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& The nature of gravity:

Is Einstein (still) right? What building-block principles and symmetries in nature invoked in
the description of gravity can be challenged? Are there extra fields involved in the gravitational
interaction?
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Several of the deepest questions in fundamental physics involve gravity:

& The nature of gravity:

Is Einstein (still) right? What building-block principles and symmetries in nature invoked in
the description of gravity can be challenged? Are there extra fields involved in the gravitational

interaction?

@ The nature of neutron stars:

How does nuclear matter behave in the extreme conditions present in the inner core of
neutron stars? Can we learn something on the non-perturbative regime of QCD? Does

exotic physics show up in these objects!?

Q The nature of black holes:

Are the objects observed by LIGO-Virgo redally black holes? Are there subtle signatures of
quantum gravity in the spacetime geometry of these compact objects? Do more exotic species

of compact objects exist?

& The nature of dark matter:

Is dark matter composed of particles, dark objects, or modifications of the gravitational
interaction? Can we detect or constrain dark matter looking at its gravitational interaction

with black holes and neutron stars?

@ Cosmology and the early universe:

Can we explain cosmological acceleration in terms of modifications of the gravitational
interaction? Which phase transitions took place in the early history of the universe! How do

cosmological parameters vary with redshift! [see Monday talks by Cardone, Piacentini etc.]
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Addressing these questions requires a wide, interdisciplinary community
including theoretical physicists and astrophysicists, working in close contact with
experimentalists at present and future GWV detectors.
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including theoretical physicists and astrophysicists, working in close contact with
experimentalists at present and future GWV detectors.

Such a community exists worldwide (throughout all Europe and US, but also in Japan,Australia etc.)

In Italy it is mostly represented by the INFN Specific Initiative TEONGRAV:
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Addressing these questions requires a wide, interdisciplinary community
including theoretical physicists and astrophysicists, working in close contact with
experimentalists at present and future GWV detectors.

Such a community exists worldwide (throughout all Europe and US, but also in Japan,Australia etc.)

In Italy it is mostly represented by the INFN Specific Initiative TEONGRAV:

TEONGRAV is an INFN Network
(belonging to the LineV (astroparticle) of GR4)
including ltalian groups studying
theoretical gravitational physics, an in particular
sources of gravitational waves

* Padova

* Milano Bicocca

* TIFPA-Trento

* SISSA-Trieste (to be included)
* Firenze

* Roma | (coordinator)

* Napoli

Some of these nodes (e.g. Padova and Milano Bicocca)
are more focussed on the astrophysics, while others
(e.g. Roma and SISSA) are mostly on theoretical physics.
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SAPIENZA  Gravity theory and gravitational wave phenomenology
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We acknowledge financial
support from:
Welcome to the gravity theory group @ Sapienza! * Fondi Ateneo Sapienza

* TEONGRAV INFN

* ERC-2017 StG DarkGRA
* PRIN 2017 MIUR

* H2020-MSCA-RISE-

The landmark detection of gravitational waves has opened a new era in physics, giving access to the hitherto unexplored strong-gravity regime,
where spacetime curvature is extreme and the relevant speeds are close to the speed of light. In parallel to its countless astrophysical
implications, this discovery can also give important insight for fundamental physics.

We investigate various phenomena related to strong gravitational sources such as black holes, neutron stars, and binaries thereof - that can be 2015 StronGrHEP
used to turn these objects into cosmic labs, where matter in extreme conditions, the very foundations of Einstein's theory of gravity, and even e H2020-MSCA-IF-
particle physics can be put to the test. 2017 FunGraw

We are exploring some outstanding, cross-cutting problems in fundamental physics: the physics of neutron stars, the limits of classical gravity,
the nature of black holes and of spacetime singularities, the existence of extra light fields, and the effects of dark matter near compact objects. m w

We are members of the COST Action “CA 16104 Gravitational waves, black holes and fundamental physics (GWverse)’, of the “Amaldi Research
Center for gravitational physics and astrophysics” at Sapienza, and of the INFN Specific Initiative TEONGRAV - Gravitational Wave Sources.

