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The Quest for Primordial Gravitational Waves

e Primordial B-modes in the CMB polarization produced by tensor
perturbations are predicted by Inflation
e |IF Detected Primordial Gravitational waves will give:
e "Smoking gun" for inflation
e |dentify energy scale of inflation for the simplest models! (single scalar
field slow-roll)
e What about more complex models? Beyond the standard model of
Early Universe? Lots of Physics to be understood in this primordial

signal!
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Figure 1: From Planck results 2018
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Our Goals and Motivations:

1. Examples of non-standard B-mode emission in the literature:
e massive gravity inflation (Domenech et al. 2017)
e open inflation(Yamauchi et al. 2011)
e topological defects/cosmic strings (Lizarraga et al. 2014)
e multifield inflation (Price et al. 2015)
e modified speed of cosmological gravitational waves (Raveri et al.
2014)
e rolling axion (Namba et al. 2016)
e SU(2)- axion model (Dimastrogiovanni et al. 2016)
e high-scale inflation (Baumann et al. 2016)

2. Establish the constraining power of on the
shape of primordial tensor power spectrum

3. Sensitivity to features, deviations from power-law behaviour

4. We use Principal Component Analysis on Tensor Power Spectrum
for a model independent approach 3



Power spectra, Parameters and
Observations
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(Standard Power-Law)
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Standard Parametrization

Primordial Tensor Power Spectrum (Standard Power-Law)

e Tensor-to-scalar ratio

e Actual observables are Temperature and Polarization angular
power spectra C;
e Tensor contribution

[ Cz)ff(/oc”PT(k) ]

X,X' € {T,E,B}



Noise, Lensing and Foregrounds Contribution

’ ’ : 7
C;(X _ C(XX , prim + + /\CéXX , lens + C(XX.fgs

/ .
e Total C}* contains:

0
1. Primordial spectrum Cexx ol

XX’ , noise
G

2.
3. CMB lensing contribution )\CZ(X/”G”S (A delensing factor)
4. Foregrounds contribution C;(X’fgs




Foregrounds and Lensing

— primordial B modes
103 b = Emodes

— temperature

10% lensing B modes

10! 10° 10°
1

e Lensing dominant at intermediate — small scales

e Foregrounds — Dominant at large scales

e Dust + Synchrotron

e Parametric maximum-likelihood component separation — subtract
foregrounds from data using multi-freq observations

e Leaves residual foregrounds in the maps — residuals power spectrum
cF

e FGBuster Code (Poletti & Errard) 6



Introduction to Principal
Component Analysis




Principal Component Analysis (PCA)

Aim — ldentify uncorrelated variables and rank them according to

uncertainty

e Diagonalize Fisher matrix
F=S"ES
e Rows of S — eigenvectors of F ( )
e E = diag(ei) — e; eigenvalues of F ordered from largest to smallest
e New set of parameters m, ( ) linear combination of

original parameters p;
m=Sp
uncorrelated (diagonal covariance matrix E~!)

_— —1/2
e Uncertainties on m; — o = ¢; /

Natural basis for free parameters for given experimental configuration —
best measured linear combinations of original parameters

e Compression of information in the first best measured modes
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Principal Components of Tensor Power Spectrum

e PCA of scalar power spectrum already performed by Hu & Okamoto
2004 and Leach 2006 before Planck mission
e First application to tensor power spectrum Farhang & Sadr 2018

Our goal (Campeti, Poletti and Baccigalupi arXiv:1905.08200)
apply PCA to Primordial Tensor Power Spectrum and make realistic
forecasts for future CMB B-mode probes (LiteBIRD, SO, CMB-S4)

e Discretize tensor power spectrum

AZp, (In k)

e Fisher Information Matrix for CMB

2041

Tr [DyC, 'D;Cy |
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PCA modes for Model Testing: Fisher Approach

e Obtain S,(k) — basis for tensor spectrum

e Detectability of specific theoretical model — 2 approaches:

1. Fisher approach: Projecting model Pp,oqer over PCA modes:

m, — / dIn k S, (kYPmoder (k) .

