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  The nature of gravity:  
Is Einstein (still) right? What building-block principles and symmetries in nature invoked in 

the description of gravity can be challenged? Are there extra fields involved in the gravitational 
interaction?

  The nature of black holes:  
Are the objects observed by LIGO-Virgo really black holes? Are there subtle signatures of 

quantum gravity in the spacetime geometry of these compact objects? Do more exotic species 
of compact objects exist?

  The nature of neutron stars:  
How does nuclear matter behave in the extreme conditions present in the inner core of 

neutron stars? Can we learn something on the non-perturbative regime of QCD? Does 
exotic physics show up in these objects?

  The nature of dark matter:  
Is dark matter composed of particles, dark objects, or modifications of the gravitational 

interaction? Can we detect or constrain dark matter looking at its gravitational interaction 
with black holes and neutron stars?

  Cosmology and the early universe:  
Can we explain cosmological acceleration in terms of modifications of the gravitational 

interaction? Which phase transitions took place in the early history of the universe? How      do 
cosmological parameters vary with redshift? [see Monday talks by Cardone, Piacentini etc.]
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Addressing these questions requires a wide, interdisciplinary community
including theoretical physicists and astrophysicists, working in close contact with 

experimentalists at present and future GW detectors.
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Addressing these questions requires a wide, interdisciplinary community
including theoretical physicists and astrophysicists, working in close contact with 

experimentalists at present and future GW detectors.

Such a community exists worldwide (throughout all Europe and US, but also in Japan, Australia etc.)

In Italy it is mostly represented by the INFN Specific Initiative TEONGRAV:

TEONGRAV is an INFN Network
(belonging to the Line V (astroparticle) of GR4)

 including Italian groups studying
theoretical gravitational physics, an in particular  

sources of gravitational waves
• Padova
• Milano Bicocca
• TIFPA-Trento
• SISSA-Trieste (to be included)
• Firenze
• Roma 1 (coordinator)
• Napoli

Some of these nodes (e.g. Padova and Milano Bicocca)
are more focussed on the astrophysics, while others

(e.g. Roma and SISSA) are mostly on theoretical physics.
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https://web.uniroma1.it/gmunu
webpage:

https://web.uniroma1.it/gmunu


 INFN Roma1 Retreat                                                        Leonardo Gualtieri                                                 Assisi,  16-18 June 2019



 INFN Roma1 Retreat                                                        Leonardo Gualtieri                                                 Assisi,  16-18 June 2019

+ other TEONGRAV-ROMA1 
members:

• Omar Benhar 
  (Res.Dir. INFN, 
  Nuclear Physicist)

• Francesco Pannarale 
 (RTDB Researcher, 
  RLM Fellow,
  Virgo Group)

• Raffaella Schneider 
  (Ass. Professor, 
    Astrophysicist)
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We also collaborate:
• in Rome, with other members of  Virgo and with astrophysicists of Monte Porzio Observatory
• in Italy, with the other TEONGRAV nodes (presently, we have a PRIN with some of them)
• worldwide, with several groups in JHU (US), Lisbon Univ. (PT), King’s College Lond. (UK), Nottingham 

Univ. (UK), DAMPT (UK), Aveiro Univ. (UK), Barcelona Univ. (SP), etc. 

+ other TEONGRAV-ROMA1 
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  (Res.Dir. INFN, 
  Nuclear Physicist)

• Francesco Pannarale 
 (RTDB Researcher, 
  RLM Fellow,
  Virgo Group)

• Raffaella Schneider 
  (Ass. Professor, 
    Astrophysicist)
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WHICH RESEARCH TOPICS?
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1.Modelling  sources of Gravitational Waves

2.Test the gravitational interaction, looking for general relativity deviations in the strong-field regime

3.Determine the equation of state of nuclear matter in the inner core of neutron stars

4.Test the nature of compact objects

5.Search for dark matter candidates looking at its strong gravity interaction with compact objects
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it is needed to increase detection chances and the accuracy of parameter estimation (see Pannarale’s talk)

Presently, this is the main activity of gravity theory & phenomenology groups worldwide:

2.Test the gravitational interaction, looking for general relativity deviations in the strong-field regime

3.Determine the equation of state of nuclear matter in the inner core of neutron stars

4.Test the nature of compact objects

5.Search for dark matter candidates looking at its strong gravity interaction with compact objects

 but it’s also the fundamental tool for all other research lines in gravity: 
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1.Modelling  sources of Gravitational Waves

Most interesting kind of source (the one which has been detected):
coalescence of binary systems composed of BHs and/or NSs

248 ⌅ General Relativity: From Black Holes to Gravitational Waves

14.2.4 The final stages of the inspiral
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Figure 14.4 Representative example of the signal emitted by coalescing black holes. The signal
within the leftmost shaded band is the chirp emitted during the “inspiral”, when the two bodies
approach each other; the signal within the central shaded band is emitted during the merger,
whereas the last part, the ringing tail within the rightmost shaded band, is emitted by the final
distorted black holes which oscillates according to its characteristic quasi-normal modes. Note that
the separation between inspiral, merger, and ringdown is only approximate, since in the last stages
of the coalescence the system is highly non-linear.

In Fig. 14.4 we show the plot of a typical signal emitted in the coalescence of two black
holes. The first part is the chirp, emitted during the adiabatic inspiralling and is described
by Eqs. 14.42, 14.43 and 14.44; these equations give a good approximation of the signal,
provided the orbital velocities are much smaller than the speed of light. When this condition
is no longer verified the quadrupole approach, which we have used to derive the waveform,
becomes inaccurate; this occurs approximately when the orbital distance between the two
bodies approaches the innermost, stable circular orbit, the ISCO, of a black hole with mass
m1 +m2; assuming that the two bodies have zero spins, this distance is (see Sec. 10.5):

lISCO =
6G(m1 +m2)

c2
. (14.65)

The wave frequency which corresponds to the orbital distance lISCO is
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Note that ⌫ISCO
GW scales as the inverse of the total mass of the system.

The quadrupole waveform corresponds to the lowest-order term in a post-Newtonian
expansion of the equations of motion in the parameter v/c, where v is the orbital velocity
of the coalescing bodies. At distances comparable to lISCO the waveform must be corrected
including more terms with higher power in (v/c); let

x = (v/c)2 =
1

c2
(GM⇡⌫GW )2/3
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Figure 14.4 Representative example of the signal emitted by coalescing black holes. The signal
within the leftmost shaded band is the chirp emitted during the “inspiral”, when the two bodies
approach each other; the signal within the central shaded band is emitted during the merger,
whereas the last part, the ringing tail within the rightmost shaded band, is emitted by the final
distorted black holes which oscillates according to its characteristic quasi-normal modes. Note that
the separation between inspiral, merger, and ringdown is only approximate, since in the last stages
of the coalescence the system is highly non-linear.

In Fig. 14.4 we show the plot of a typical signal emitted in the coalescence of two black
holes. The first part is the chirp, emitted during the adiabatic inspiralling and is described
by Eqs. 14.42, 14.43 and 14.44; these equations give a good approximation of the signal,
provided the orbital velocities are much smaller than the speed of light. When this condition
is no longer verified the quadrupole approach, which we have used to derive the waveform,
becomes inaccurate; this occurs approximately when the orbital distance between the two
bodies approaches the innermost, stable circular orbit, the ISCO, of a black hole with mass
m1 +m2; assuming that the two bodies have zero spins, this distance is (see Sec. 10.5):
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Note that ⌫ISCO
GW scales as the inverse of the total mass of the system.

The quadrupole waveform corresponds to the lowest-order term in a post-Newtonian
expansion of the equations of motion in the parameter v/c, where v is the orbital velocity
of the coalescing bodies. At distances comparable to lISCO the waveform must be corrected
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In Fig. 14.4 we show the plot of a typical signal emitted in the coalescence of two black
holes. The first part is the chirp, emitted during the adiabatic inspiralling and is described
by Eqs. 14.42, 14.43 and 14.44; these equations give a good approximation of the signal,
provided the orbital velocities are much smaller than the speed of light. When this condition
is no longer verified the quadrupole approach, which we have used to derive the waveform,
becomes inaccurate; this occurs approximately when the orbital distance between the two
bodies approaches the innermost, stable circular orbit, the ISCO, of a black hole with mass
m1 +m2; assuming that the two bodies have zero spins, this distance is (see Sec. 10.5):
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Note that ⌫ISCO
GW scales as the inverse of the total mass of the system.

The quadrupole waveform corresponds to the lowest-order term in a post-Newtonian
expansion of the equations of motion in the parameter v/c, where v is the orbital velocity
of the coalescing bodies. At distances comparable to lISCO the waveform must be corrected
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Figure 14.4 Representative example of the signal emitted by coalescing black holes. The signal
within the leftmost shaded band is the chirp emitted during the “inspiral”, when the two bodies
approach each other; the signal within the central shaded band is emitted during the merger,
whereas the last part, the ringing tail within the rightmost shaded band, is emitted by the final
distorted black holes which oscillates according to its characteristic quasi-normal modes. Note that
the separation between inspiral, merger, and ringdown is only approximate, since in the last stages
of the coalescence the system is highly non-linear.

In Fig. 14.4 we show the plot of a typical signal emitted in the coalescence of two black
holes. The first part is the chirp, emitted during the adiabatic inspiralling and is described
by Eqs. 14.42, 14.43 and 14.44; these equations give a good approximation of the signal,
provided the orbital velocities are much smaller than the speed of light. When this condition
is no longer verified the quadrupole approach, which we have used to derive the waveform,
becomes inaccurate; this occurs approximately when the orbital distance between the two
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Figure 14.4 Representative example of the signal emitted by coalescing black holes. The signal
within the leftmost shaded band is the chirp emitted during the “inspiral”, when the two bodies
approach each other; the signal within the central shaded band is emitted during the merger,
whereas the last part, the ringing tail within the rightmost shaded band, is emitted by the final
distorted black holes which oscillates according to its characteristic quasi-normal modes. Note that
the separation between inspiral, merger, and ringdown is only approximate, since in the last stages
of the coalescence the system is highly non-linear.

In Fig. 14.4 we show the plot of a typical signal emitted in the coalescence of two black
holes. The first part is the chirp, emitted during the adiabatic inspiralling and is described
by Eqs. 14.42, 14.43 and 14.44; these equations give a good approximation of the signal,
provided the orbital velocities are much smaller than the speed of light. When this condition
is no longer verified the quadrupole approach, which we have used to derive the waveform,
becomes inaccurate; this occurs approximately when the orbital distance between the two
bodies approaches the innermost, stable circular orbit, the ISCO, of a black hole with mass
m1 +m2; assuming that the two bodies have zero spins, this distance is (see Sec. 10.5):
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Note that ⌫ISCO
GW scales as the inverse of the total mass of the system.