We are part of the LISA Consortium, the GWIC-3G Science Case Team, and eXTP Science Team. I N F N

Istituto Nazionale di Fisica Nucleare
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https://web.uniromal.it/gmunu
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We also collaborate:

in Rome, with other members of Virgo and with astrophysicists of Monte Porzio Observatory

in Italy, with the other TEONGRAY nodes (presently, we have a PRIN with some of them)
worldwide, with several groups in JHU (US), Lisbon Univ. (PT), King’s College Lond. (UK), Nottingham
Univ. (UK), DAMPT (UK), Aveiro Univ. (UK), Barcelona Univ. (SP), etc.
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WHICH RESEARCH TOPICS?
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| .Modelling sources of Gravitational VWaves

2.Test the gravitational interaction, looking for general relativity deviations in the strong-field regime

3.Determine the equation of state of nuclear matter in the inner core of neutron stars

4.Test the nature of compact objects

5.Search for dark matter candidates looking at its strong gravity interaction with compact objects
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|.Modelling sources of Gravitational Waves
Presently, this is the main activity of gravity theory & phenomenology groups worldwide:

it is needed to increase detection chances and the accuracy of parameter estimation (see Pannarale’s talk)

but it’s also the fundamental tool for all other research lines in gravity:
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4.Test the nature of compact objects \

5.Search for dark matter candidates looking at its strong gravity interaction with compact objects
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|.Modelling sources of Gravitational Waves

Most interesting kind of source (the one which has been detected):
coalescence of binary systems composed of BHs and/or NSs
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* Inspiral: Post-Newtonian (PN) expansions

Perturbative expansion in v/c around “Newtonian” dynamics

(e.g. in the last decade Ferrari et al. PRD ’1 2, Maselli et al. PRD ’[ 2, Berti et al. PRD ’1 2, Maselli et al, PRD ’I 3,
Abdelsalhin et al. PRD ’18, Jimenez-Forteza et al. PRD’18, Pani et al. PRD ’1 8, Maselli et al. PRL*I 8 )
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* Ringdown: Spacetime perturbation theory
Perturbative approach in which spacetime is a small deviation of known curved background
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(e.g. in the last decade Ferrari et al. PRD ’1 2, Maselli et al. PRD ’[ 2, Berti et al. PRD ’1 2, Maselli et al, PRD ’I 3,
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(e.g. Witek et al. PRD’[ 0a,b, Zilhao et al. PRD’I I, Berti et al, PRD’ 3, Cardoso et al. Liv.Rev.Rel’ | 5,Witek et al. PRD’1 9)

* Ringdown: Spacetime perturbation theory

Perturbative approach in which spacetime is a small deviation of known curved background
(e.g. Molina et al. PRD’10, Burgio et al. PRD’[ |, Pani et al. PRL ’| 3, Gualtieri et al. PRD’| 4, Blazquez-Salcedo et al., PRD’1 6, Cardoso et al. PRD’[9)
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|.Modelling sources of Gravitational Waves
Just a mention to other sources which - although not detected yet - deserve investigation:
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|.Modelling sources of Gravitational Waves
Just a mention to other sources which - although not detected yet - deserve investigation:

* Single neutron stars
(e.g. Burgio et al. PRD’I I, Gusakov et al. MNRAS’| 3, Gualtieri et al. PRD’1 4, Camelio et al. PRD’l 7, Ciolfi et al. MNRAS °09,°10, Ferrari CQG’ 10, Gualtieri et al. CQG’I I)
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* Stellar oscillations (excited by supernova explosion, accreting matter, glitches, etc.)
Some of these oscillations can become unstable if the star is rapidly rotating => large GW emission
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* Non-axisymmetric deformations (due to magnetic field or temperature gradients) e.g. continuous sources
(see Naticchioni & Palomba’s talk)
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|.Modelling sources of Gravitational Waves
Just a mention to other sources which - although not detected yet - deserve investigation:

* Single neutron stars
ge.g. Burgio et al. PRD’I I, Gusakov et al. MNRAS’| 3, Gualtieri et al. PRD’1 4, Camelio et al. PRD’l 7, Ciolfi et al. MNRAS °09, 10, Ferrari CQG’10, Gualtieri et al. CQG’I |)

Different possible processes make them promising sources of gravitational waves:

* Stellar oscillations (excited by supernova explosion, accreting matter, glitches, etc.)
Some of these oscillations can become unstable if the star is rapidly rotating => large GW emission

* Non-axisymmetric deformations (due to magnetic field or temperature gradients) e.g. continuous sources
After compact binaries, it is considered the main target source for LIGO-Virgo! (see Naticchioni & Palomba’s talk)

See also the review “GWs from single neutron stars: an advanced detector era survey” Glampedakis & Gualtieri ASS Libr.’18
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* Stochastic background of gravitational waves
(e.g. Marassi et al. MNRAS 09, Schneider et al. MNRAS’1 0, Marassi et al. PRD ’1 |, MNRAS ’I |, Maselli et al. PRL °16)
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* Single neutron stars
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Different possible processes make them promising sources of gravitational waves:
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* Non-axisymmetric deformations (due to magnetic field or temperature gradients) e.g. continuous sources
After compact binaries, it is considered the main target source for LIGO-Virgo! (see Naticchioni & Palomba’s talk)
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* Stochastic background of gravitational waves
(e.g. Marassi et al. MNRAS 09, Schneider et al. MNRAS’1 0, Marassi et al. PRD ’1 |, MNRAS ’I |, Maselli et al. PRL °16)

Among main expected signals from LISA, carry information on cosmological epochs of their generation.