Uncertainties oFjsher oOn m, from Fisher matrix
e Advantages — fast & easy
e Caveats — lower bound, insensitive to non-Gaussianity, insensitive
to physicality prior P+ > 0 (linear combinations of power spectrum
parameters giving unphysical behaviour, such as Pr < 0)



PCA modes for Model Testing: MCMC Approach

2. MCMC approach — constrain m, using simulated C, spectra (or
data)

N
Pr(k) = ASZ m,S.(k)

where N is the number of PCA modes we keep
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PCA modes for Model Testing: MCMC Approach

2. MCMC approach — constrain m, using simulated C, spectra (or
data)

N
Pr(k) = ASZ m,S.(k)

where N is the number of PCA modes we keep

e Parameter space: Cosmological + Power spectrum parameters

{m, ..., mn, As, ns, 7, Quh’, Qph*, 6}

e Impose Pr > 0 in MCMC

e Advantages — evaluate impact of physicality priors comparing
O Fisher and o pcpc, correlations, Gaussianity

e Disadvantages — slow convergence

10
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Future Probes Specifications

Simons Observatory (SO)
e Ground-based
e Timescale 2022

e 6 frequency bands
[27-280 GHz]

e Noise [35.3 - 2.7
pK-arcmin)

e Beams FWHM [91-9
arcmin]

e Sky fraction fy, = 10%
e 50% Delensing

e Multipole range
£ ~ 30 — 4000

CMB-S4
Ground-based

Timescale 2027

9 frequency bands
[20-270 GHZz]

Noise [14 - 1.3
pK-arcmin]

Beams FWHM [76.6-8.5
arcmin]

Sky fraction fy, = 3%

90% Delensing

Multipole range
£ ~ 30 — 4000

11



Experiments: LiteBIRD, SO, CMB-S4

Primordial r = 0.01, 0.001

—— BB Foregrounds
Instrumental Noise

1072{ --- BB Lensing A =038

—-— BBLensing A = 1

e LiteBIRD(top), SO(bottom left)
and CMB-S4 (bottom right)

e For the first time in a PCA of
tensor power spectrum include
foregrounds residuals and 1/f
noise!

(6+1)Cp/2m [uK4]

e Complementarity of

107 10 10° . |
Multipole ¢ experiments!
10° 10°
~— Primordial r = 0.01, 0.001 Primordial r = 0.01, 0.001
—— BB foregrounds —— BB foregrounds
10t Instrumental Noise 107! Instrumental Noise [ —
=== BBLensing A =05 === BBLensing A = 0.1 _ -
[— _p| == BBLensingA=1 — _p] —= BBLensingA=1 /,/’
g g1 .
= =
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o o
= =
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= =
+ +
< 105 S
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10-¢
7 7.
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Multipole ¢ Multipole £
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PCA Basis: Problems
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PCA Basis: Problems
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Tensor PS need special care with respect to Scalar PS!

For scalar spectrum Pr — PCA describes small deviations around large,
well constrained amplitude As

For tensor spectrum r not yet measured
Generate our PCA basis with r = 0 — first PCA modes are effective r

BUT Information in C;s with Tensors (r > 0) can be very different
from Information matrix that defined PCA basis! 13
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PCA Basis: Our Solution

e Tensors not known a priori but - - 0.98
number of modes retained is
fixed to N from onset! 0.96
=~ 0.001

e Test Stability! — Compute Fisher

0.94
information F, for range of
possible r 0.92
e What fraction of F, can our basis
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PCA Basis: Our Solution

Tensors not known a priori but - - 0.98

number of modes retained is

fixed to N from onset! 0.96
=~ 0.001

Test Stability! — Compute Fisher

0.94
information F, for range of
possible r 0.92
What fraction of F, can our basis
0.0
- s e 0.90
CapLUIE! 1 3 5 7 9 11 13 15 17 19

Mode Number N

Study Information Fraction for range of r captured by first N modes of our basis:

tr (Sy FrSn)

i(r,N) = tr (F,)

Choose N such that / high enough ~ 98%
Uncertainties for /-th PCA mode — oiz = (le— F, SN)
e.g. LiteBIRD — set N =8

ii

14
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Application to LiteBIRD: Fisher Matrix