The quadrupole waveform corresponds to the lowest-order term in a post-Newtonian
expansion of the equations of motion in the parameter v/c, where v is the orbital velocity
of the coalescing bodies. At distances comparable to lISCO the waveform must be corrected
including more terms with higher power in (v/c); let
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1.Modelling  sources of Gravitational Waves

Most interesting kind of source (the one which has been detected):
coalescence of binary systems composed of BHs and/or NSs

Three different stages require three completely different approaches to be modeled:
• Inspiral: Post-Newtonian (PN) expansions

Perturbative expansion in v/c around “Newtonian” dynamics

• Merger: Numerical Relativity (NR)
“Brute force” integration of fully non-linear Einstein’s equations through parallel computing

(e.g. in the last decade Ferrari et al. PRD ’12, Maselli et al. PRD ’12, Berti et al. PRD ’12, Maselli et al, PRD ’13, 
Abdelsalhin et al.  PRD ’18,  Jimenez-Forteza et al. PRD’18, Pani et al. PRD ’18, Maselli et al. PRL ‘18 )

(e.g. Witek et al. PRD’10a,b, Zilhao et al. PRD’11, Berti et al, PRD’13, Cardoso et al. Liv.Rev.Rel.’15, Witek et al. PRD’19)  
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Figure 14.4 Representative example of the signal emitted by coalescing black holes. The signal
within the leftmost shaded band is the chirp emitted during the “inspiral”, when the two bodies
approach each other; the signal within the central shaded band is emitted during the merger,
whereas the last part, the ringing tail within the rightmost shaded band, is emitted by the final
distorted black holes which oscillates according to its characteristic quasi-normal modes. Note that
the separation between inspiral, merger, and ringdown is only approximate, since in the last stages
of the coalescence the system is highly non-linear.

In Fig. 14.4 we show the plot of a typical signal emitted in the coalescence of two black
holes. The first part is the chirp, emitted during the adiabatic inspiralling and is described
by Eqs. 14.42, 14.43 and 14.44; these equations give a good approximation of the signal,
provided the orbital velocities are much smaller than the speed of light. When this condition
is no longer verified the quadrupole approach, which we have used to derive the waveform,
becomes inaccurate; this occurs approximately when the orbital distance between the two
bodies approaches the innermost, stable circular orbit, the ISCO, of a black hole with mass
m1 +m2; assuming that the two bodies have zero spins, this distance is (see Sec. 10.5):
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Note that ⌫ISCO
GW scales as the inverse of the total mass of the system.

The quadrupole waveform corresponds to the lowest-order term in a post-Newtonian
expansion of the equations of motion in the parameter v/c, where v is the orbital velocity
of the coalescing bodies. At distances comparable to lISCO the waveform must be corrected
including more terms with higher power in (v/c); let
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1.Modelling  sources of Gravitational Waves

Most interesting kind of source (the one which has been detected):
coalescence of binary systems composed of BHs and/or NSs

Three different stages require three completely different approaches to be modeled:
• Inspiral: Post-Newtonian (PN) expansions

Perturbative expansion in v/c around “Newtonian” dynamics

• Merger: Numerical Relativity (NR)
“Brute force” integration of fully non-linear Einstein’s equations through parallel computing

• Ringdown: Spacetime perturbation theory
Perturbative approach in which spacetime is a small deviation of known curved background

(e.g. in the last decade Ferrari et al. PRD ’12, Maselli et al. PRD ’12, Berti et al. PRD ’12, Maselli et al, PRD ’13, 
Abdelsalhin et al.  PRD ’18,  Jimenez-Forteza et al. PRD’18, Pani et al. PRD ’18, Maselli et al. PRL ‘18 )

(e.g. Witek et al. PRD’10a,b, Zilhao et al. PRD’11, Berti et al, PRD’13, Cardoso et al. Liv.Rev.Rel.’15, Witek et al. PRD’19)  
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Figure 14.4 Representative example of the signal emitted by coalescing black holes. The signal
within the leftmost shaded band is the chirp emitted during the “inspiral”, when the two bodies
approach each other; the signal within the central shaded band is emitted during the merger,
whereas the last part, the ringing tail within the rightmost shaded band, is emitted by the final
distorted black holes which oscillates according to its characteristic quasi-normal modes. Note that
the separation between inspiral, merger, and ringdown is only approximate, since in the last stages
of the coalescence the system is highly non-linear.

In Fig. 14.4 we show the plot of a typical signal emitted in the coalescence of two black
holes. The first part is the chirp, emitted during the adiabatic inspiralling and is described
by Eqs. 14.42, 14.43 and 14.44; these equations give a good approximation of the signal,
provided the orbital velocities are much smaller than the speed of light. When this condition
is no longer verified the quadrupole approach, which we have used to derive the waveform,
becomes inaccurate; this occurs approximately when the orbital distance between the two
bodies approaches the innermost, stable circular orbit, the ISCO, of a black hole with mass
m1 +m2; assuming that the two bodies have zero spins, this distance is (see Sec. 10.5):

lISCO =
6G(m1 +m2)

c2
. (14.65)

The wave frequency which corresponds to the orbital distance lISCO is

⌫ISCO
GW =

!K

⇡
=

1

⇡

s

G(m1 +m2)

lISCO
3 =

c3

⇡G
p
63

1

(m1 +m2)
. (14.66)

Note that ⌫ISCO
GW scales as the inverse of the total mass of the system.

The quadrupole waveform corresponds to the lowest-order term in a post-Newtonian
expansion of the equations of motion in the parameter v/c, where v is the orbital velocity
of the coalescing bodies. At distances comparable to lISCO the waveform must be corrected
including more terms with higher power in (v/c); let

x = (v/c)2 =
1

c2
(GM⇡⌫GW )2/3
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1.Modelling  sources of Gravitational Waves

Most interesting kind of source (the one which has been detected):
coalescence of binary systems composed of BHs and/or NSs

Three different stages require three completely different approaches to be modeled:
• Inspiral: Post-Newtonian (PN) expansions

Perturbative expansion in v/c around “Newtonian” dynamics

• Merger: Numerical Relativity (NR)
“Brute force” integration of fully non-linear Einstein’s equations through parallel computing

• Ringdown: Spacetime perturbation theory
Perturbative approach in which spacetime is a small deviation of known curved background

(e.g. in the last decade Ferrari et al. PRD ’12, Maselli et al. PRD ’12, Berti et al. PRD ’12, Maselli et al, PRD ’13, 
Abdelsalhin et al.  PRD ’18,  Jimenez-Forteza et al. PRD’18, Pani et al. PRD ’18, Maselli et al. PRL ‘18 )

(e.g. Witek et al. PRD’10a,b, Zilhao et al. PRD’11, Berti et al, PRD’13, Cardoso et al. Liv.Rev.Rel.’15, Witek et al. PRD’19)  

(e.g. Molina et al. PRD’10, Burgio et al. PRD’11, Pani et al. PRL ’13, Gualtieri et al. PRD’14, Blazquez-Salcedo et al., PRD’16, Cardoso et al. PRD’19) 
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Figure 14.4 Representative example of the signal emitted by coalescing black holes. The signal
within the leftmost shaded band is the chirp emitted during the “inspiral”, when the two bodies
approach each other; the signal within the central shaded band is emitted during the merger,
whereas the last part, the ringing tail within the rightmost shaded band, is emitted by the final
distorted black holes which oscillates according to its characteristic quasi-normal modes. Note that
the separation between inspiral, merger, and ringdown is only approximate, since in the last stages
of the coalescence the system is highly non-linear.

In Fig. 14.4 we show the plot of a typical signal emitted in the coalescence of two black
holes. The first part is the chirp, emitted during the adiabatic inspiralling and is described
by Eqs. 14.42, 14.43 and 14.44; these equations give a good approximation of the signal,
provided the orbital velocities are much smaller than the speed of light. When this condition
is no longer verified the quadrupole approach, which we have used to derive the waveform,
becomes inaccurate; this occurs approximately when the orbital distance between the two
bodies approaches the innermost, stable circular orbit, the ISCO, of a black hole with mass
m1 +m2; assuming that the two bodies have zero spins, this distance is (see Sec. 10.5):

lISCO =
6G(m1 +m2)
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. (14.65)

The wave frequency which corresponds to the orbital distance lISCO is
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Note that ⌫ISCO
GW scales as the inverse of the total mass of the system.

The quadrupole waveform corresponds to the lowest-order term in a post-Newtonian
expansion of the equations of motion in the parameter v/c, where v is the orbital velocity
of the coalescing bodies. At distances comparable to lISCO the waveform must be corrected
including more terms with higher power in (v/c); let

x = (v/c)2 =
1

c2
(GM⇡⌫GW )2/3
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Just a mention to other sources which - although not detected yet - deserve investigation:
1.Modelling  sources of Gravitational Waves
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Just a mention to other sources which - although not detected yet - deserve investigation:
1.Modelling  sources of Gravitational Waves

• Single neutron stars
. (e.g. Burgio et al. PRD’11, Gusakov et al. MNRAS’13, Gualtieri et al. PRD’14, Camelio et al. PRD’17, Ciolfi et al. MNRAS ’09, ’10, Ferrari CQG’10, Gualtieri et al. CQG’11)
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After compact binaries, it is considered the main target source for LIGO-Virgo!
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See also the review “GWs from single neutron stars: an advanced detector era survey” Glampedakis & Gualtieri ASS Libr. ’18
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Just a mention to other sources which - although not detected yet - deserve investigation:
1.Modelling  sources of Gravitational Waves

• Stellar oscillations (excited by supernova explosion, accreting matter, glitches, etc.)
   Some of these oscillations can become unstable if the star is rapidly rotating => large GW emission

• Non-axisymmetric deformations (due to magnetic field or temperature gradients) e.g. continuous sources
(see Naticchioni & Palomba’s talk)

Different possible processes make them promising sources of gravitational waves:

• Single neutron stars
. (e.g. Burgio et al. PRD’11, Gusakov et al. MNRAS’13, Gualtieri et al. PRD’14, Camelio et al. PRD’17, Ciolfi et al. MNRAS ’09, ’10, Ferrari CQG’10, Gualtieri et al. CQG’11)

After compact binaries, it is considered the main target source for LIGO-Virgo!

See also the review “GWs from single neutron stars: an advanced detector era survey” Glampedakis & Gualtieri ASS Libr. ’18

• Stochastic background of gravitational waves
(e.g. Marassi et al. MNRAS ’09, Schneider et al. MNRAS’10, Marassi et al. PRD ’11,  MNRAS ’11, Maselli et al. PRL ’16)
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• Stellar oscillations (excited by supernova explosion, accreting matter, glitches, etc.)
   Some of these oscillations can become unstable if the star is rapidly rotating => large GW emission

• Non-axisymmetric deformations (due to magnetic field or temperature gradients) e.g. continuous sources
(see Naticchioni & Palomba’s talk)

Different possible processes make them promising sources of gravitational waves:

• Single neutron stars
. (e.g. Burgio et al. PRD’11, Gusakov et al. MNRAS’13, Gualtieri et al. PRD’14, Camelio et al. PRD’17, Ciolfi et al. MNRAS ’09, ’10, Ferrari CQG’10, Gualtieri et al. CQG’11)

After compact binaries, it is considered the main target source for LIGO-Virgo!

