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The Quest for Primordial Gravitational Waves

• Primordial B-modes in the CMB polarization produced by tensor
perturbations are predicted by Inflation

• IF Detected Primordial Gravitational waves will give:
• "Smoking gun" for inflation
• Identify energy scale of inflation for the simplest models! (single scalar

field slow-roll)
• What about more complex models? Beyond the standard model of
Early Universe? Lots of Physics to be understood in this primordial
signal!

Figure 1: From Planck results 2018 2
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Goals and Motivations

Our Goals and Motivations:

1. Examples of non-standard B-mode emission in the literature:
• massive gravity inflation (Domenech et al. 2017)
• open inflation(Yamauchi et al. 2011)
• topological defects/cosmic strings (Lizarraga et al. 2014)
• multifield inflation (Price et al. 2015)
• modified speed of cosmological gravitational waves (Raveri et al.

2014)
• rolling axion (Namba et al. 2016)
• SU(2)- axion model (Dimastrogiovanni et al. 2016)
• high-scale inflation (Baumann et al. 2016)
• ...

2. Establish the constraining power of future B-mode probes on the
shape of primordial tensor power spectrum

3. Sensitivity to features, deviations from power-law behaviour
4. We use Principal Component Analysis on Tensor Power Spectrum

for a model independent approach
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Power spectra, Parameters and
Observations



Standard Parametrization

Primordial Tensor Power Spectrum (Standard Power-Law)

PT (k) = AT

(
k
k0

)nT

• Tensor-to-scalar ratio

r = AT
As

• Actual observables are Temperature and Polarization angular
power spectra C`

• Tensor contribution

CXX ′

`,t ∝ PT (k)

X ,X ′ ∈ {T ,E ,B}
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Noise, Lensing and Foregrounds Contribution

CXX ′

` = CXX ′, prim
` + CXX ′, noise

` + λCXX ′, lens
` + CXX , fgs

`

• Total CXX ′

` contains:
1. Primordial spectrum CXX ′, prim

`

2. Instrumental noise after Component Separation CXX ′, noise
`

3. CMB lensing contribution λCXX ′, lens
` (λ delensing factor)

4. Foregrounds contribution CXX , fgs
`
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Foregrounds and Lensing

• Lensing dominant at intermediate – small scales
• Foregrounds → Dominant at large scales
• Dust + Synchrotron
• Parametric maximum-likelihood component separation → subtract

foregrounds from data using multi-freq observations
• Leaves residual foregrounds in the maps → residuals power spectrum
C fgs

`

• FGBuster Code (Poletti & Errard) 6



Introduction to Principal
Component Analysis



Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

• Aim → Identify uncorrelated variables and rank them according to
uncertainty

• Diagonalize Fisher matrix
F = STES

• Rows of S → eigenvectors of F (PCA modes)

• E = diag(ei ) → ei eigenvalues of F ordered from largest to smallest

• New set of parameters ma (PCA amplitudes) linear combination of
original parameters pi

m = Sp

uncorrelated (diagonal covariance matrix E−1)

• Uncertainties on mi → σi = e−1/2i

• Natural basis for free parameters for given experimental configuration →
best measured linear combinations of original parameters

• Compression of information in the first best measured modes
7



Principal Components of Tensor Power Spectrum

• PCA of scalar power spectrum already performed by Hu & Okamoto
2004 and Leach 2006 before Planck mission

• First application to tensor power spectrum Farhang & Sadr 2018

Our goal (Campeti, Poletti and Baccigalupi arXiv:1905.08200)
apply PCA to Primordial Tensor Power Spectrum and make realistic
forecasts for future CMB B-mode probes (LiteBIRD, SO, CMB-S4)

• Discretize tensor power spectrum

PT (k) = As
∑

i

pi Wi (ln k)

• Fisher Information Matrix for CMB

Fij = fsky

`max∑
`=2

2`+ 1
2 Tr

[
D`iC−1` Dj`C−1`

]
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PCA modes for Model Testing: Fisher Approach

• Obtain Sa(k) → basis for tensor spectrum

• Detectability of specific theoretical model → 2 approaches:

1. Fisher approach: Projecting model Pmodel over PCA modes:

ma =
∫

d ln k Sa(k)Pmodel(k) .