Can have cosmological or astrophysical origin; the latter can be originated by early supernovae or
coalescing binary systems composed of white dwarfs, neutron stars or black holes
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Different possible processes make them promising sources of gravitational waves:

* Stellar oscillations (excited by supernova explosion, accreting matter, glitches, etc.)
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* Stochastic background of gravitational waves
(e.g. Marassi et al. MNRAS 09, Schneider et al. MNRAS’1 0, Marassi et al. PRD ’1 |, MNRAS ’I |, Maselli et al. PRL °16)

Among main expected signals from LISA, carry information on cosmological epochs of their generation.

Can have cosmological or astrophysical origin; the latter can be originated by early supernovae or
coalescing binary systems composed of white dwarfs, neutron stars or black holes

e Multimessenger astronomy
(e.g. Maselli & Ferrari PRD ’14, Maselli et al. ApJ’15,Ap)’| 7, Franchini et al. PRD’1 7, Camelio et al. PRD’| 7, Abdelsalhin et al. PRD’1 8)
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* Single neutron stars
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* Stochastic background of gravitational waves
(e.g. Marassi et al. MNRAS 09, Schneider et al. MNRAS’1 0, Marassi et al. PRD ’1 |, MNRAS ’I |, Maselli et al. PRL °16)

Among main expected signals from LISA, carry information on cosmological epochs of their generation.

Can have cosmological or astrophysical origin; the latter can be originated by early supernovae or
coalescing binary systems composed of white dwarfs, neutron stars or black holes

e Multimessenger astronomy
(e.g. Maselli & Ferrari PRD ’14, Maselli et al. ApJ’15,Ap)’| 7, Franchini et al. PRD’1 7, Camelio et al. PRD’| 7, Abdelsalhin et al. PRD’1 8)

Further information can be extracted by combining gravitational wave observations with astrophysical
observations, as the X-ray emission from accreting neutron stars, or gamma-ray bursts
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|.Modelling sources of Gravitational Waves

2.Test the gravitational interaction, looking for general relativity deviations in the strong-field regime

3.Determine the equation of state of nuclear matter in the inner core of neutron stars

4.Test the nature of compact objects

5.Search for dark matter candidates looking at its strong gravity interaction with compact objects
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2.Test the gravitational interaction, looking for general relativity deviations in the strong-field regime

Cardoso & Gualtieri PRD’09, Pani et al. PRD’09, Molina et al. PRD’1 0, Pani et al. PRL'I I, PRD’l I a,b,c, PRD’I 2, Casanellas et al. ApJ’| 2,Yunes et al. PRD’| 2,
Berti et al. PRD’| 2, Pani & Sotiriou PRL’| 2, Cardoso et al. PRD’1 3, PRL’| 3, Berti et al. PRD’I 3, Pani et al. PRD’14, Cardoso et al. Liv.Rev.Rel.’ | 5, Horbatsch et al. CQG’1 5,
Maselli et al. PRD’1 5, Babichev et al. PRD’1 6, Blazquez-Salcedo et al. PRD’1 6, Maselli et al. PRL’1 6, PRL’| 8, Cardoso et al. PRL’ | 8a,b, Silva et al. PRL’| 8, PRD’1 9,

Annulli et al. PRD’1 9,Witek et al. PRD’19, Cardoso et al. PRD’1 9
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2.Test the gravitational interaction, looking for general relativity deviations in the strong-field regime

Cardoso & Gualtieri PRD’09, Pani et al. PRD’09, Molina et al. PRD’10, Pani et al. PRL’I'l,PRD’I I a,b,c, PRD’l 2, Casanellas et al. ApJ’| 2,Yunes et al. PRD’[ 2,
Berti et al. PRD’l 2, Pani & Sotiriou PRL’| 2, Cardoso et al. PRD’1 3, PRL’| 3, Berti et al. PRD’1 3, Pani et al. PRD’14, Cardoso et al. Liv.Rev.Rel’’ | 5, Horbatsch et al. CQG’1 5,
Maselli et al. PRD’1 5, Babichev et al. PRD’1 6, Blazquez-Salcedo et al. PRD’1 6, Maselli et al. PRL’1 6, PRL’| 8, Cardoso et al. PRL’ | 8a,b, Silva et al. PRL’| 8, PRD’1 9,

Annulli et al. PRD’19,Witek et al. PRD’ 19, Cardoso et al. PRD’1 9

As far as we know, gravity - the weakest among fundamental interactions -
is described by one of the most beautiful and elegant theories ever coinceived: General Relativity.