See also the review “GWs from single neutron stars: an advanced detector era survey” Glampedakis & Gualtieri ASS Libr. ’18

Among main expected signals from LISA, carry information on cosmological epochs of their generation.
Can have cosmological or astrophysical origin; the latter can be originated by early supernovae or 
coalescing binary systems composed of white dwarfs, neutron stars or black holes

• Stochastic background of gravitational waves
(e.g. Marassi et al. MNRAS ’09, Schneider et al. MNRAS’10, Marassi et al. PRD ’11,  MNRAS ’11, Maselli et al. PRL ’16)
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• Non-axisymmetric deformations (due to magnetic field or temperature gradients) e.g. continuous sources
(see Naticchioni & Palomba’s talk)

Different possible processes make them promising sources of gravitational waves:
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. (e.g. Burgio et al. PRD’11, Gusakov et al. MNRAS’13, Gualtieri et al. PRD’14, Camelio et al. PRD’17, Ciolfi et al. MNRAS ’09, ’10, Ferrari CQG’10, Gualtieri et al. CQG’11)

After compact binaries, it is considered the main target source for LIGO-Virgo!

See also the review “GWs from single neutron stars: an advanced detector era survey” Glampedakis & Gualtieri ASS Libr. ’18

Among main expected signals from LISA, carry information on cosmological epochs of their generation.
Can have cosmological or astrophysical origin; the latter can be originated by early supernovae or 
coalescing binary systems composed of white dwarfs, neutron stars or black holes

• Stochastic background of gravitational waves
(e.g. Marassi et al. MNRAS ’09, Schneider et al. MNRAS’10, Marassi et al. PRD ’11,  MNRAS ’11, Maselli et al. PRL ’16)

(e.g. Maselli & Ferrari PRD ’14, Maselli et al.  ApJ’15, ApJ’17, Franchini et al. PRD’17, Camelio et al. PRD’17, Abdelsalhin et al. PRD’18)
• Multimessenger astronomy
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Just a mention to other sources which - although not detected yet - deserve investigation:
1.Modelling  sources of Gravitational Waves

• Stellar oscillations (excited by supernova explosion, accreting matter, glitches, etc.)
   Some of these oscillations can become unstable if the star is rapidly rotating => large GW emission

• Non-axisymmetric deformations (due to magnetic field or temperature gradients) e.g. continuous sources
(see Naticchioni & Palomba’s talk)

Different possible processes make them promising sources of gravitational waves:

• Single neutron stars
. (e.g. Burgio et al. PRD’11, Gusakov et al. MNRAS’13, Gualtieri et al. PRD’14, Camelio et al. PRD’17, Ciolfi et al. MNRAS ’09, ’10, Ferrari CQG’10, Gualtieri et al. CQG’11)

After compact binaries, it is considered the main target source for LIGO-Virgo!

See also the review “GWs from single neutron stars: an advanced detector era survey” Glampedakis & Gualtieri ASS Libr. ’18

Among main expected signals from LISA, carry information on cosmological epochs of their generation.
Can have cosmological or astrophysical origin; the latter can be originated by early supernovae or 
coalescing binary systems composed of white dwarfs, neutron stars or black holes

Further information can be extracted by combining gravitational wave observations with astrophysical 
observations, as the X-ray emission from accreting neutron stars, or gamma-ray bursts

• Stochastic background of gravitational waves
(e.g. Marassi et al. MNRAS ’09, Schneider et al. MNRAS’10, Marassi et al. PRD ’11,  MNRAS ’11, Maselli et al. PRL ’16)

(e.g. Maselli & Ferrari PRD ’14, Maselli et al.  ApJ’15, ApJ’17, Franchini et al. PRD’17, Camelio et al. PRD’17, Abdelsalhin et al. PRD’18)
• Multimessenger astronomy
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1.Modelling  sources of Gravitational Waves

2.Test the gravitational interaction, looking for general relativity deviations in the strong-field regime

3.Determine the equation of state of nuclear matter in the inner core of neutron stars

4.Test the nature of compact objects

5.Search for dark matter candidates looking at its strong gravity interaction with compact objects
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2.Test the gravitational interaction, looking for general relativity deviations in the strong-field regime
Cardoso & Gualtieri PRD’09, Pani et al. PRD’09, Molina et al. PRD’10, Pani et al.  PRL’11, PRD’11a,b,c, PRD’12, Casanellas et al. ApJ’12, Yunes et al. PRD’12,
Berti et al. PRD’12, Pani & Sotiriou PRL’12, Cardoso et al. PRD’13, PRL’13, Berti et al. PRD’13,  Pani et al. PRD’14,  Cardoso et al. Liv.Rev.Rel.’15, Horbatsch et al. CQG’15,
Maselli et al. PRD’15, Babichev et al. PRD’16,  Blazquez-Salcedo et al. PRD’16, Maselli et al. PRL’16, PRL’18, Cardoso et al. PRL’18a,b, Silva et al. PRL’18, PRD’19,
Annulli et al. PRD’19, Witek et al. PRD’19, Cardoso et al. PRD’19
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As far as we know, gravity - the weakest among fundamental interactions - 
is described by one of the most beautiful and elegant theories ever coinceived: General Relativity.

2.Test the gravitational interaction, looking for general relativity deviations in the strong-field regime
Cardoso & Gualtieri PRD’09, Pani et al. PRD’09, Molina et al. PRD’10, Pani et al.  PRL’11, PRD’11a,b,c, PRD’12, Casanellas et al. ApJ’12, Yunes et al. PRD’12,
Berti et al. PRD’12, Pani & Sotiriou PRL’12, Cardoso et al. PRD’13, PRL’13, Berti et al. PRD’13,  Pani et al. PRD’14,  Cardoso et al. Liv.Rev.Rel.’15, Horbatsch et al. CQG’15,
Maselli et al. PRD’15, Babichev et al. PRD’16,  Blazquez-Salcedo et al. PRD’16, Maselli et al. PRL’16, PRL’18, Cardoso et al. PRL’18a,b, Silva et al. PRL’18, PRD’19,
Annulli et al. PRD’19, Witek et al. PRD’19, Cardoso et al. PRD’19
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There is no fundamental reason to believe that gravity behaves in the same way in the new regime!
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As far as we know, gravity - the weakest among fundamental interactions - 
is described by one of the most beautiful and elegant theories ever coinceived: General Relativity.

In the century after its formulation GR passed several observational tests, 
from solar system tests to binary pulsar tests, but these mostly probed the weak-field regime of gravity.

It was only after 2015, with the  detection of gravitational waves,  that we started observing 
the strong-field, large-curvature regime of gravity.

Moreover: 
• we already know that some deviation has to occur (although at a much smaller lengthscale):        

all tentatives to unify GR with the quantum world have failed
• the theory of GR contains its own pathologies (singularities, causality violations)
• dark matter, dark energy are still not fully understood, GR deviations may provide alternative 

explanations to observations

2.Test the gravitational interaction, looking for general relativity deviations in the strong-field regime
Cardoso & Gualtieri PRD’09, Pani et al. PRD’09, Molina et al. PRD’10, Pani et al.  PRL’11, PRD’11a,b,c, PRD’12, Casanellas et al. ApJ’12, Yunes et al. PRD’12,
Berti et al. PRD’12, Pani & Sotiriou PRL’12, Cardoso et al. PRD’13, PRL’13, Berti et al. PRD’13,  Pani et al. PRD’14,  Cardoso et al. Liv.Rev.Rel.’15, Horbatsch et al. CQG’15,
Maselli et al. PRD’15, Babichev et al. PRD’16,  Blazquez-Salcedo et al. PRD’16, Maselli et al. PRL’16, PRL’18, Cardoso et al. PRL’18a,b, Silva et al. PRL’18, PRD’19,
Annulli et al. PRD’19, Witek et al. PRD’19, Cardoso et al. PRD’19
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2.Test the gravitational interaction, looking for general relativity deviations in the strong-field regime

 Bottom-up approach:  parametrize observable quantities, set bounds to parameters using observations
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2.Test the gravitational interaction, looking for general relativity deviations in the strong-field regime

 Bottom-up approach:  parametrize observable quantities, set bounds to parameters using observations
For instance, PPE formalism, parametrizes the gravitational waveform from compact binary inspiral

(𝛼,β,a,b)   ⇔    specific theories

h(⌫) = hGR(⌫)(1 + ↵(⇡M⌫)a)ei�(⇡M⌫)b
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2.Test the gravitational interaction, looking for general relativity deviations in the strong-field regime

 Bottom-up approach:  parametrize observable quantities, set bounds to parameters using observations

Giornata Informativa sul progetto Einstein Telescope        Università di Cagliari & INFN       18/6/2018

 1)  How does gravity behave in the strong-field regime?

One can follow either a bottom-up or a top-down approach.

PPE (parametrized post-Einstenian) expansion ( Yunes & Pretorius ‘09 )
    GW compact binary waveform  is directly parametrized: 

h(f) = A

GR

(f)(1 + ↵x

a)ei GR(f)+i�xb

PPF (parametrized post-Friedmannian) expansion ( Hu & Sawitcki ‘07 )
    cosmological quantities & equations are parametrized

ppE paramters: 
      α,β (=0 inGR): amplitude of modification;   

      a,b: PN order     x=(2#Mf)2/3

mapping:   (α,β,a,b) <=> specific theories
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FIG. 4. (Color online) 90%-confidence constraints on the ppE
parameter |�| at nth PN order. The green crosses represent
the bounds reported in [5, 19] through a Bayesian analysis
of event GW150914, mapped to constraints on �. The red
(magenta) dots and line represent bounds from GW150914
(GW151226) estimated with a Fisher analysis, using the IM-
RPhenom waveform (without spin precession) and a fit to the
aLIGO spectral noise density. The constraints obtained with
a Fisher analysis agree very well with the Bayesian constraint
reported in [5, 19]. The blue dotted line shows projected
constraints predicted in 2011 by [142] for a system similar
to GW151226. The dashed black line is a rough estimate
on the constraints that the double binary pulsar PSR J0737-
3039 [127–129] can place on the ppE � parameter [188], while
the cyan star refers to the bound on � at 1PN from the per-
ihelion precession of Mercury [150]. Binary pulsar observa-
tions can constrain negative PN order deviations better than
aLIGO, while aLIGO does better than binary pulsar obser-
vations at higher PN order, as first calculated in [188]. How-
ever, note also that binary pulsar and Solar System bounds
cannot be directly compared to GW ones as the binary pul-
sar (Solar System) one corresponds to the extreme case of no
conservative (no dissipative) corrections. Moreover, stronger
constraints on � for these latter tests do not necessarily mean
stronger constraints on modifications to GR for BH merg-
ers, as � depends not only on theoretical coupling parameters
but also on system parameters, and in certain theories (like
EdGB gravity), non-GR corrections are suppressed in stars
compared to BHs.