Uncertainties σFisher on ma from Fisher matrix
• Advantages → fast & easy
• Caveats → lower bound, insensitive to non-Gaussianity, insensitive
to physicality prior PT > 0 (linear combinations of power spectrum
parameters giving unphysical behaviour, such as PT < 0)

9
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PCA modes for Model Testing: MCMC Approach

2. MCMC approach → constrain ma using simulated C` spectra (or
data)

PT (k) = As

N∑
a=1

maSa(k)

where N is the number of PCA modes we keep

• Parameter space: Cosmological + Power spectrum parameters

{m1, ...,mn,As , ns , τ,Ωbh2,ΩDh2, θ}

• Impose PT > 0 in MCMC
• Advantages → evaluate impact of physicality priors comparing
σFisher and σMCMC , correlations, Gaussianity

• Disadvantages → slow convergence
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Future Probes Specifications

LiteBIRD
• Satellite

• Timescale 2027

• 15 frequency bands
[40-402 GHz]

• Noise [36.1 - 4.7
µK-arcmin]

• Beams FWHM [69.2-9.7
arcmin]

• Sky fraction fsky = 60%

• 20% Delensing

• Multipole range
` ∼ 2− 1350

Simons Observatory (SO)
• Ground-based

• Timescale 2022

• 6 frequency bands
[27-280 GHz]

• Noise [35.3 - 2.7
µK-arcmin]

• Beams FWHM [91-9
arcmin]

• Sky fraction fsky = 10%

• 50% Delensing

• Multipole range
` ∼ 30− 4000

CMB-S4
• Ground-based

• Timescale 2027

• 9 frequency bands
[20-270 GHz]

• Noise [14 - 1.3
µK-arcmin]

• Beams FWHM [76.6-8.5
arcmin]

• Sky fraction fsky = 3%

• 90% Delensing

• Multipole range
` ∼ 30− 4000
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Experiments: LiteBIRD, SO, CMB-S4
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Primordial r = 0.01, 0.001
BB Foregrounds
Instrumental Noise
BB Lensing λ = 0.8
BB Lensing λ = 1

• LiteBIRD(top), SO(bottom left)
and CMB-S4 (bottom right)

• For the first time in a PCA of
tensor power spectrum include
foregrounds residuals and 1/f
noise!

• Complementarity of
experiments!
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PCA Basis



PCA Basis: Problems
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Tensor PS need special care with respect to Scalar PS!

• For scalar spectrum PR → PCA describes small deviations around large,
well constrained amplitude As

• For tensor spectrum r not yet measured

• Generate our PCA basis with r = 0 → first PCA modes are effective r

• BUT Information in C`s with Tensors (r > 0) can be very different
from Information matrix that defined PCA basis!
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PCA Basis: Our Solution

• Tensors not known a priori but
number of modes retained is
fixed to N from onset!

• Test Stability! → Compute Fisher
information Fr for range of
possible r

• What fraction of Fr can our basis
capture? 1 3 5 7 9 11 13 15 17 19

Mode Number N

0.01

0.001

0.0

r

0.
90

0

0.
95

0
0.

97
0

0.
98

0

0.
99

0

0.
99

3

0.90

0.92

0.94

0.96

0.98

• Study Information Fraction for range of r captured by first N modes of our basis:

I(r ,N) =
tr
(
ST

N Fr SN
)

tr (Fr )

• Choose N such that I high enough ∼ 98%

• Uncertainties for i-th PCA mode → σ2i =
(
ST

N Fr SN
)−1

ii
• e.g. LiteBIRD → set N = 8
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Application to LiteBIRD: Fisher Matrix
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• Fisher Matrix for LiteBIRD for r = 0

• Main features: recombination bump (k ≈ 6× 10−3Mpc−1) and
reionization bump (k ≈ 6× 10−4Mpc−1)

• Most information for r = 0 comes from reionization peak
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Application to LiteBIRD: σs
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• Modes shift in importance as r changes!