INFN Romal Retreat Leonardo Gualtieri Assisi, 16-18 June 2019



2.Test the gravitational interaction, looking for general relativity deviations in the strong-field regime

Cardoso & Gualtieri PRD’09, Pani et al. PRD’09, Molina et al. PRD’10, Pani et al. PRL’I'l,PRD’I I a,b,c, PRD’l 2, Casanellas et al. ApJ’| 2,Yunes et al. PRD’[ 2,
Berti et al. PRD’l 2, Pani & Sotiriou PRL’| 2, Cardoso et al. PRD’1 3, PRL’| 3, Berti et al. PRD’1 3, Pani et al. PRD’14, Cardoso et al. Liv.Rev.Rel’’ | 5, Horbatsch et al. CQG’1 5,
Maselli et al. PRD’1 5, Babichev et al. PRD’1 6, Blazquez-Salcedo et al. PRD’1 6, Maselli et al. PRL’1 6, PRL’| 8, Cardoso et al. PRL’ | 8a,b, Silva et al. PRL’| 8, PRD’1 9,

Annulli et al. PRD’1 9,Witek et al. PRD’19, Cardoso et al. PRD’1 9

As far as we know, gravity - the weakest among fundamental interactions -
is described by one of the most beautiful and elegant theories ever coinceived: General Relativity.

In the century after its formulation GR passed several observational tests,
from solar system tests to binary pulsar tests, but these mostly probed the weak-field regime of gravity.
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As far as we know, gravity - the weakest among fundamental interactions -
is described by one of the most beautiful and elegant theories ever coinceived: General Relativity.

In the century after its formulation GR passed several observational tests,
from solar system tests to binary pulsar tests, but these mostly probed the weak-field regime of gravity.

It was only after 2015, with the detection of gravitational waves, that we started observing
the strong-field, large-curvature regime of gravity.
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As far as we know, gravity - the weakest among fundamental interactions -
is described by one of the most beautiful and elegant theories ever coinceived: General Relativity.

In the century after its formulation GR passed several observational tests,
from solar system tests to binary pulsar tests, but these mostly probed the weak-field regime of gravity.

It was only after 2015, with the detection of gravitational waves, that we started observing
the strong-field, large-curvature regime of gravity.

There is no fundamental reason to believe that gravity behaves in the same way in the new regime!

QCD
~1950s
- . Length-scale [m]
10" meters
6 orders of magnitude _
Compact objects
~2010s-2020s
® >

0.1-1 Potential [GM/(c*r)]
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is described by one of the most beautiful and elegant theories ever coinceived: General Relativity.

In the century after its formulation GR passed several observational tests,
from solar system tests to binary pulsar tests, but these mostly probed the weak-field regime of gravity.

It was only after 2015, with the detection of gravitational waves, that we started observing
the strong-field, large-curvature regime of gravity.
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Moreover:
* we already know that some deviation has to occur (although at a much smaller lengthscale):
all tentatives to unify GR with the quantum world have failed
* the theory of GR contains its own pathologies (singularities, causality violations)
 dark matter, dark energy are still not fully understood, GR deviations may provide alternative
explanations to observations
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2.Test the gravitational interaction, looking for general relativity deviations in the strong-field regime

Bottom-up approach: parametrize observable quantities, set bounds to parameters using observations
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2.Test the gravitational interaction, looking for general relativity deviations in the strong-field regime

Bottom-up approach: parametrize observable quantities, set bounds to parameters using observations

For instance, PPE formalism, parametrizes the gravitational waveform from compact binary inspiral
h(v) = har()(1 + a(rMy)®)ef(mMv)’

(a,B,a,b) < specific theories
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2.Test the gravitational interaction, looking for general relativity deviations in the strong-field regime

Bottom-up approach: parametrize observable quantities, set bounds to parameters using observations

For instance, PPE formalism, parametrizes the gravitational waveform from compact binary inspiral

h(v) = har(v)(1 + a(rMy)®)etf (TMv)’

‘ Soiar Sg/sten; T ‘ /
H 1 — — - PSR J0737-3039 /
(a’B’a,b) @ SpeC|ﬁC theorles 102 x -+ ++-x 2011 Projection, Bayesian /
X GW150914, Bayesian /
0| | e——e GW150914, Fisher /
A— . —A GW151226, Fisher

T

bounds from LIGO-Virgo =
detections: .