Figure 4 shows that GW151226 places stronger con-
straints on � than GW150914 [2, 5] especially at neg-
ative PN orders. This is because GW151226 consists
of a BH binary with lower total mass than GW150914,
and thus, (i) the velocity of the binary constituents at a
fixed frequency (e.g. f ⇠ 50Hz) is smaller and (ii) the
observed frequency range is larger than for GW150914.
The first fact makes the negative-PN-order, ppE correc-
tion terms in the phase and the total number of GW
cycles in band larger than for GW150914. This, to-
gether with the second point above, make � less degen-
erate with other binary parameters, leading to stronger
constraints. Regarding corrections at high positive PN

orders, point (i) results in a deterioration of the con-
straints, while point (ii) strengthens them compared to
GW150914 [2, 5]. Taken together then these oppos-
ing e↵ects lead to similar bounds at positive PN or-
ders for GW150914 and GW151226. We also calculated
the bounds on � by combining those of GW150914 and
GW151226 using Eq. (4.12d) in [76] and found that such
a combined bound is almost indistinguishable from that
of GW151226 alone (the improvement reaches at most
⇠ 30% at n ⇠ 0PN). This finding is consistent with a
similar analysis performed by the LVC [5].
Our analysis and the study of the LVC in [5, 19] di↵er

in many ways, and yet, the two yield similar constraints
on �. The main di↵erences between these studies are
that the former (latter) uses

(i) a Fisher (Bayesian) analysis,

(ii) non-precessing (precessing) waveform templates,

(iii) a fit for the noise curve (the real data),

(iv) a simulated waveform injection compatible with the
real signal (the real signal), and

(v) includes only statistical (both statistical and sys-
tematic) errors.

Probably, di↵erences (i)–(iii) do not have a large impact
on the � constraints for the following reasons. The dif-
ference in statistical errors between Fisher and Bayesian
studies scales as O(1/SNR2) [185, 196], which is only
⇠ O(0.2%) (O(0.6%)) given the SNR of GW150914
(GW151226). Precession for both events was too small
to be measurable by the LVC [2, 4, 5, 136]. The real noise
spectral density contains many spikes, but these are very
thin, and thus, for the same SNR, they a↵ect constraints
on � by only a few percent (see Appendix C)16. We do
not include any specific noise realization in our Fisher
analysis, since (i) such a noise realization only shifts the
posterior distribution without a↵ecting its spread [137],
and (ii) the uncertainties in parameters averaged over
di↵erent noise realizations are the same as those with
zero noise injection [198]. On the other hand, di↵erences
(iv) and (v) are probably more important. For exam-
ple, in our Fisher analysis we set the spin magnitudes
of the injection to zero, but the posteriors found by the
LVC [4] are quite wide, and a di↵erent choice of spin mag-
nitude can a↵ect our Fisher estimates by a factor of ⇠ 2.
Even using the Bayesian analysis of [4], the mapping be-
tween ��i and � [see Eqs. (10) and (11)] depends on the
posterior distribution of other parameters, and di↵erent
choices can also a↵ect constraints on � at high PN or-
der by a factor of ⇠ 2. As another example, consider
the systematic errors on the GW150914 measurement of
��i (or �) reported in [5, 19], i.e. the distance from the
peak of the posterior to zero; these systematic errors are

16 See the related work by [197], which shows that the e↵ect of non-
Gaussianity in the noise on parameter estimation is negligible.

(Yunes et al., PRD ‘16)

Testing GR with GWs & with astrophysical observations      (e.g. Berti et al. CQG ’15 arXiv:1501.7274 )

Bottom-up approach: 

• choose the phenomenology to be studied, and the quantities most appropriate to describe it

• devise a parametrization of these quantities 

• typically, each parameter is associated to the violation/modification of some GR property

• compute observables in terms of the parameters

• perform observations/experiments, setting bounds to the parameters

bounds from LIGO-Virgo
detections:

For instance, PPE formalism, parametrizes the gravitational waveform from compact binary inspiral

(𝛼,β,a,b)   ⇔    specific theories

h(⌫) = hGR(⌫)(1 + ↵(⇡M⌫)a)ei�(⇡M⌫)b
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2.Test the gravitational interaction, looking for general relativity deviations in the strong-field regime

 Bottom-up approach:  parametrize observable quantities, set bounds to parameters using observations

•  We derived the GW stochastic 
background in PPE parametrization

3

FIG. 1: The spectral energy density ⌦GW(f) is plotted as a
function of frequency. ⌦GW(f) is computed in GR and in
modified theories with PPE parameter � = 2, and � = 1, and
di↵erent values of ↵. The power-law integrated sensitivity
curve for 1 year of integration with AdLIGO is also shown.

ground, which, for certain values, is significantly di↵er-
ent from that predicted by GR. As an example, a gravity
theory with � = 2, which yields a 1 PN correction to
the amplitude of the waveform, and ↵ ⇠ 6, would pro-
duce a background three times larger than the fiducial.
A similar behaviour is shown for GWBs with � = 1. As
expected by the PN character of the PPE approach, for
a fixed ↵, smaller values of the exponent � yields larger
deviations.

When ↵ < 0 the amplitude of the GWB decreases,
limiting the possibility to detect these backgrounds with
advanced detectors. However, they are potentially ob-
servable by a third generation of ground based interfer-
ometers. The left panel of Fig. 2 shows the GWB for
some values of ↵ < 0 and � = (2, 1.5, 1), compared to
the power-law integrated sensitivity curve of ET, assum-
ing 1 year of observation.
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FIG. 2: (Left) Same as Fig. (1), for values of negative ↵ and
di↵erent values of �, compared to the ET sensitivity curve
for one year of observation. (Right) The SNR with which
AdLIGO would detect a PPE background is plotted for some
of the gravity theories considered in Sec. IV versus the inte-
gration time.

In the right panel of Fig. 2 we show how the SNR
changes as a function of the integration time, for AdLIGO
and di↵erent PPE models. For some of the considered
configurations the SNR increases to a factor & 10 after

24 months. The fiducial GR background would require
⇠30 years to reach the same value.

FIG. 3: Contour lines corresponding to di↵erent SNR, for
gravity theories with PPE parameters ↵ > 0 and � 2 [0.2, 2]
assuming 1 and 3 years of integration with AdLIGO. The
shaded region identifies the parameter space where the PPE
parameters satisfy the bound |↵u� | < 1, while the long-
dashed curves correspond to the pulsar constraint [23]. The
allowed parameter space is the colored region on the right side
of the pulsar constraint.

In Fig. 3 we extend our analysis, showing the contour
lines for detection thresholds SNR= (3, 5, 8), computed
for AdLIGO with 1 and 3 years of integration, for theo-
ries with ↵ > 0 and � 2 [0.2, 2]. The long-dashed curve
identifies the region where the parameters ↵ and � are
constrained by binary pulsar observations, as computed
in [23]: the allowed region is on the right of this curve.
The shaded region defines the range where ↵ and � sat-
isfy the condition |↵u� | < 1. After 1 year of integration,
AdLIGO would be able to identify GWBs with SNR =
5, produced by modified theories with � & 0.9 and val-
ues of ↵ lying on the red dashed curve. Three years of
observation would be needed to detect the same signals
with 8 . SNR . 10.
In Table I we show the SNR computed for the ad-

vanced and third generation interferometers, for di↵erent
integration times, for the GWB computed using the PPE
waveforms with � = 2. Large SNRs are expected for ET,
(We note that such SNRs may be biased since Eq. (5)
is defined in the small signal approximation, whereas ET
should be able to detect these backgrounds directly.) but
for some values of ↵ and � the GWB could be poten-
tially detectable also by AdLIGO. The analysis presented
above shows that a region of the PPE parameter space
does exist, where the spectral energy density ⌦GW(f)
of the GWB produced by binary black hole coalescence
could be detected by AdLIGO. To further clarify this
point, we assess the ability of current interferometers to
distinguish these GWB from the GR counterpart, and
to extract physical information. We follow the strategy
adopted in [28], where it has recently been pointed out
that second generation detectors may not be able to dis-
tinguish between a BBH GWB and a generic power-law
background. This would strongly a↵ect our ability to

Maselli et al.,
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 1)  How does gravity behave in the strong-field regime?

One can follow either a bottom-up or a top-down approach.

PPE (parametrized post-Einstenian) expansion ( Yunes & Pretorius ‘09 )
    GW compact binary waveform  is directly parametrized: 

h(f) = A

GR

(f)(1 + ↵x

a)ei GR(f)+i�xb

PPF (parametrized post-Friedmannian) expansion ( Hu & Sawitcki ‘07 )
    cosmological quantities & equations are parametrized

ppE paramters: 
      α,β (=0 inGR): amplitude of modification;   
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FIG. 4. (Color online) 90%-confidence constraints on the ppE
parameter |�| at nth PN order. The green crosses represent
the bounds reported in [5, 19] through a Bayesian analysis
of event GW150914, mapped to constraints on �. The red
(magenta) dots and line represent bounds from GW150914
(GW151226) estimated with a Fisher analysis, using the IM-
RPhenom waveform (without spin precession) and a fit to the
aLIGO spectral noise density. The constraints obtained with
a Fisher analysis agree very well with the Bayesian constraint
reported in [5, 19]. The blue dotted line shows projected
constraints predicted in 2011 by [142] for a system similar
to GW151226. The dashed black line is a rough estimate
on the constraints that the double binary pulsar PSR J0737-
3039 [127–129] can place on the ppE � parameter [188], while
the cyan star refers to the bound on � at 1PN from the per-
ihelion precession of Mercury [150]. Binary pulsar observa-
tions can constrain negative PN order deviations better than
aLIGO, while aLIGO does better than binary pulsar obser-
vations at higher PN order, as first calculated in [188]. How-
ever, note also that binary pulsar and Solar System bounds
cannot be directly compared to GW ones as the binary pul-
sar (Solar System) one corresponds to the extreme case of no
conservative (no dissipative) corrections. Moreover, stronger
constraints on � for these latter tests do not necessarily mean
stronger constraints on modifications to GR for BH merg-
ers, as � depends not only on theoretical coupling parameters
but also on system parameters, and in certain theories (like
EdGB gravity), non-GR corrections are suppressed in stars
compared to BHs.

Figure 4 shows that GW151226 places stronger con-
straints on � than GW150914 [2, 5] especially at neg-
ative PN orders. This is because GW151226 consists
of a BH binary with lower total mass than GW150914,
and thus, (i) the velocity of the binary constituents at a
fixed frequency (e.g. f ⇠ 50Hz) is smaller and (ii) the
observed frequency range is larger than for GW150914.
The first fact makes the negative-PN-order, ppE correc-
tion terms in the phase and the total number of GW
cycles in band larger than for GW150914. This, to-
gether with the second point above, make � less degen-
erate with other binary parameters, leading to stronger
constraints. Regarding corrections at high positive PN

orders, point (i) results in a deterioration of the con-
straints, while point (ii) strengthens them compared to
GW150914 [2, 5]. Taken together then these oppos-
ing e↵ects lead to similar bounds at positive PN or-
ders for GW150914 and GW151226. We also calculated
the bounds on � by combining those of GW150914 and
GW151226 using Eq. (4.12d) in [76] and found that such
a combined bound is almost indistinguishable from that
of GW151226 alone (the improvement reaches at most
⇠ 30% at n ⇠ 0PN). This finding is consistent with a
similar analysis performed by the LVC [5].
Our analysis and the study of the LVC in [5, 19] di↵er

in many ways, and yet, the two yield similar constraints
on �. The main di↵erences between these studies are
that the former (latter) uses

(i) a Fisher (Bayesian) analysis,

(ii) non-precessing (precessing) waveform templates,

(iii) a fit for the noise curve (the real data),

(iv) a simulated waveform injection compatible with the
real signal (the real signal), and

(v) includes only statistical (both statistical and sys-
tematic) errors.

