $N(x_0) < \alpha n(x_0)$, we report the first $n(x_0)$ maxima.
 - $\alpha \sim 0.01$ is a confidence factor.

Introduction	Methodology	Results	Conclusions
0000000	●00000	000000	0000

Outline

1. Introduction

- Cosmic Microwave Background
- Needlets and multiple testing
- 2. Methodology
 - STEM algorithm
 - Implementation
- 3. Results
 - Simulations
 - Planck Data
- 4. Conclusions and future work

Introduction	Methodology	Results	Conclusions
STEM algorithm			0000
CTENA I SI			
SIEW algorithm			

- 1. The map is filtered with a needlet.
- 2. All the maxima are extracted from the map (intensity and location).
- 3. The expected distribution of maxima is computed.
- 4. The Benjamini-Hochberg approach is applied to extract the list of candidates.
 - Cheng et al. (2016)

3

ヘロト A倒ト AEト AEト

Introduction 00000000	Methodology ○○●○○○	Results 000000	Conclusions
STEM algorithm			
False Discov	erv Rate		

• The False Discovery Rate for the STEM algorithm is defined as:

$$FDR := \frac{\#(False \text{ detections})}{\#(Total \text{ detections})}$$

• It depends on the parameters of the algorithm B, i, and α .

590

3

Introduction 00000000	Methodology ○○●○○○	Results 000000	Conclusions
STEM algorithm			
False Discov	erv Rate		

• The False Discovery Rate for the STEM algorithm is defined as:

$$FDR := \frac{\#(False \text{ detections})}{\#(Total \text{ detections})}$$

- It depends on the parameters of the algorithm B, j, and α .
- It can be proven that, for high enough j,

$$FDR \lesssim \alpha$$

Introduction 00000000	Methodology ○○○●○○	Results 000000	Conclusions
STEM algorithm			
Code			

• Development of a small package in Python 3:

MTNeedlet: https://javicarron.github.io/mtneedlet/

- It contains all functions needed for needlet filtering and applying the STEM algorithm.
- Fully documented and flexible in order to apply it to other problems.

Introduction 00000000	Methodology ○○○●○○	Results 000000	Conclusions
STEM algorithm			
Code			

• Development of a small package in Python 3:

MTNeedlet: https://javicarron.github.io/mtneedlet/

- It contains all functions needed for needlet filtering and applying the STEM algorithm.
- Fully documented and flexible in order to apply it to other problems.
- Using this package, we test the algorithm on simulations and apply it to real Planck data.

Introduction 00000000	Methodology ○○○○●○	Results 000000	Conclusions
Implementation			
Simulations			

- We obtain 200 CMB realizations.
- Realistic noise is added.
- Artificial point sources may be added: 200 points with intensities from 0 to 7σ .
- We apply the STEM algorithm with B = 1.2, j = 38, 39, 40, and $\alpha = 0.05, 0.01, 0.002$.

Introduction 00000000	Methodology ○○○○●○	Results 000000	Conclusions
Implementation			
Simulations			

- We obtain 200 CMB realizations.
- Realistic noise is added.
- Artificial point sources may be added: 200 points with intensities from 0 to 7σ .
- We apply the STEM algorithm with B = 1.2, j = 38, 39, 40, and $\alpha = 0.05, 0.01, 0.002$.

Goal: Maximize discovery power while keeping $FDR \le 0.01$.

(4) (日本)

ASI COSMOS - 28 May 2019

3

15 / 26

Introduction 00000000	Methodology ○○○○○●	Results 000000	Conclusions
Implementation			
Real data			

- The algorithm is applied to Planck CMB temperature maps, version 2 (2015) and 3 (2018).
- For version 3, inpainted and not inpainted maps are used.
- Number of detections is obtained for the whole map, outside inpainting mask (~ 98% of the sky), and outside common confidence mask (~ 78% of the sky).
- Detections are compared to the Planck Source Catalogues.

Introduction	Methodology	Results	Conclusions
0000000	000000	●00000	0000

Outline

1. Introduction

- Cosmic Microwave Background
- Needlets and multiple testing
- 2. Methodology
 - STEM algorithm
 - Implementation
- 3. Results
 - Simulations
 - Planck Data
- 4. Conclusions and future work

Introduction 00000000	Methodology 000000	Results	Conclusions 0000
Simulations			
No sources			

Only CMB+noise, no sources:

 The maxima distribution follows the theoretical one.

< A

Э

DQC

Introduction 00000000	Methodology 000000	Results	Conclusions
Simulations			
No sources			

Only CMB+noise, no sources:

- The maxima distribution follows the theoretical one.
- Low amount of point sources are reported.

α	<i>j</i> = 38	<i>j</i> = 39	<i>j</i> = 40
0.05	4.0%	6.5 %	99.5 %
0.01	1.5%	2.5 %	98.5 %
0.002	0.5 %	0.5 %	93.5 %

Sac

18 / 26

ASI COSMOS - 28 May 2019

Introduction 00000000	Methodology 000000	Results	Conclusions
Simulations			
No sources			

Only CMB+noise, no sources:

- The maxima distribution follows the theoretical one.
- Low amount of point sources are reported.