107 4 3 2 a9 o0 1 2 3
n PN
(Yunes et al, PRD ‘1 6)
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For instance, PPE formalism, parametrizes the gravitational waveform from compact binary inspiral

h(v) = har(v)(1 + a(rMy)®)etf (TMv)’

Solar System /
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x -+ ++-x 2011 Projection, Bayesian /
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T * We derived the GW stochastic
| background in PPE parametrization

T

(a,B,a,b) & specific theories .

0| | e——e GW150914, Fisher /

10717 A~ . —A GW151226, Fisher /
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bounds from LIGO-Virgo = osoll B e
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2.Test the gravitational interaction, looking for general relativity deviations in the strong-field regime

Bottom-up approach: parametrize observable quantities, set bounds to parameters using observations

For instance, PPE formalism, parametrizes the gravitational waveform from compact binary inspiral

h(v) = har()(1 + a(rMy)®)ef(mMv)’

(a,B,a,b) & specific theories

bounds from LIGO-Virgo
detections:

© Top-down approach: consider specific GR-modified theories, possibly

Solar System
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x+ -+ -x 2011 Projection, Bayesian
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-3 -2 -1

0 1

PN
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* We derived the GW stochastic
background in PPE parametrization

1,
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(e \
— L. ‘\
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0050} 1 &
2
S GR /
0.010— 2% ¢
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| d as T 50 100 Maselli et al.,
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inspired by fundamental physics considerations, work out observable
consequences, and look for them in the GW data
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Bottom-up approach: parametrize observable quantities, set bounds to parameters using observations
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inspired by fundamental physics considerations, work out observable
consequences, and look for them in the GW data

Most of the modifications can be reformulated as extra scalar fields
e.g. scalar-tensor gravity, Gauss-Bonnet gravity, Galileon theories, etc.
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& Top-down approach: consider specific GR-modified theories, possibly
inspired by fundamental physics considerations, work out observable
consequences, and look for them in the GW data

Most of the modifications can be reformulated as extra scalar fields
e.g. scalar-tensor gravity, Gauss-Bonnet gravity, Galileon theories, etc.

Example: Einstein-dilaton Gauss-Bonnet (EdGB) gravity
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|
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Bottom-up approach: parametrize observable quantities, set bounds to parameters using observations

For instance, PPE formalism, parametrizes the gravitational waveform from compact binary inspiral
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& Top-down approach: consider specific GR-modified theories, possibly
inspired by fundamental physics considerations, work out observable
consequences, and look for them in the GW data

Most of the modifications can be reformulated as extra scalar fields
e.g. scalar-tensor gravity, Gauss-Bonnet gravity, Galileon theories, etc.

Example: Einstein-dilaton Gauss-Bonnet (EdGB) gravity
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2.Test the gravitational interaction, looking for general relativity deviations in the strong-field regime

Bottom-up approach: parametrize observable quantities, set bounds to parameters using observations

For instance, PPE formalism, parametrizes the gravitational waveform from compact binary inspiral
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& Top-down approach: consider specific GR-modified theories, possibly
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consequences, and look for them in the GW data

Most of the modifications can be reformulated as extra scalar fields
e.g. scalar-tensor gravity, Gauss-Bonnet gravity, Galileon theories, etc.

Example: Einstein-dilaton Gauss-Bonnet (EdGB) gravity
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* We derived the GW stochastic
background in PPE parametrization
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* We applied Numerical Relativity
to black hole merger in EAGB:
current LIGO-Virgo observations
provide the strongest bounds!
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2.Test the gravitational interaction, looking for general relativity deviations in the strong-field regime

Bottom-up approach: parametrize observable quantities, set bounds to parameters using observations

For instance, PPE formalism, parametrizes the gravitational waveform from compact binary inspiral

h(v) = har()(1 + a(rMy)®)ef(mMv)’

— — - PSR J0737-3039
x+ -+ -x 2011 Projection, Bayesian
GW150914, Bayesian
o——o GW150914, Fisher
A— . —A GWI151226, Fisher

(a,B,a,b) & specific theories .

bounds from LIGO-Virgo
detections:

& Top-down approach: consider specific GR-modified theories, possibly
inspired by fundamental physics considerations, work out observable
consequences, and look for them in the GW data

Most of the modifications can be reformulated as extra scalar fields
e.g. scalar-tensor gravity, Gauss-Bonnet gravity, Galileon theories, etc.