Probably, di↵erences (i)–(iii) do not have a large impact
on the � constraints for the following reasons. The dif-
ference in statistical errors between Fisher and Bayesian
studies scales as O(1/SNR2) [185, 196], which is only
⇠ O(0.2%) (O(0.6%)) given the SNR of GW150914
(GW151226). Precession for both events was too small
to be measurable by the LVC [2, 4, 5, 136]. The real noise
spectral density contains many spikes, but these are very
thin, and thus, for the same SNR, they a↵ect constraints
on � by only a few percent (see Appendix C)16. We do
not include any specific noise realization in our Fisher
analysis, since (i) such a noise realization only shifts the
posterior distribution without a↵ecting its spread [137],
and (ii) the uncertainties in parameters averaged over
di↵erent noise realizations are the same as those with
zero noise injection [198]. On the other hand, di↵erences
(iv) and (v) are probably more important. For exam-
ple, in our Fisher analysis we set the spin magnitudes
of the injection to zero, but the posteriors found by the
LVC [4] are quite wide, and a di↵erent choice of spin mag-
nitude can a↵ect our Fisher estimates by a factor of ⇠ 2.
Even using the Bayesian analysis of [4], the mapping be-
tween ��i and � [see Eqs. (10) and (11)] depends on the
posterior distribution of other parameters, and di↵erent
choices can also a↵ect constraints on � at high PN or-
der by a factor of ⇠ 2. As another example, consider
the systematic errors on the GW150914 measurement of
��i (or �) reported in [5, 19], i.e. the distance from the
peak of the posterior to zero; these systematic errors are

16 See the related work by [197], which shows that the e↵ect of non-
Gaussianity in the noise on parameter estimation is negligible.

(Yunes et al., PRD ‘16)

Testing GR with GWs & with astrophysical observations      (e.g. Berti et al. CQG ’15 arXiv:1501.7274 )

Bottom-up approach: 

• choose the phenomenology to be studied, and the quantities most appropriate to describe it

• devise a parametrization of these quantities 

• typically, each parameter is associated to the violation/modification of some GR property

• compute observables in terms of the parameters

• perform observations/experiments, setting bounds to the parameters

bounds from LIGO-Virgo
detections:

For instance, PPE formalism, parametrizes the gravitational waveform from compact binary inspiral

(𝛼,β,a,b)   ⇔    specific theories

h(⌫) = hGR(⌫)(1 + ↵(⇡M⌫)a)ei�(⇡M⌫)b
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2.Test the gravitational interaction, looking for general relativity deviations in the strong-field regime

 Bottom-up approach:  parametrize observable quantities, set bounds to parameters using observations

 Top-down approach: consider specific GR-modified theories, possibly 
inspired by fundamental physics considerations, work out observable 
consequences, and look for them in the GW data

•  We derived the GW stochastic 
background in PPE parametrization

3

FIG. 1: The spectral energy density ⌦GW(f) is plotted as a
function of frequency. ⌦GW(f) is computed in GR and in
modified theories with PPE parameter � = 2, and � = 1, and
di↵erent values of ↵. The power-law integrated sensitivity
curve for 1 year of integration with AdLIGO is also shown.

ground, which, for certain values, is significantly di↵er-
ent from that predicted by GR. As an example, a gravity
theory with � = 2, which yields a 1 PN correction to
the amplitude of the waveform, and ↵ ⇠ 6, would pro-
duce a background three times larger than the fiducial.
A similar behaviour is shown for GWBs with � = 1. As
expected by the PN character of the PPE approach, for
a fixed ↵, smaller values of the exponent � yields larger
deviations.

When ↵ < 0 the amplitude of the GWB decreases,
limiting the possibility to detect these backgrounds with
advanced detectors. However, they are potentially ob-
servable by a third generation of ground based interfer-
ometers. The left panel of Fig. 2 shows the GWB for
some values of ↵ < 0 and � = (2, 1.5, 1), compared to
the power-law integrated sensitivity curve of ET, assum-
ing 1 year of observation.
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FIG. 2: (Left) Same as Fig. (1), for values of negative ↵ and
di↵erent values of �, compared to the ET sensitivity curve
for one year of observation. (Right) The SNR with which
AdLIGO would detect a PPE background is plotted for some
of the gravity theories considered in Sec. IV versus the inte-
gration time.

In the right panel of Fig. 2 we show how the SNR
changes as a function of the integration time, for AdLIGO
and di↵erent PPE models. For some of the considered
configurations the SNR increases to a factor & 10 after

24 months. The fiducial GR background would require
⇠30 years to reach the same value.

FIG. 3: Contour lines corresponding to di↵erent SNR, for
gravity theories with PPE parameters ↵ > 0 and � 2 [0.2, 2]
assuming 1 and 3 years of integration with AdLIGO. The
shaded region identifies the parameter space where the PPE
parameters satisfy the bound |↵u� | < 1, while the long-
dashed curves correspond to the pulsar constraint [23]. The
allowed parameter space is the colored region on the right side
of the pulsar constraint.

In Fig. 3 we extend our analysis, showing the contour
lines for detection thresholds SNR= (3, 5, 8), computed
for AdLIGO with 1 and 3 years of integration, for theo-
ries with ↵ > 0 and � 2 [0.2, 2]. The long-dashed curve
identifies the region where the parameters ↵ and � are
constrained by binary pulsar observations, as computed
in [23]: the allowed region is on the right of this curve.
The shaded region defines the range where ↵ and � sat-
isfy the condition |↵u� | < 1. After 1 year of integration,
AdLIGO would be able to identify GWBs with SNR =
5, produced by modified theories with � & 0.9 and val-
ues of ↵ lying on the red dashed curve. Three years of
observation would be needed to detect the same signals
with 8 . SNR . 10.
In Table I we show the SNR computed for the ad-

vanced and third generation interferometers, for di↵erent
integration times, for the GWB computed using the PPE
waveforms with � = 2. Large SNRs are expected for ET,
(We note that such SNRs may be biased since Eq. (5)
is defined in the small signal approximation, whereas ET
should be able to detect these backgrounds directly.) but
for some values of ↵ and � the GWB could be poten-
tially detectable also by AdLIGO. The analysis presented
above shows that a region of the PPE parameter space
does exist, where the spectral energy density ⌦GW(f)
of the GWB produced by binary black hole coalescence
could be detected by AdLIGO. To further clarify this
point, we assess the ability of current interferometers to
distinguish these GWB from the GR counterpart, and
to extract physical information. We follow the strategy
adopted in [28], where it has recently been pointed out
that second generation detectors may not be able to dis-
tinguish between a BBH GWB and a generic power-law
background. This would strongly a↵ect our ability to
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 1)  How does gravity behave in the strong-field regime?

One can follow either a bottom-up or a top-down approach.

PPE (parametrized post-Einstenian) expansion ( Yunes & Pretorius ‘09 )
    GW compact binary waveform  is directly parametrized: 

h(f) = A

GR

(f)(1 + ↵x

a)ei GR(f)+i�xb

PPF (parametrized post-Friedmannian) expansion ( Hu & Sawitcki ‘07 )
    cosmological quantities & equations are parametrized

ppE paramters: 
      α,β (=0 inGR): amplitude of modification;   

      a,b: PN order     x=(2#Mf)2/3

mapping:   (α,β,a,b) <=> specific theories
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FIG. 4. (Color online) 90%-confidence constraints on the ppE
parameter |�| at nth PN order. The green crosses represent
the bounds reported in [5, 19] through a Bayesian analysis
of event GW150914, mapped to constraints on �. The red
(magenta) dots and line represent bounds from GW150914
(GW151226) estimated with a Fisher analysis, using the IM-
RPhenom waveform (without spin precession) and a fit to the
aLIGO spectral noise density. The constraints obtained with
a Fisher analysis agree very well with the Bayesian constraint
reported in [5, 19]. The blue dotted line shows projected
constraints predicted in 2011 by [142] for a system similar
to GW151226. The dashed black line is a rough estimate
on the constraints that the double binary pulsar PSR J0737-
3039 [127–129] can place on the ppE � parameter [188], while
the cyan star refers to the bound on � at 1PN from the per-
ihelion precession of Mercury [150]. Binary pulsar observa-
tions can constrain negative PN order deviations better than
aLIGO, while aLIGO does better than binary pulsar obser-
vations at higher PN order, as first calculated in [188]. How-
ever, note also that binary pulsar and Solar System bounds
cannot be directly compared to GW ones as the binary pul-
sar (Solar System) one corresponds to the extreme case of no
conservative (no dissipative) corrections. Moreover, stronger
constraints on � for these latter tests do not necessarily mean
stronger constraints on modifications to GR for BH merg-
ers, as � depends not only on theoretical coupling parameters
but also on system parameters, and in certain theories (like
EdGB gravity), non-GR corrections are suppressed in stars
compared to BHs.

Figure 4 shows that GW151226 places stronger con-
straints on � than GW150914 [2, 5] especially at neg-
ative PN orders. This is because GW151226 consists
of a BH binary with lower total mass than GW150914,
and thus, (i) the velocity of the binary constituents at a
fixed frequency (e.g. f ⇠ 50Hz) is smaller and (ii) the
observed frequency range is larger than for GW150914.
The first fact makes the negative-PN-order, ppE correc-
tion terms in the phase and the total number of GW
cycles in band larger than for GW150914. This, to-
gether with the second point above, make � less degen-
erate with other binary parameters, leading to stronger
constraints. Regarding corrections at high positive PN

orders, point (i) results in a deterioration of the con-
straints, while point (ii) strengthens them compared to
GW150914 [2, 5]. Taken together then these oppos-
ing e↵ects lead to similar bounds at positive PN or-
ders for GW150914 and GW151226. We also calculated
the bounds on � by combining those of GW150914 and
GW151226 using Eq. (4.12d) in [76] and found that such
a combined bound is almost indistinguishable from that
of GW151226 alone (the improvement reaches at most
⇠ 30% at n ⇠ 0PN). This finding is consistent with a
similar analysis performed by the LVC [5].
Our analysis and the study of the LVC in [5, 19] di↵er

in many ways, and yet, the two yield similar constraints
on �. The main di↵erences between these studies are
that the former (latter) uses

(i) a Fisher (Bayesian) analysis,

(ii) non-precessing (precessing) waveform templates,

(iii) a fit for the noise curve (the real data),

(iv) a simulated waveform injection compatible with the
real signal (the real signal), and

(v) includes only statistical (both statistical and sys-
tematic) errors.