α	<i>j</i> = 38	<i>j</i> = 39	<i>j</i> = 40
0.05	4.0 %	6.5 %	99.5 %
0.01	1.5%	2.5 %	98.5 %
0.002	0.5 %	0.5 %	93.5 %
0.05	0.045	0.075	4.595
0.01	0.015	0.030	3.215
0.002	0.005	0.005	2.270

 Sac

Introduction 00000000	Methodology 000000	Results ○0●000	Conclusions
Simulations			
With sources			

 $\bullet\,$ The needlet filtering boosts the signal to noise ratio, up to a factor $\lesssim 2.$

Introduction 00000000	Methodology 000000	Results ○0●000	Conclusions
Simulations			
With sources			

- $\bullet\,$ The needlet filtering boosts the signal to noise ratio, up to a factor $\lesssim 2.$
- False Discovery Rate:

α	j = 38	j = 39	<i>j</i> = 40
0.05	0.042	0.040	0.082
0.01	0.009	0.009	0.046
0.002	0.0013	0.0018	0.0325

590

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction 00000000	Methodology 000000	Results ○0●0○○	Conclusions
Simulations			
With sources			

 $\bullet\,$ The needlet filtering boosts the signal to noise ratio, up to a factor $\lesssim 2.$

ASI COSMOS - 28 May 2019

19 / 26

Introduction 00000000	Methodology 000000	Results	Conclusions
Simulations			
Sensitivity			

• We obtain the sensitivity curve.

◆□▶ ◆□▶ ◆三▶ ◆三▶

ASI COSMOS - 28 May 2019

E

DQC

20 / 26

Introduction 00000000	Methodology 000000	Results 000000	Conclusions
Simulations			
Sensitivity			

- We obtain the sensitivity curve.
- We calculate the 90%-complete limit, in units of σ_{CMB} :

α	<i>j</i> = 38	<i>j</i> = 39	<i>j</i> = 40
0.05	5.08	3.50	2.50
0.01	5.36	3.66	2.66
0.002	5.74	3.86	2.74

Sac

э

Introduction 00000000	Methodology 000000	Results	Conclusions
Simulations			
Sensitivity			

- We obtain the sensitivity curve.
- We calculate the 90%-complete limit, in units of σ_{CMB}:

α	<i>j</i> = 38	<i>j</i> = 39	<i>j</i> = 40
0.05	5.08	3.50	2.50
0.01	5.36	3.66	2.66
0.002	5.74	3.86	2.74

The choice is
$$j = 39$$
, $\alpha = 0.01$

Introduction 00000000	Methodology 000000	Results	Conclusions
Planck Data			

Example: SMICA

Мар	version	inpainted	detections	mask I	mask C	cat	cat C
smica	2.01	False	558	10	2	69	0
smica	3.00	False	318	16	2	197	0
smica	3.00	True	11	3	1	7	0

Introduction 00000000	Methodology 000000	Results	Conclusions
Planck Data			

Example: SMICA

Мар	version	inpainted	detections	mask I	mask C	cat	cat C
smica	2.01	False	558	10	2	69	0
smica	3.00	False	318	16	2	197	0
smica	3.00	True	11	3	1	7	0

 β -map, S/N=5.47

999 21 / 26

ASI COSMOS - 28 May 2019

Introduction 00000000	Methodology 000000	Results	Conclusions
Planck Data			

Planck cleaning algorithms

All algorithms:

- Candidates to PS reported in most maps.
- Few candidates outside the confidence mask.
- Around half of the candidates in Planck PS catalogues.
- Last release mostly compatible with non-contaminated Gaussian maps.

Introduction 00000000	Methodology 000000	Results	Conclusions
Planck Data			

Planck cleaning algorithms

All algorithms:

- Candidates to PS reported in most maps.
- Few candidates outside the confidence mask.
- Around half of the candidates in Planck PS catalogues.
- Last release mostly compatible with non-contaminated Gaussian maps.

SEVEM: Large amount of sources.

- NILC: No candidates for the inpainted version.
- SMICA: Lowest number of candidates, one candidate outside confidence mask.

Commander: Largest amount of candidates because it does not preprocess the map to remove sources.

э

Sac

イロト イポト イヨト イヨト

Introduction	Methodology	Results	Conclusions
0000000	000000	000000	000

Outline

1. Introduction

- Cosmic Microwave Background
- Needlets and multiple testing
- 2. Methodology
 - STEM algorithm
 - Implementation
- 3. Results
 - Simulations
 - Planck Data

4. Conclusions and future work

Introduction	Methodology	Results	Conclusions
0000000	000000	000000	0000

Conclusions

- We have tested the STEM algorithm through **simulations** under different conditions in order to find the optimal choice of parameters and keep the *FDR* within limits.
- The last release of **Planck data** is mostly compatible with non-contaminated maps, although a few point sources are reported.
- A **software** has been developed to work with *needlets* and *multiple testing*. It is now publicly available.

Introduction	Methodology	Results	Conclusions
00000000	000000	000000	
Future work			

- Only temperature maps have been studied, the algorithm can be also applied to **polarization** maps: *E* and *B* modes.
- Needlets are very **flexible**, these techniques could be applied with other goals, such as extracting a lensing map.

・ロト ・回ト ・ヨト ・ヨト

Detecting Point Sources in Planck CMB maps with needlets and multiple testing

Javier Carrón Duque

javier.carron@uniroma1.it

Collaborators: Nicola Vittorio, Domenico Marinucci, Alessandro Buzzelli

Department of Physics Università Tor Vergata

28 May 2019

Thank you!!

(日) (四) (三) (三) (三)

590

1