0.0001
e - 40000
g 0.001
= 30000
-
o]
"g 0.01 20000
o
5 10000
«
=
0.1
0

0.0001
0.001
0.01
0.1

Wavenumber k [Mpc~1]

e Fisher Matrix for for r=20
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Application to LiteBIRD: Fisher Matrix
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e Fisher Matrix for for r=0
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Application to LiteBIRD: Fisher Matrix

0.0001
= -40000
2 oon
= 30000
e
o]
T 001 20000
Z
z 10000
<
=
0.1
0
i — — i
: § E ¢
o
Wavenumber k [Mpc~1]
e Fisher Matrix for for r=0
e Main features: (k~ 6 x 10>Mpc™") and

(k~6x107*Mpc™1)

e Most information for r = 0 comes from reionization peak
15



Application to LiteBIRD: os

Experiment | PCA mode | r=0 L= “"2,’/1‘\, — “'g}N }
st ().M 1.0 0.03 2.0
2nd 0.002 16.0
3rc 0.01 X

LiteBIRD 4th 0.007 0.009
5th 0.01 0.019 0.09 0.3
6th 0.014 | 0.014 0.02 1.2
Tth 0.019 | 0.019 0.02 0.2
8th 0.03 0.03 0.08 0.04 0.6

o Modes shift in

e Forr>0

Ss(k) S7(k) Se(k) Ss(k) S4(k) S3(k) Sa(K) Si(k)

0 = 0.0014
0 =0.002

05 =0.005

gy =0.007

o =0.01

g5 =0.014

9 =0.019

o =003

1074 1073 1072 107!

importance as r changes!

o2 < 01

Wavenumber k[Mpc™!]

= most information from recombination bump rather than

reionization!
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—— No Foregrounds —— Foregrounds
= o 0.0003 07 = 0.0014]
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\-/50 00
w 04 4
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104 103 102 10!
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Factor ~ 4 on o,!

Factor ~ 5 on o; and ~ 3 on o7 due to foregrounds!

Adding foregrounds changes relative importance of reionization and
recombination peak

Reionization peak loses importance
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= Foregrounds cannot be neglected!
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Application to SO and CMB-S4

0.01 0.01 ‘
-0.98 ) -0.98
0.96 0.96

= 0.001 = 0.001

0.94 0.94
0.92 0.92

0.0 MR 0.90 0.0 MR 0.90

1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19
Mode number N Mode number N

e Study Information fraction /(r, N) also for SO and CMB-S4

o Weaker dependence on r w.r.t. LiteBIRD = only need N = 6 for
CMB-54 and N = 4 for SO to capture 98% of information
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Application to SO and CMB-S4

0.0001
-6000

0.001 4500

3000
0.01

1500

Wavenumber k [Mpc~!]

o
=

=
2
S

0.0001
0.001
0.1
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e Fisher Matrices for (left) a

-20000

16000

12000

8000

Wavenumber k [Mpc—]

4000

0.0001
0.001
0
0.1

Wavenumber k [Mpc~!]

nd (right) for r =0

e Features in Fisher matrices — recombination bump

e No reionization bump, but higher resolution and delensing —
some information beyond first acoustic peak!
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Application to SO and CMB-S4

—— CMB-S4 — S0

= 1 o =0002 AN 1 = 0.004
\‘: 0.00
@ 025 4
< 1 o =0006 75 = 0.01
\? 0.00 e /\ e
@ —0.25 4

025
gm o 3 = 0.01 /\ N\ o3 = 0.019
A —0.25 4 V

0.25 o J Y
< 0y = 0.014 2\ AW 0y = 0.03
A 0.25 4 y

0.25 4

5 = 0.02 VAV

1? 0.00 o A /\
P 25 \/ \/
< Ziz 1 0s=003 N
-

025 \] \] V\/\/

104 1073 1072 10!
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e PCA modes for SO and CMB-S4
e Features in PCA modes — recombination bump and some information beyond
e No reionization bump!

® ocmB—_ss are half of oso -



Study of Early Universe Models




Study of Early Universe Models: Tilted spectrum from inflation

Mg

1,00 X107
0.10 \
\ 0.75 \
0.05 \ /\ = 050 \
= \
~ \
2 A N
0.00 \ 0.25 V \/\_/ V/\V \N
0.00
—0.05
2 4 6 8 104 103 1072 107!
Mode number a Wavenumber k [Mpc~!]