Probably, di↵erences (i)–(iii) do not have a large impact
on the � constraints for the following reasons. The dif-
ference in statistical errors between Fisher and Bayesian
studies scales as O(1/SNR2) [185, 196], which is only
⇠ O(0.2%) (O(0.6%)) given the SNR of GW150914
(GW151226). Precession for both events was too small
to be measurable by the LVC [2, 4, 5, 136]. The real noise
spectral density contains many spikes, but these are very
thin, and thus, for the same SNR, they a↵ect constraints
on � by only a few percent (see Appendix C)16. We do
not include any specific noise realization in our Fisher
analysis, since (i) such a noise realization only shifts the
posterior distribution without a↵ecting its spread [137],
and (ii) the uncertainties in parameters averaged over
di↵erent noise realizations are the same as those with
zero noise injection [198]. On the other hand, di↵erences
(iv) and (v) are probably more important. For exam-
ple, in our Fisher analysis we set the spin magnitudes
of the injection to zero, but the posteriors found by the
LVC [4] are quite wide, and a di↵erent choice of spin mag-
nitude can a↵ect our Fisher estimates by a factor of ⇠ 2.
Even using the Bayesian analysis of [4], the mapping be-
tween ��i and � [see Eqs. (10) and (11)] depends on the
posterior distribution of other parameters, and di↵erent
choices can also a↵ect constraints on � at high PN or-
der by a factor of ⇠ 2. As another example, consider
the systematic errors on the GW150914 measurement of
��i (or �) reported in [5, 19], i.e. the distance from the
peak of the posterior to zero; these systematic errors are

16 See the related work by [197], which shows that the e↵ect of non-
Gaussianity in the noise on parameter estimation is negligible.

(Yunes et al., PRD ‘16)

Testing GR with GWs & with astrophysical observations      (e.g. Berti et al. CQG ’15 arXiv:1501.7274 )

Bottom-up approach: 

• choose the phenomenology to be studied, and the quantities most appropriate to describe it

• devise a parametrization of these quantities 

• typically, each parameter is associated to the violation/modification of some GR property

• compute observables in terms of the parameters

• perform observations/experiments, setting bounds to the parameters

bounds from LIGO-Virgo
detections:

For instance, PPE formalism, parametrizes the gravitational waveform from compact binary inspiral

(𝛼,β,a,b)   ⇔    specific theories

h(⌫) = hGR(⌫)(1 + ↵(⇡M⌫)a)ei�(⇡M⌫)b
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2.Test the gravitational interaction, looking for general relativity deviations in the strong-field regime

 Bottom-up approach:  parametrize observable quantities, set bounds to parameters using observations

 Top-down approach: consider specific GR-modified theories, possibly 
inspired by fundamental physics considerations, work out observable 
consequences, and look for them in the GW data

Most of the modifications can be reformulated as extra scalar fields
e.g. scalar-tensor gravity, Gauss-Bonnet gravity, Galileon theories, etc.

•  We derived the GW stochastic 
background in PPE parametrization

3

FIG. 1: The spectral energy density ⌦GW(f) is plotted as a
function of frequency. ⌦GW(f) is computed in GR and in
modified theories with PPE parameter � = 2, and � = 1, and
di↵erent values of ↵. The power-law integrated sensitivity
curve for 1 year of integration with AdLIGO is also shown.

ground, which, for certain values, is significantly di↵er-
ent from that predicted by GR. As an example, a gravity
theory with � = 2, which yields a 1 PN correction to
the amplitude of the waveform, and ↵ ⇠ 6, would pro-
duce a background three times larger than the fiducial.
A similar behaviour is shown for GWBs with � = 1. As
expected by the PN character of the PPE approach, for
a fixed ↵, smaller values of the exponent � yields larger
deviations.

When ↵ < 0 the amplitude of the GWB decreases,
limiting the possibility to detect these backgrounds with
advanced detectors. However, they are potentially ob-
servable by a third generation of ground based interfer-
ometers. The left panel of Fig. 2 shows the GWB for
some values of ↵ < 0 and � = (2, 1.5, 1), compared to
the power-law integrated sensitivity curve of ET, assum-
ing 1 year of observation.
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FIG. 2: (Left) Same as Fig. (1), for values of negative ↵ and
di↵erent values of �, compared to the ET sensitivity curve
for one year of observation. (Right) The SNR with which
AdLIGO would detect a PPE background is plotted for some
of the gravity theories considered in Sec. IV versus the inte-
gration time.

In the right panel of Fig. 2 we show how the SNR
changes as a function of the integration time, for AdLIGO
and di↵erent PPE models. For some of the considered
configurations the SNR increases to a factor & 10 after

24 months. The fiducial GR background would require
⇠30 years to reach the same value.

FIG. 3: Contour lines corresponding to di↵erent SNR, for
gravity theories with PPE parameters ↵ > 0 and � 2 [0.2, 2]
assuming 1 and 3 years of integration with AdLIGO. The
shaded region identifies the parameter space where the PPE
parameters satisfy the bound |↵u� | < 1, while the long-
dashed curves correspond to the pulsar constraint [23]. The
allowed parameter space is the colored region on the right side
of the pulsar constraint.

In Fig. 3 we extend our analysis, showing the contour
lines for detection thresholds SNR= (3, 5, 8), computed
for AdLIGO with 1 and 3 years of integration, for theo-
ries with ↵ > 0 and � 2 [0.2, 2]. The long-dashed curve
identifies the region where the parameters ↵ and � are
constrained by binary pulsar observations, as computed
in [23]: the allowed region is on the right of this curve.
The shaded region defines the range where ↵ and � sat-
isfy the condition |↵u� | < 1. After 1 year of integration,
AdLIGO would be able to identify GWBs with SNR =
5, produced by modified theories with � & 0.9 and val-
ues of ↵ lying on the red dashed curve. Three years of
observation would be needed to detect the same signals
with 8 . SNR . 10.
In Table I we show the SNR computed for the ad-

vanced and third generation interferometers, for di↵erent
integration times, for the GWB computed using the PPE
waveforms with � = 2. Large SNRs are expected for ET,
(We note that such SNRs may be biased since Eq. (5)
is defined in the small signal approximation, whereas ET
should be able to detect these backgrounds directly.) but
for some values of ↵ and � the GWB could be poten-
tially detectable also by AdLIGO. The analysis presented
above shows that a region of the PPE parameter space
does exist, where the spectral energy density ⌦GW(f)
of the GWB produced by binary black hole coalescence
could be detected by AdLIGO. To further clarify this
point, we assess the ability of current interferometers to
distinguish these GWB from the GR counterpart, and
to extract physical information. We follow the strategy
adopted in [28], where it has recently been pointed out
that second generation detectors may not be able to dis-
tinguish between a BBH GWB and a generic power-law
background. This would strongly a↵ect our ability to
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 1)  How does gravity behave in the strong-field regime?

One can follow either a bottom-up or a top-down approach.

PPE (parametrized post-Einstenian) expansion ( Yunes & Pretorius ‘09 )
    GW compact binary waveform  is directly parametrized: 

h(f) = A

GR

(f)(1 + ↵x

a)ei GR(f)+i�xb

PPF (parametrized post-Friedmannian) expansion ( Hu & Sawitcki ‘07 )
    cosmological quantities & equations are parametrized

ppE paramters: 
      α,β (=0 inGR): amplitude of modification;   

      a,b: PN order     x=(2#Mf)2/3
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FIG. 4. (Color online) 90%-confidence constraints on the ppE
parameter |�| at nth PN order. The green crosses represent
the bounds reported in [5, 19] through a Bayesian analysis
of event GW150914, mapped to constraints on �. The red
(magenta) dots and line represent bounds from GW150914
(GW151226) estimated with a Fisher analysis, using the IM-
RPhenom waveform (without spin precession) and a fit to the
aLIGO spectral noise density. The constraints obtained with
a Fisher analysis agree very well with the Bayesian constraint
reported in [5, 19]. The blue dotted line shows projected
constraints predicted in 2011 by [142] for a system similar
to GW151226. The dashed black line is a rough estimate
on the constraints that the double binary pulsar PSR J0737-
3039 [127–129] can place on the ppE � parameter [188], while
the cyan star refers to the bound on � at 1PN from the per-
ihelion precession of Mercury [150]. Binary pulsar observa-
tions can constrain negative PN order deviations better than
aLIGO, while aLIGO does better than binary pulsar obser-
vations at higher PN order, as first calculated in [188]. How-
ever, note also that binary pulsar and Solar System bounds
cannot be directly compared to GW ones as the binary pul-
sar (Solar System) one corresponds to the extreme case of no
conservative (no dissipative) corrections. Moreover, stronger
constraints on � for these latter tests do not necessarily mean
stronger constraints on modifications to GR for BH merg-
ers, as � depends not only on theoretical coupling parameters
but also on system parameters, and in certain theories (like
EdGB gravity), non-GR corrections are suppressed in stars
compared to BHs.

Figure 4 shows that GW151226 places stronger con-
straints on � than GW150914 [2, 5] especially at neg-
ative PN orders. This is because GW151226 consists
of a BH binary with lower total mass than GW150914,
and thus, (i) the velocity of the binary constituents at a
fixed frequency (e.g. f ⇠ 50Hz) is smaller and (ii) the
observed frequency range is larger than for GW150914.
The first fact makes the negative-PN-order, ppE correc-
tion terms in the phase and the total number of GW
cycles in band larger than for GW150914. This, to-
gether with the second point above, make � less degen-
erate with other binary parameters, leading to stronger
constraints. Regarding corrections at high positive PN

orders, point (i) results in a deterioration of the con-
straints, while point (ii) strengthens them compared to
GW150914 [2, 5]. Taken together then these oppos-
ing e↵ects lead to similar bounds at positive PN or-
ders for GW150914 and GW151226. We also calculated
the bounds on � by combining those of GW150914 and
GW151226 using Eq. (4.12d) in [76] and found that such
a combined bound is almost indistinguishable from that
of GW151226 alone (the improvement reaches at most
⇠ 30% at n ⇠ 0PN). This finding is consistent with a
similar analysis performed by the LVC [5].
Our analysis and the study of the LVC in [5, 19] di↵er

in many ways, and yet, the two yield similar constraints
on �. The main di↵erences between these studies are
that the former (latter) uses

(i) a Fisher (Bayesian) analysis,

(ii) non-precessing (precessing) waveform templates,

(iii) a fit for the noise curve (the real data),

(iv) a simulated waveform injection compatible with the
real signal (the real signal), and

(v) includes only statistical (both statistical and sys-
tematic) errors.

Probably, di↵erences (i)–(iii) do not have a large impact
on the � constraints for the following reasons. The dif-
ference in statistical errors between Fisher and Bayesian
studies scales as O(1/SNR2) [185, 196], which is only
⇠ O(0.2%) (O(0.6%)) given the SNR of GW150914
(GW151226). Precession for both events was too small
to be measurable by the LVC [2, 4, 5, 136]. The real noise
spectral density contains many spikes, but these are very
thin, and thus, for the same SNR, they a↵ect constraints
on � by only a few percent (see Appendix C)16. We do
not include any specific noise realization in our Fisher
analysis, since (i) such a noise realization only shifts the
posterior distribution without a↵ecting its spread [137],
and (ii) the uncertainties in parameters averaged over
di↵erent noise realizations are the same as those with
zero noise injection [198]. On the other hand, di↵erences
(iv) and (v) are probably more important. For exam-
ple, in our Fisher analysis we set the spin magnitudes
of the injection to zero, but the posteriors found by the
LVC [4] are quite wide, and a di↵erent choice of spin mag-
nitude can a↵ect our Fisher estimates by a factor of ⇠ 2.
Even using the Bayesian analysis of [4], the mapping be-
tween ��i and � [see Eqs. (10) and (11)] depends on the
posterior distribution of other parameters, and di↵erent
choices can also a↵ect constraints on � at high PN or-
der by a factor of ⇠ 2. As another example, consider
the systematic errors on the GW150914 measurement of
��i (or �) reported in [5, 19], i.e. the distance from the
peak of the posterior to zero; these systematic errors are

16 See the related work by [197], which shows that the e↵ect of non-
Gaussianity in the noise on parameter estimation is negligible.