• For r > 0

σ2 < σ1

⇒ most information from recombination bump rather than
reionization!
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Why Foregrounds are important?
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• Factor ∼ 4 on σr !
• Factor ∼ 5 on σ1 and ∼ 3 on σ2 due to foregrounds!
• Adding foregrounds changes relative importance of reionization and

recombination peak
• Reionization peak loses importance
• ⇒ Foregrounds cannot be neglected! 17



Application to SO and CMB-S4



Application to SO and CMB-S4
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• Study Information fraction I(r ,N) also for SO and CMB-S4

• Weaker dependence on r w.r.t. LiteBIRD ⇒ only need N = 6 for
CMB-S4 and N = 4 for SO to capture 98% of information
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Application to SO and CMB-S4
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• Fisher Matrices for SO (left) and CMB-S4 (right) for r = 0
• Features in Fisher matrices → recombination bump
• No reionization bump, but higher resolution and delensing →
some information beyond first acoustic peak!

19



Application to SO and CMB-S4

−0.25

0.00

0.25

S 1
(k
) σ1 = 0.002 σ1 = 0.004

CMB-S4 SO

−0.25

0.00

0.25
S 2
(k
) σ2 = 0.006 σ2 = 0.01

−0.25

0.00

0.25

S 3
(k
) σ3 = 0.01 σ3 = 0.019

−0.25

0.00

0.25

S 4
(k
) σ4 = 0.014 σ4 = 0.03

−0.25

0.00

0.25

S 5
(k
) σ5 = 0.02

10−4 10−3 10−2 10−1

Wavenumber k [Mpc−1]

−0.25

0.00

0.25

S 6
(k
) σ6 = 0.03

• PCA modes for SO and CMB-S4
• Features in PCA modes → recombination bump and some information beyond
• No reionization bump!
• σCMB−S4 are half of σSO 20



Study of Early Universe Models



Study of Early Universe Models: Tilted spectrum from inflation

2 4 6 8
Mode number a
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• Ideal application of PCA! → detect deviation w.r.t. fiducial case

• Red-Tilted model similar to open inflation with bubble nucleation

• ma from MCMC show characteristic trend ⇒ Success for PCA!

• Reconstructed tensor power spectrum (blue)
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Limitations of the PCA Method
and MCMC Exploration



Limitations of PCA

Limitations of PCA

1. Fisher estimates for PCA insensitive to physicality prior PT > 0
can be inconsistent!

2. Why parametrize PT as linear combination of PCA modes → no
inclusion of the popular r?

3. Our basis makes Fisher analysis more robust against physicality
prior!
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Standard PCA Basis vs PCA Basis with Constant Mode
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• Include r in parametrization → PCA Basis with Constant Mode
• First constant mode ⇒ m1 = r
• Only S1 can be positive definite
• All other modes are oscillatory
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Physicality Prior: A Visual Argument
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• Assume that σFisher is true
• Plot 2σ range in which modes oscillate 95% of the cases
• Some modes intesect physicality prior! (unphysical)
• For r = 0.01 only first 3 modes unaffected! 24



Physicality Prior: A Visual Argument
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• For r = 0.001 only first mode not affected!
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MCMC Exploration: r = 0.01
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• Must have
σMCMC ≥ σFisher → true
without physicality prior

• With physicality prior
⇒ σMCMC < σFisher for
most modes!

• LiteBIRD r = 0.001 our
standard basis → 2
modes instead of 1 in
Constant Mode basis!

• Physicality prior effect
in marginal distributions
→ asymmetric,
polygonal shapes, very
different from
Fisher(red ellipses)
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MCMC Exploration: r = 0.01
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MCMC Exploration: r = 0.01
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MCMC Exploration: r = 0.001

• Physicality prior effect
even more evident
for r = 0.001!
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Correlations in the Constant Mode Basis
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• Constant Mode basis shows m1 −m3 correlation
• Our Standard basis → uncorrelated parameters ⇒ preferable!