Example: Einstein-dilaton Gauss-Bonnet (EdGB) gravity

1

PN
(Yunes et al, PRD 16 )

1
S = 5/ d*x\/=g [R - 58”@8”@ -+
where Rp = RussR?"° — 4R 5R™ + R*

* We derived the GW stochastic
background in PPE parametrization
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* We applied Numerical Relativity
to black hole merger in EAGB:
current LIGO-Virgo observations
provide the strongest bounds!
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See also the review “Testing GR with astrophysical observations”, Berti, Barausse, Cardoso, Gualtieri, Pani et al., CQG ‘I 5
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|.Modelling sources of Gravitational VWaves

2. Test the gravitational interaction, looking for general relativity deviations in the strong-field regime

3.Determine the equation of state of nuclear matter in the inner core of neutron stars

4.Test the nature of compact objects

5.Search for dark matter candidates looking at its strong gravity interaction with compact objects

INFN Romal Retreat Leonardo Gualtieri Assisi, 16-18 June 2019



3.Determine the equation of state of nuclear matter in the inner core of neutron stars

Ferrari et al. PRD’09, PRD ’10, Ferrari CQG 10, Burgio et al. PRD’| |, Ferrari et al. PRD’ 2, Maselli et al. PRD’| 2, PRD’| 3a,b, Gusakov et al. MNRAS’| 3, Martinon et al. PRD’ 4,
Gualtieri et al. PRD’1 4, Pani et al. PRD’| 5a,b, Camelio et al. PRD’| 7, Abdelsalhin et al. PRD’|8a,b, Jimenez-Forteza et al.’|8, Pani et al. PRD’| 8, Fasano et al. PRD’ 9 to appear
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How does nuclear matter behave in the inner core of neutron stars?
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How does nuclear matter behave in the inner core of neutron stars?

Extreme conditions (€210'> g/cm3, v~1kHz, B~10'%-1°G)
* can not be reproduced in the lab
* are a challenge for the theory of non-perturbative QCD

Other Heavy
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o
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-
[=]
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o
Q
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0.001
0 1 2
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Lattimer & Prakash, 2007

Caplan & Horowitz 2017

INFN Romal Retreat Leonardo Gualtieri Assisi, 16-18 June 2019
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3.Determine the equation of state of nuclear matter in the inner core of neutron stars
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3.Determine the equation of state of nuclear matter in the inner core of neutron stars
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How does nuclear matter behave in the inner core of neutron stars?
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The most promising probe of the NS EoS is the tidal deformability, measured through GWVs!

 > Qab = AGap ~

quadrupole tensor
induced by the tidal field tidal deformability

tidal tensor
(“Love number”)
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3.Determine the equation of state of nuclear matter in the inner core of neutron stars

During the late inspiral and merger of a neutron star binary,
the stars are tidally deformed and the emitted gravitational wave
explicitly depends on A!
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3.Determine the equation of state of nuclear matter in the inner core of neutron stars

During the late inspiral and merger of a neutron star binary,

the stars are tidally deformed and the emitted gravitational wave

explicitly depends on A!
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3.Determine the equation of state of nuclear matter in the inner core of neutron stars

10* 9

During the late inspiral and merger of a neutron star binary,
the stars are tidally deformed and the emitted gravitational wave
explicitly depends on A!

Tidal deformability has been measured with GW 170817
thus constraining the EoS an
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3.Determine the equation of state of nuclear matter in the inner core of neutron stars

10* 9

During the late inspiral and merger of a neutron star binary,
the stars are tidally deformed and the emitted gravitational wave
explicitly depends on A!

Tidal deformability has been measured with GW 170817
thus constraining the EoS an
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3.Determine the equation of state of nuclear matter in the inner core of neutron stars

10* 9

During the late inspiral and merger of a neutron star binary,
the stars are tidally deformed and the emitted gravitational wave
explicitly depends on A!

Tidal deformability has been measured with GW 170817
thus constraining the EoS and estimating the NS radius

—_

10? 3

Tidal parameter A
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* We extended the post-Newtonian description of tidal deformation to include the rotation of the star
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3.Determine the equation of state of nuclear matter in the inner core of neutron stars

During the late inspiral and merger of a neutron star binary,
the stars are tidally deformed and the emitted gravitational wave
explicitly depends on A!

Tidal deformability has been measured with GW 170817
thus constralnlng the EoS and estlmatlng the NS radius
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This is a rough, preliminary

bound;in order to really constrain the EoS
we need to extend and improve the theory
of tidal deformations in compact binaries!