(Yunes et al., PRD ‘16)

Testing GR with GWs & with astrophysical observations      (e.g. Berti et al. CQG ’15 arXiv:1501.7274 )

Bottom-up approach: 

• choose the phenomenology to be studied, and the quantities most appropriate to describe it

• devise a parametrization of these quantities 

• typically, each parameter is associated to the violation/modification of some GR property

• compute observables in terms of the parameters

• perform observations/experiments, setting bounds to the parameters

bounds from LIGO-Virgo
detections:

For instance, PPE formalism, parametrizes the gravitational waveform from compact binary inspiral

(𝛼,β,a,b)   ⇔    specific theories

h(⌫) = hGR(⌫)(1 + ↵(⇡M⌫)a)ei�(⇡M⌫)b
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2.Test the gravitational interaction, looking for general relativity deviations in the strong-field regime

 Bottom-up approach:  parametrize observable quantities, set bounds to parameters using observations

 Top-down approach: consider specific GR-modified theories, possibly 
inspired by fundamental physics considerations, work out observable 
consequences, and look for them in the GW data

Most of the modifications can be reformulated as extra scalar fields
e.g. scalar-tensor gravity, Gauss-Bonnet gravity, Galileon theories, etc.

•  We derived the GW stochastic 
background in PPE parametrization

3

FIG. 1: The spectral energy density ⌦GW(f) is plotted as a
function of frequency. ⌦GW(f) is computed in GR and in
modified theories with PPE parameter � = 2, and � = 1, and
di↵erent values of ↵. The power-law integrated sensitivity
curve for 1 year of integration with AdLIGO is also shown.

ground, which, for certain values, is significantly di↵er-
ent from that predicted by GR. As an example, a gravity
theory with � = 2, which yields a 1 PN correction to
the amplitude of the waveform, and ↵ ⇠ 6, would pro-
duce a background three times larger than the fiducial.
A similar behaviour is shown for GWBs with � = 1. As
expected by the PN character of the PPE approach, for
a fixed ↵, smaller values of the exponent � yields larger
deviations.

When ↵ < 0 the amplitude of the GWB decreases,
limiting the possibility to detect these backgrounds with
advanced detectors. However, they are potentially ob-
servable by a third generation of ground based interfer-
ometers. The left panel of Fig. 2 shows the GWB for
some values of ↵ < 0 and � = (2, 1.5, 1), compared to
the power-law integrated sensitivity curve of ET, assum-
ing 1 year of observation.
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FIG. 2: (Left) Same as Fig. (1), for values of negative ↵ and
di↵erent values of �, compared to the ET sensitivity curve
for one year of observation. (Right) The SNR with which
AdLIGO would detect a PPE background is plotted for some
of the gravity theories considered in Sec. IV versus the inte-
gration time.

In the right panel of Fig. 2 we show how the SNR
changes as a function of the integration time, for AdLIGO
and di↵erent PPE models. For some of the considered
configurations the SNR increases to a factor & 10 after

24 months. The fiducial GR background would require
⇠30 years to reach the same value.

FIG. 3: Contour lines corresponding to di↵erent SNR, for
gravity theories with PPE parameters ↵ > 0 and � 2 [0.2, 2]
assuming 1 and 3 years of integration with AdLIGO. The
shaded region identifies the parameter space where the PPE
parameters satisfy the bound |↵u� | < 1, while the long-
dashed curves correspond to the pulsar constraint [23]. The
allowed parameter space is the colored region on the right side
of the pulsar constraint.

In Fig. 3 we extend our analysis, showing the contour
lines for detection thresholds SNR= (3, 5, 8), computed
for AdLIGO with 1 and 3 years of integration, for theo-
ries with ↵ > 0 and � 2 [0.2, 2]. The long-dashed curve
identifies the region where the parameters ↵ and � are
constrained by binary pulsar observations, as computed
in [23]: the allowed region is on the right of this curve.
The shaded region defines the range where ↵ and � sat-
isfy the condition |↵u� | < 1. After 1 year of integration,
AdLIGO would be able to identify GWBs with SNR =
5, produced by modified theories with � & 0.9 and val-
ues of ↵ lying on the red dashed curve. Three years of
observation would be needed to detect the same signals
with 8 . SNR . 10.
In Table I we show the SNR computed for the ad-

vanced and third generation interferometers, for di↵erent
integration times, for the GWB computed using the PPE
waveforms with � = 2. Large SNRs are expected for ET,
(We note that such SNRs may be biased since Eq. (5)
is defined in the small signal approximation, whereas ET
should be able to detect these backgrounds directly.) but
for some values of ↵ and � the GWB could be poten-
tially detectable also by AdLIGO. The analysis presented
above shows that a region of the PPE parameter space
does exist, where the spectral energy density ⌦GW(f)
of the GWB produced by binary black hole coalescence
could be detected by AdLIGO. To further clarify this
point, we assess the ability of current interferometers to
distinguish these GWB from the GR counterpart, and
to extract physical information. We follow the strategy
adopted in [28], where it has recently been pointed out
that second generation detectors may not be able to dis-
tinguish between a BBH GWB and a generic power-law
background. This would strongly a↵ect our ability to
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Example:  Einstein-dilaton Gauss-Bonnet (EdGB) gravity

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi−gp
"
R −

1

2
∂μΦ∂μΦþ αeΦ

4
R2

GB

#
; ð2Þ

where g < 0 is the metric determinant, Φ is a scalar field
coupled to the Gauss-Bonnet invariant (1), and α > 0 is the
coupling constant [20]. Since we are interested in BH
solutions, in the action above we have neglected matter
fields. We use geometric unitsG ¼ c ¼ 1: with this choice,
the scalar field Φ is dimensionless, and α has the dimen-
sions of a length squared.
The field equations of EDGB gravity are found by

varying the action (2) with respect to gμν and Φ:

Gμ
ν ¼

1

2
∂μΦ∂νΦ −

1

4
gμν∂αΦ∂αΦ − αKμ

ν; ð3Þ

S ≡ 1
ffiffiffiffiffiffi−gp ∂μð

ffiffiffiffiffiffi−gp ∂μΦÞ þ α
4
eΦR2

GB ¼ 0; ð4Þ

where Gμν ¼ Rμν − 1
2 gμνR is the Einstein tensor,

Kμν ¼
1

8
ðgμρgνλ þ gμλgνρÞϵkλαβ∇γðϵργμνRμναβ∂keΦÞ; ð5Þ

and ϵμναβ is the Levi-Civita tensor, with ϵ0123 ¼ −ð−gÞ−1=2.
Note that—by virtue of the GB combination entering the
action (2)—the equations are of second differential order,
and, therefore, this theory is free from the Ostrogradsky
instability [13]. Indeed, EDGB gravity is a particular case
[36] of Horndeski gravity—the most general scalar-tensor
theory with second-order field equations [37]. This special
subcase is the only one known to date in which regular,
stationary, asymptotically flat, hairy BH solutions other
than GR ones are found [38]. Furthermore, EDGB gravity
can be obtained from the low-energy expansion of the
bosonic sector of heterotic string theory [12,21]; in such
case, the coupling α is related to the string tension.
In order to simplify our notation, in the next sections we

shall introduce the modified Einstein tensor ~Gμ
ν ¼ Gμ

ν−
Tμ

ν, where

Tμ
ν ¼

1

2
∂μΦ∂νΦ −

1

4
gμν∂αΦ∂αΦ − αKμ

ν ð6Þ

is the effective stress-energy tensor for the dilaton.

B. Static BH solutions

Since the EDGB coupling constant has the dimensions of
the inverse of the curvature tensor, it is natural to expect that
in this theory the strongest deviations from GR will come
from physical systems involving high curvature, such as
BHs, neutron stars, and the early Universe. We focus here
on BH solutions and, in particular, on rotating BH
geometries that are obtained through a slow-rotation
expansion around a static background solution.

The exact BH background solution (first derived in [20])
is described by the static, spherically symmetric line
element

ds2 ¼ −eΓðrÞdt2 þ e−ΛðrÞdr2 þ r2dΩ2; ð7Þ

and by a spherically symmetric scalar field, Φ ¼ ϕðrÞ. The
field equations (3) and (4) supplied by the metric ansatz (7)
reduce to a set of differential equations for the scalar field
and for the functions Γ and Λ. Indeed, Eq. (4) yields

ϕ00 þ ϕ0
$
Γ0 − Λ0

2
þ 2

r

%
¼ αeϕ

2r2

$
Γ0Λ0e−Λ þ ð1 − e−ΛÞ

×
"
Γ00 þ Γ0

2
ðΓ0 − Λ0Þ

#%
; ð8Þ

while the t − t, r − r, and θ − θ components of ~Gμ
ν ¼ 0

reduce to
"
1þ αeϕ

2r
ϕ0ð1 − 3e−ΛÞ

#
Λ0

¼ ϕ02r
4

þ 1 − eΛ

r
þ αeϕ

r
ð1 − e−ΛÞðϕ00 þ ϕ02Þ; ð9Þ

"
1þ αeϕ

2r
ϕ0ð1 − 3e−ΛÞ

#
Γ0 ¼ ϕ02r

4
þ eΛ − 1

r
; ð10Þ

Γ00 þ
$
Γ0

2
þ 1

r

%
ðΓ0 − Λ0Þ

¼ −
ϕ02

2
þ αeϕ−Λ

r
×
"
ϕ0Γ00 þ Γ0ðϕ00 þ ϕ02Þ

þ Γ0ϕ0

2
ðϕ0 − 3Λ0Þ

#
: ð11Þ

Note that Eqs. (9)–(11) are not all independent and that the
r − r component can be solved analytically, yielding

eΛ ¼ −β þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 4γ

p

2
; ð12Þ

where

β ¼ ϕ02r2

4
− 1 − Γ0

$
rþ eϕϕ0

2

%
; γ ¼ 3

2
Γ0ϕ0eϕ: ð13Þ

The remaining two independent equations can be written as

ϕ00 ¼ −
d1
d
; Γ00 ¼ −

d2
d
; ð14Þ

where the radial functions d, d1, and d2 are given in
Appendix A of [20]. The Arnowitt-Deser-Misner mass M
and the dilatonic charge D can be read off the asymptotic
behavior of the metric and of the dilaton field,

ROTATING BLACK HOLES IN EINSTEIN-DILATON- … PHYSICAL REVIEW D 92, 083014 (2015)

083014-3

Giornata Informativa sul progetto Einstein Telescope        Università di Cagliari & INFN       18/6/2018

 1)  How does gravity behave in the strong-field regime?