Ideal application of PCA! — detect deviation w.r.t. fiducial case
Red-Tilted model similar to open inflation with bubble nucleation

m, from MCMC show characteristic trend = Success for PCA!

Reconstructed tensor power spectrum (blue)
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Limitations of the PCA Method
and MCMC Exploration




Limitations of PCA

1. Fisher estimates for PCA insensitive to physicality prior P+ > 0
can be inconsistent!

2. Why parametrize P as linear combination of PCA modes — no
inclusion of the popular r?

3. Our basis makes Fisher analysis more robust against physicality
prior!
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Standard PCA Basis vs PCA Basis with Constant Mode

—— Standard Basis —— Basis with constant mode

Sg(k) S7(k) Se(k) S5(k) Sa(k) S3(k) Sa(k) Si(k)
)

T
1074 1072 1072 1071
Wavenumber k [Mpc~!]

Include r in parametrization — PCA Basis with Constant Mode

First constant mode = m; = r

Only &;1 can be positive definite
e All other modes are oscillatory

23



Physicality Prior: A Visual Argument

—11
75 x10

0.0
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—2.5 4 B
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0.0
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—254 E E E
103 10°1 1073 10-' 1072 10-" 1072 101
Wavenumber k [Mpc’ll

Assume that orispe, is true

Plot 20 range in which modes oscillate 95% of the cases
e Some modes intesect physicality prior! (unphysical)

For r = 0.01 only first 3 modes unaffected! 24



Physicality Prior: A Visual Argument

—11
10 x10

—05 1 . .
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0.5 : :

0.0
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-1.0 T T T T T T
103 10-' 1073 10°" 1072 101
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e For r = 0.001 only first mode not affected!
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MCMC Exploration: r = 0.01

e Must have

OMCMC = OFisher — true
without physicality prior
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MCMC Exploration: r = 0.01

e Must have

OMCMC = OFisher — true
I\ without physicality prior
- iy e With physicality prior
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MCMC Exploration: r = 0.01

e Must have

OMCMC = OFisher — true
without physicality prior

o :: f o With physicality prior

: 004 ) = omcmc < OFisher for

o @ A most modes!
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MCMC Exploration: r = 0.01

e Must have

OMCMC = OFisher — true
without physicality prior

L b e With physicality prior

& oo

T el y = omcmc < OFisher for
*° @ A most modes!

. 7 | ) e LiteBIRD r = 0.001 our

H A standard basis — 2

@ \\ modes instead of 1 in

Constant Mode basis!

my

- ® = @

024

e Physicality prior effect

in marginal distributions

Y @ — asymmetric,

polygonal shapes, very

@7 \ different from
. / Fisher(red ellipses)
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MCMC Exploration: r = 0.001

e Physicality prior effect

even more evident
for r = 0.001! A
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Correlations in the Constant Mode Basis

0.0: A
0.01:

0.013)
\
0.03 / \

0.0 N
0.04

i | @

0.02

1o

= ooy

3 0.009
=

e Constant Mode basis shows m; — m3 correlation

e Our Standard basis — uncorrelated parameters = preferable!
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Correlations in the Constant Mode Basis

0.0: A
0.015

0.013)
\
0.03 / \

0.0 N
0.04

N | @

0.02

1o

= ooy

3 0.009
=

e Constant Mode basis shows m; — m3 correlation

e Our Standard basis — uncorrelated parameters = preferable!

CONCLUSION — can always use PCA basis to model primordial ten-
sor power spectrum BUT Fisher uncertainties rarely accurate! Should
be used only for relative comparison!
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Conclusions

e Applied PCA to Tensor primordial power spectrum

e Detect in B-modes deviations from scale-invariance in
model-independent way

e Constraints for LiteBIRD, SO and CMB-S4
e Our Basis (no tensors) — preferable to the Constant Mode Basis

e Fisher uncertainties can be affected by Physicality prior!

e Can be applied to any Early Universe scenario
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hogonalization

e Degeneracies between the effect on the C, due to cosmological
parameters and the tensor power spectrum parameters

e Solution = orthogonalize with respect to cosmological parameters
the Fisher matrix

F, B

F[U/ - BT Fab )

F., — cosmological parameters Fisher matrix
F; — PCA power spectrum parameters Fisher matrix
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Foregrounds: Component Separation

e Foregrounds — dominant source of uncertainty on large scales for B-modes

e Two components: dust and synchrotron

e Parametric maximum likelihood component separation: subtract fgs
component from data using multi-freq observations BUT propagation in
uncertainties — fgs residuals in the cleaned map (FGBuster code reference?)