* We extended the post-Newtonian description of tidal deformation to include the rotation of the star

The rotational contribution we have derived can be significant in the data

analysis of the Einstein Telescope, for events as loud as GW 170817
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3.Determine the equation of state of nuclear matter in the inner core of neutron stars

104 %

During the late inspiral and merger of a neutron star binary,
the stars are tidally deformed and the emitted gravitational wave
explicitly depends on A!

Tidal deformability has been measured with GW 170817
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This is a rough, preliminary
bound;in order to really constrain the EoS
we need to extend and improve the theory
of tidal deformations in compact binaries!

* We extended the post-Newtonian description of tidal deformation to include the rotation of the star

The rotational contribution we have derived can be significant in the data
analysis of the Einstein Telescope, for events as loud as GW 170817

* We developed a Bayesian approach
to combine GW measurements of
tidal deformability with
astrophysical (X-ray)
measurements of the neutron star
radius, getting tighther bounds
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3.Determine the equation of state of nuclear matter in the inner core of neutron stars

During the late inspiral and merger of a neutron star binary,
the stars are tidally deformed and the emitted gravitational wave
explicitly depends on A!

Tidal deformability has been measured with GW 170817
thus constralnlng the EoS and estlmatlng the NS radius
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3.Determine the equation of state of nuclear matter in the inner core of neutron stars

During the late inspiral and merger of a neutron star binary,
the stars are tidally deformed and the emitted gravitational wave
explicitly depends on A!

Tidal deformability has been measured with GW 170817
thus constralnlng the EoS and estlmatlng the NS radius
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This is a rough, preliminary

bound;in order to really constrain the EoS
we need to extend and improve the theory
of tidal deformations in compact binaries!

* We extended the post-Newtonian description of tidal deformation to include the rotation of the star

The rotational contribution we have derived can be significant in the data

analysis of the Einstein Telescope, for events as loud as GW 170817

Fasano et al.

* We developed a Bayesian approach
to combine GW measurements of
tidal deformability with
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measurements of the neutron star n \ N
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* Work in progress: phenomenological parametrization of the neutron star EoS based on microphysics
quantities (e.g. symmetry energy) to set up an “inverse problem” from GW observables
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|.Modelling sources of Gravitational Waves

2. Test the gravitational interaction, looking for general relativity deviations in the strong-field regime

3.Determine the equation of state of nuclear matter in the inner core of neutron stars

4.Test the nature of compact objects

5.Search for dark matter candidates looking at its strong gravity interaction with compact objects
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4.Test the nature of compact objects

Pani et al. PRD’09, PRD’10, PRD’I I, Macedo et al. PRD’ 3, Pani et al. PRD’1 5, Ucikata et al. PRD’1 6, Cardoso & Gualtieri CQG ’1 6, Cardoso et al. PRL’ 1 6, PRD’1 6, PRD’l 7,
Cardoso & Pani Nature Astr.’| 7, Palenzuela et al. PRD’1 7, Maggio et al. PRD’ 7, PRL’| 8, Barausse et al. CQG’l 8,Testa et al. PRD’1 8, Maggio et al. PRD’1 9,
Raposo et al. PRD’1 9a,b, Pani & Ferrari CQG 18, Cardoso & Pani Liv.Rev.Rel 19 to appear
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LIGO-Virgo observations did not probe directly the black hole horizon (neither Event Horizon Telescope did!)
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4.Test the nature of compact objects

Pani et al. PRD’09, PRD’10, PRD’Il I, Macedo et al. PRD’1 3, Pani et al. PRD’l 5, Ucikata et al. PRD’1 6, Cardoso & Gualtieri CQG ’1 6, Cardoso et al. PRL’1 6, PRD’1 6, PRD’1 7,
Cardoso & Pani Nature Astr.’| 7, Palenzuela et al. PRD’1 7, Maggio et al. PRD’ 7, PRL’| 8, Barausse et al. CQG’l 8,Testa et al. PRD’1 8, Maggio et al. PRD’1 9,
Raposo et al. PRD’[9a,b, Pani & Ferrari CQG ’I 8, Cardoso & Pani Liv.Rev.Rel 19 to appear

LIGO-Virgo observations did not probe directly the black hole horizon (neither Event Horizon Telescope did!)
Do horizonless Exotic Compact Objects (ECOs) exist?

quantum gravity & string theory suggest the existence of Planck-scale deviations near the
horizon (fuzzbals, firewalls, etc.), also [but not only] to solve information paradox
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ECOs may exist besides ordinary black holes!

Example: boson stars i.e. self-gravitating scalar field configurations. il s Bl BN -
If the supermassive objects at the center of galaxies are boson stars,
they would have a scalar field halo which could be an alternative to

Dark Matter.