CONCLUSION → can always use PCA basis to model primordial ten-
sor power spectrum BUT Fisher uncertainties rarely accurate! Should
be used only for relative comparison!
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Conclusions

• Applied PCA to Tensor primordial power spectrum
• Detect in B-modes deviations from scale-invariance in
model-independent way

• Constraints for LiteBIRD, SO and CMB-S4
• Foregrounds cannot be neglected!
• Our Basis (no tensors) → preferable to the Constant Mode Basis
• Fisher uncertainties can be affected by Physicality prior!
• Can be applied to any Early Universe scenario
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Orthogonalization

• Degeneracies between the effect on the C` due to cosmological
parameters and the tensor power spectrum parameters

• Solution ⇒ orthogonalize with respect to cosmological parameters
the Fisher matrix

Fµν =
(

Fij B
BT Fab

)
,

Fab → cosmological parameters Fisher matrix
Fij → PCA power spectrum parameters Fisher matrix
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Foregrounds: Component Separation

• Foregrounds → dominant source of uncertainty on large scales for B-modes
• Two components: dust and synchrotron
• Parametric maximum likelihood component separation: subtract fgs

component from data using multi-freq observations BUT propagation in
uncertainties → fgs residuals in the cleaned map (FGBuster code reference?)

• On a given sky pixel p

dp = Asp + np

dp → multi-frequency maps
sp → multi-component sky signal
np → instrumental noise at each frequency

• Mixing matrix A parametrized by spectral parameters β

A = A(β) = A(βs , βd ,Td ,Cs)

Async(ν, νref (s)) =
(

ν

νref (s)

)βs +Cs log(ν/ν0)

Adust(ν, νref (d)) =
(

ν

νref (d)

)βd +1
e

hνref (d)
kTd − 1

e
hν

kTd − 1 31



Foregrounds: Component Separation

• Fisher approach: maximise the spectral log-likelihood:

Σ−1 ' −
〈

∂2L
∂β∂β′

〉
noise

∣∣∣∣
trueβ

= −tr

{[
∂AT

∂β
N−1A(ATN−1A)−1ATN−1 ∂A

∂β′
− ∂AT

∂β
N−1 ∂A

∂β′

]∑
p

spsT
p

}
• Uncertainties on β spectral parameters:

σ(β) '
√
|Σ|ββ .
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Foregrounds Cleaning: LiteBIRD, SO, CMB-S4
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• Component separation leaves
residual foregrounds in the maps
(due to propagation of statistical
uncertainty in β estimation) →
residuals power spectrum

C fgs
`
≡
∑
k,k′

∑
j,j′

Σkk′α0j
k α

0j′

k′ C jj′

`

• LiteBIRD, SO and CMB-S4
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Noise after Component Separation

• Instrumental Noise for experiment

NXX
`,ν =

[
w−1X ,ν exp

(
`(`+ 1)

θ2FWHM,ν
8 log 2

)]
·
[
1 +

(
`

`knee

)αknee]

w−1/2X ,ν ⇒ Sensitivity, white noise level of frequency channel ν
θFWHM ⇒ FWHM of Gaussian beam (radians)

• αknee , `knee ⇒ 1/f noise
• Noise after component separation:

NXX
` ≡

[(
AT
(
NXX
`

)−1
A
)−1]

CMB CMB

where NXX
` ≡

(
NXX
`

)νj ≡ NXX
`,ν δ

j
ν → matrix containing instrumental

noise for each frequency channel
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Inflation and CMB Polarization

• Inflationary Paradigm: Vacuum quantum fluctuations of inflaton scalar
field produced during inflation⇒ generation of primordial scalar and
tensor perturbations (gravitational waves) of the metric

• Effect on the CMB:

Figure 2: Kamionkowski & Caldwell 2000
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Inflation and CMB Polarization

• CMB is polarized! ⇒ CMB polarization is produced by Thomson
scattering at recombination

• Polarization state defined by Stokes parameters Q and U ⇒
Polarization Tensor

• Can Helmholtz decompose in Curl component (B-modes) which is
divergence-free and Gradient component (E-modes) which is curl-free
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The Quest for Primordial Gravitational Waves

• E-modes produced by both scalar and tensor perturbations
• Primordial B-modes produced ONLY by tensor perturbations! BUT Big

challenge: Tiny signal, Lensing E-modes leaking into B-modes, Foregrounds...
• IF Detected Primordial Gravitational waves will give:

• "Smoking gun" for inflation
• Identify energy scale of inflation for the simplest models! (single scalar field)

• What about more complex models? Beyond the standard model of Early
Universe? Lots of Physics to be understood in this primordial signal!

Figure 3: From Planck results 2018 37
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