[ dp, = Asp, +np ]

dp — multi-frequency maps
sp — multi-component sky signal

e On a given sky pixel p

n, — instrumental noise at each frequency
e Mixing matrix A parametrized by spectral parameters 3

[ A = A(B) = A(Bs, Bd> Ta, Cs) J

v

Bs+Cs log(v/vo)
ASY"C(Vv Vref(s)) = ( )

Vref(s)

hv pef (d)

Ba+1 oy
v e “a —1
Adust(”v l/ref(d)) = < >
(d)

h
Vref| eﬁ —1 31




Foregrounds: Component Separation

e Fisher approach: maximise the spectral log-likelihood:

= ==(r)
8ﬁaﬁl noise | true3

_ OAT i ATn-1a\-1aTp-1OA  OAT 1 OA 7
_—tr{[aﬁN A(ATN!A)IATN 55~ o5 57 > sesy
P

e Uncertainties on /3 spectral parameters:

o(B) = VIX|ps-
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Foregrounds Cleaning: LiteBIRD, SO, CMB-S4

(6+1)Cp/2m [uK4]

(E+1)Cp/2m [uK4]

Primordial r = 0.01, 0.001

—— BB Foregrounds
Instrumental Noise

=== BBLensing A = 0.8

—= BBLensing A = 1

e Component separation leaves
residual foregrounds in the maps
(due to propagation of statistical
uncertainty in 3 estimation) —
residuals power spectrum

fos _ 0j 0" ~jj’
CF = E E Twagoy, G

r

k" joj’
—6
10 00 10 10° L
Multipole ¢
o LiteBIRD, SO and CMB-S4
10° 10°
—— Primordial r =001, 0.001 Primordial r = 001, 0.001
—— BB foregrounds —— BB foregrounds
10t Instrumental Noise 107! Instrumental Noise [ —
=== BBLensing A =05 === BBLensing A = 0.1 Py
10-2] = BBLensinga =1 & 10-2] = BeLensinga 1 ! -
4
=
I
I
>
Q
=
+
=
105 g
10-¢
7 7.
10 10 107 10 10 10 33
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Noise after Component Separation

e Instrumental Noise for experiment
g Qknee
LG
|: gknee
—-1/2

Wy, = Sensitivity, white noise level of frequency channel v
OrwrHm = FWHM of Gaussian beam (radians)

L akneeygknee = l/f noise

NZI),( = [Wx7i exp ( ¢+ 1)FWHM2V>

e Noise after component separation:
T (X t
(A (N@ ) A>

where NXX (NXX)W Ng?f &, — matrix containing instrumental

noise for each frequency channel

=1l
XX
NE =

CMB CMB
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Inflation and CMB Polarization

e Inflationary Paradigm: Vacuum quantum fluctuations of inflaton scalar
field produced during inflation=- generation of primordial scalar and
tensor perturbations (gravitational waves) of the metric

e Effect on the CMB:

Figure 2: Kamionkowski & Caldwell 2000
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Inflation and CMB Polarization

e CMB is polarized! = CMB polarization is produced by Thomson
scattering at recombination

e Polarization state defined by Stokes parameters Q and U =
Polarization Tensor

e Can Helmholtz decompose in Curl component (B-modes) which is
divergence-free and Gradient component (E-modes) which is curl-free
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The Quest for Primordial Gravitational Waves

E-modes produced by both scalar and tensor perturbations
Primordial B-modes produced ONLY by tensor perturbations! BUT Big
challenge: Tiny signal, Lensing E-modes leaking into B-modes, Foregrounds...

e |F Detected Primordial Gravitational waves will give:

e "Smoking gun" for inflation
o Identify energy scale of inflation for the simplest models! (single scalar field)

e What about more complex models? Beyond the standard model of Early
Universe? Lots of Physics to be understood in this primordial signal!

Angular scale

100

TS|
¥

Figure 3: From Planck results 2018 37
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