=2 (Palenzuela et al.
PRD’17)

INFN Romal Retreat Leonardo Gualtieri Assisi, 16-18 June 2019



|.Modelling sources of Gravitational Waves

2. Test the gravitational interaction, looking for general relativity deviations in the strong-field regime

3.Determine the equation of state of nuclear matter in the inner core of neutron stars

4.Test the nature of compact objects

5.Search for dark matter candidates looking at its strong gravity interaction with compact objects
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5. Search for dark matter candidates looking at its strong gravity interaction with compact objects

Cardoso et al. PRL’ [, Pani et al. PRL’ 2, PRD’1 2, Macedo et al. ApJ’l 3, PRD’I 3, Cardoso & Pani CQG’I3, Cardoso et al. PRD’l 3, Pani et al. PRD’l 3, Brito et al. PRD’| 3a,b,
PRD’14, Okawa et al. PRD’14, Pani et al. JCAP’1 4, Brito et al. CQG’l 5, Lect. Not. Phys.”| 5, Pani PRD’1 5, Cardoso et al. JCAP’| 6, Cardoso et al. PRD’l 7, Brito et al. PRL’l 7, PRD’1 7,
Maselli et al. PRD’l 7, Cardoso et al. JCAP ’1 8, Ficarra et al. PRD’| 9
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We do not know how (and if!) dark matter couples with standard model fields.
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Ultra-light boson fields with m=10-''eV (Compton length = 10 km): possible alternative to WIMPs
which would couple with black holes of comparable size, giving rise to superradiant instabilities
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Some of these studies have the aim of extracting more information from
present GW detectors: Advanced LIGO & Virgo.
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Indeed, the theoretical physics community is one of the key players in the shaping of 3G-ET and LISA.
Documents of 3G-ET and LISA have the same fundamental physics questions and topics outlined above
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Some of these studies have the aim of extracting more information from
present GW detectors: Advanced LIGO & Virgo.

Others are developed for future, 37 generation GW detectors:
3G (Einstein Telescope + its US conterpart) and the space-based mission LISA

Indeed, the theoretical physics community is one of the key players in the shaping of 3G-ET and LISA.
Documents of 3G-ET and LISA have the same fundamental physics questions and topics outlined above

GRAVITATIONAL WAVES IN THE
EUROPEAN STRATEGY FOR PARTICLE PHYSICS

ET Steering Committee
Ty ;

This d it [ some of the schniﬂc and technological

y ies that are le bet the t field of Gravitational
Waves (GWSs) and ngh Energy Parlicle Physics (HEPP). It Is submitted by
the ET steering cormilho undar the suparvlalon of GWIC-3G (a team
of the Gravitational crti | Committee (GWIC)) as contri-
bution to the Eumpoun Strategy for Particle Physics and in view of the
submission of the Einstein telescope (ET) observatory project to the ESFRI
Roadmap.

msf':l -
-".:rf?"

Future GW observations will enable unprecedented and unique science in extreme gravity and fundamental
physics. They will allow us to explore and address an impressive set of questions in these topics, which
will affect future science at profound levels. The next generation of GW observatories will address:

» The nature of dark matter. /s dark matter composed of particles, dark objects or modifications of
gravitational interactions?

x The nature of gravity. Is Einstein (still) right? What building-block principles and symmetries in
nature invoked in the description of gravity can be challenged?

* The nature of compact objects. Are black holes and neutron stars the only astrophysical extreme
compact objects in the Universe? Are there subtle signatures of quantum gravity in the spacetime
geometry of these compact objects?

* Cosmology and the early unniverse What phase transitions took place in the early history of the
Universe and what are their energy scales? How do cosmological parameters vary with redshift?

7
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Future GW observations will enable unprecedented and unique science in extreme gravity and fundamental ; b
physics. They will allow us to explore and address an impressive set of questions in these topics, which T T —r— Deadine for theopplication
will affect future science at profound levels. The next generation of GW observatories will address:

» The nature of dark matter. /s dark matter composed of particles, dark objects or modifications of
gravitational interactions?

x The nature of gravity. Is Einstein (still) right? What building-block principles and symmetries in
nature invoked in the description of gravity can be challenged?

* The nature of compact objects. Are black holes and neutron stars the only astrophysical extreme
compact objects in the Universe? Are there subtle signatures of quantum gravity in the spacetime
geometry of these compact objects?

* Cosmology and the early unniverse What phase transitions took place in the early history of the
Universe and what are their energy scales? How do cosmological parameters vary with redshift?
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