One can follow either a bottom-up or a top-down approach.

PPE (parametrized post-Einstenian) expansion ( Yunes & Pretorius ‘09 )
    GW compact binary waveform  is directly parametrized: 

h(f) = A

GR

(f)(1 + ↵x

a)ei GR(f)+i�xb

PPF (parametrized post-Friedmannian) expansion ( Hu & Sawitcki ‘07 )
    cosmological quantities & equations are parametrized

ppE paramters: 
      α,β (=0 inGR): amplitude of modification;   

      a,b: PN order     x=(2#Mf)2/3

mapping:   (α,β,a,b) <=> specific theories

15
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FIG. 4. (Color online) 90%-confidence constraints on the ppE
parameter |�| at nth PN order. The green crosses represent
the bounds reported in [5, 19] through a Bayesian analysis
of event GW150914, mapped to constraints on �. The red
(magenta) dots and line represent bounds from GW150914
(GW151226) estimated with a Fisher analysis, using the IM-
RPhenom waveform (without spin precession) and a fit to the
aLIGO spectral noise density. The constraints obtained with
a Fisher analysis agree very well with the Bayesian constraint
reported in [5, 19]. The blue dotted line shows projected
constraints predicted in 2011 by [142] for a system similar
to GW151226. The dashed black line is a rough estimate
on the constraints that the double binary pulsar PSR J0737-
3039 [127–129] can place on the ppE � parameter [188], while
the cyan star refers to the bound on � at 1PN from the per-
ihelion precession of Mercury [150]. Binary pulsar observa-
tions can constrain negative PN order deviations better than
aLIGO, while aLIGO does better than binary pulsar obser-
vations at higher PN order, as first calculated in [188]. How-
ever, note also that binary pulsar and Solar System bounds
cannot be directly compared to GW ones as the binary pul-
sar (Solar System) one corresponds to the extreme case of no
conservative (no dissipative) corrections. Moreover, stronger
constraints on � for these latter tests do not necessarily mean
stronger constraints on modifications to GR for BH merg-
ers, as � depends not only on theoretical coupling parameters
but also on system parameters, and in certain theories (like
EdGB gravity), non-GR corrections are suppressed in stars
compared to BHs.

Figure 4 shows that GW151226 places stronger con-
straints on � than GW150914 [2, 5] especially at neg-
ative PN orders. This is because GW151226 consists
of a BH binary with lower total mass than GW150914,
and thus, (i) the velocity of the binary constituents at a
fixed frequency (e.g. f ⇠ 50Hz) is smaller and (ii) the
observed frequency range is larger than for GW150914.
The first fact makes the negative-PN-order, ppE correc-
tion terms in the phase and the total number of GW
cycles in band larger than for GW150914. This, to-
gether with the second point above, make � less degen-
erate with other binary parameters, leading to stronger
constraints. Regarding corrections at high positive PN

orders, point (i) results in a deterioration of the con-
straints, while point (ii) strengthens them compared to
GW150914 [2, 5]. Taken together then these oppos-
ing e↵ects lead to similar bounds at positive PN or-
ders for GW150914 and GW151226. We also calculated
the bounds on � by combining those of GW150914 and
GW151226 using Eq. (4.12d) in [76] and found that such
a combined bound is almost indistinguishable from that
of GW151226 alone (the improvement reaches at most
⇠ 30% at n ⇠ 0PN). This finding is consistent with a
similar analysis performed by the LVC [5].
Our analysis and the study of the LVC in [5, 19] di↵er

in many ways, and yet, the two yield similar constraints
on �. The main di↵erences between these studies are
that the former (latter) uses

(i) a Fisher (Bayesian) analysis,

(ii) non-precessing (precessing) waveform templates,

(iii) a fit for the noise curve (the real data),

(iv) a simulated waveform injection compatible with the
real signal (the real signal), and

(v) includes only statistical (both statistical and sys-
tematic) errors.

Probably, di↵erences (i)–(iii) do not have a large impact
on the � constraints for the following reasons. The dif-
ference in statistical errors between Fisher and Bayesian
studies scales as O(1/SNR2) [185, 196], which is only
⇠ O(0.2%) (O(0.6%)) given the SNR of GW150914
(GW151226). Precession for both events was too small
to be measurable by the LVC [2, 4, 5, 136]. The real noise
spectral density contains many spikes, but these are very
thin, and thus, for the same SNR, they a↵ect constraints
on � by only a few percent (see Appendix C)16. We do
not include any specific noise realization in our Fisher
analysis, since (i) such a noise realization only shifts the
posterior distribution without a↵ecting its spread [137],
and (ii) the uncertainties in parameters averaged over
di↵erent noise realizations are the same as those with
zero noise injection [198]. On the other hand, di↵erences
(iv) and (v) are probably more important. For exam-
ple, in our Fisher analysis we set the spin magnitudes
of the injection to zero, but the posteriors found by the
LVC [4] are quite wide, and a di↵erent choice of spin mag-
nitude can a↵ect our Fisher estimates by a factor of ⇠ 2.
Even using the Bayesian analysis of [4], the mapping be-
tween ��i and � [see Eqs. (10) and (11)] depends on the
posterior distribution of other parameters, and di↵erent
choices can also a↵ect constraints on � at high PN or-
der by a factor of ⇠ 2. As another example, consider
the systematic errors on the GW150914 measurement of
��i (or �) reported in [5, 19], i.e. the distance from the
peak of the posterior to zero; these systematic errors are

16 See the related work by [197], which shows that the e↵ect of non-
Gaussianity in the noise on parameter estimation is negligible.

(Yunes et al., PRD ‘16)

Testing GR with GWs & with astrophysical observations      (e.g. Berti et al. CQG ’15 arXiv:1501.7274 )

Bottom-up approach: 

• choose the phenomenology to be studied, and the quantities most appropriate to describe it

• devise a parametrization of these quantities 

• typically, each parameter is associated to the violation/modification of some GR property

• compute observables in terms of the parameters

• perform observations/experiments, setting bounds to the parameters

bounds from LIGO-Virgo
detections:

For instance, PPE formalism, parametrizes the gravitational waveform from compact binary inspiral

(𝛼,β,a,b)   ⇔    specific theories

h(⌫) = hGR(⌫)(1 + ↵(⇡M⌫)a)ei�(⇡M⌫)b
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2.Test the gravitational interaction, looking for general relativity deviations in the strong-field regime

 Bottom-up approach:  parametrize observable quantities, set bounds to parameters using observations

 Top-down approach: consider specific GR-modified theories, possibly 
inspired by fundamental physics considerations, work out observable 
consequences, and look for them in the GW data

Most of the modifications can be reformulated as extra scalar fields
e.g. scalar-tensor gravity, Gauss-Bonnet gravity, Galileon theories, etc.

•  We derived the GW stochastic 
background in PPE parametrization

3

FIG. 1: The spectral energy density ⌦GW(f) is plotted as a
function of frequency. ⌦GW(f) is computed in GR and in
modified theories with PPE parameter � = 2, and � = 1, and
di↵erent values of ↵. The power-law integrated sensitivity
curve for 1 year of integration with AdLIGO is also shown.

ground, which, for certain values, is significantly di↵er-
ent from that predicted by GR. As an example, a gravity
theory with � = 2, which yields a 1 PN correction to
the amplitude of the waveform, and ↵ ⇠ 6, would pro-
duce a background three times larger than the fiducial.
A similar behaviour is shown for GWBs with � = 1. As
expected by the PN character of the PPE approach, for
a fixed ↵, smaller values of the exponent � yields larger
deviations.

When ↵ < 0 the amplitude of the GWB decreases,
limiting the possibility to detect these backgrounds with
advanced detectors. However, they are potentially ob-
servable by a third generation of ground based interfer-
ometers. The left panel of Fig. 2 shows the GWB for
some values of ↵ < 0 and � = (2, 1.5, 1), compared to
the power-law integrated sensitivity curve of ET, assum-
ing 1 year of observation.
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FIG. 2: (Left) Same as Fig. (1), for values of negative ↵ and
di↵erent values of �, compared to the ET sensitivity curve
for one year of observation. (Right) The SNR with which
AdLIGO would detect a PPE background is plotted for some
of the gravity theories considered in Sec. IV versus the inte-
gration time.

In the right panel of Fig. 2 we show how the SNR
changes as a function of the integration time, for AdLIGO
and di↵erent PPE models. For some of the considered
configurations the SNR increases to a factor & 10 after

24 months. The fiducial GR background would require
⇠30 years to reach the same value.

FIG. 3: Contour lines corresponding to di↵erent SNR, for
gravity theories with PPE parameters ↵ > 0 and � 2 [0.2, 2]
assuming 1 and 3 years of integration with AdLIGO. The
shaded region identifies the parameter space where the PPE
parameters satisfy the bound |↵u� | < 1, while the long-
dashed curves correspond to the pulsar constraint [23]. The
allowed parameter space is the colored region on the right side
of the pulsar constraint.

In Fig. 3 we extend our analysis, showing the contour
lines for detection thresholds SNR= (3, 5, 8), computed
for AdLIGO with 1 and 3 years of integration, for theo-
ries with ↵ > 0 and � 2 [0.2, 2]. The long-dashed curve
identifies the region where the parameters ↵ and � are
constrained by binary pulsar observations, as computed
in [23]: the allowed region is on the right of this curve.
The shaded region defines the range where ↵ and � sat-
isfy the condition |↵u� | < 1. After 1 year of integration,
AdLIGO would be able to identify GWBs with SNR =
5, produced by modified theories with � & 0.9 and val-
ues of ↵ lying on the red dashed curve. Three years of
observation would be needed to detect the same signals
with 8 . SNR . 10.
In Table I we show the SNR computed for the ad-

vanced and third generation interferometers, for di↵erent
integration times, for the GWB computed using the PPE
waveforms with � = 2. Large SNRs are expected for ET,
(We note that such SNRs may be biased since Eq. (5)
is defined in the small signal approximation, whereas ET
should be able to detect these backgrounds directly.) but
for some values of ↵ and � the GWB could be poten-
tially detectable also by AdLIGO. The analysis presented
above shows that a region of the PPE parameter space
does exist, where the spectral energy density ⌦GW(f)
of the GWB produced by binary black hole coalescence
could be detected by AdLIGO. To further clarify this
point, we assess the ability of current interferometers to
distinguish these GWB from the GR counterpart, and
to extract physical information. We follow the strategy
adopted in [28], where it has recently been pointed out
that second generation detectors may not be able to dis-
tinguish between a BBH GWB and a generic power-law
background. This would strongly a↵ect our ability to

Maselli et al.,
 PRL’16

Example:  Einstein-dilaton Gauss-Bonnet (EdGB) gravity

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi−gp
"
R −

1

2
∂μΦ∂μΦþ αeΦ

4
R2

GB

#
; ð2Þ

where g < 0 is the metric determinant, Φ is a scalar field
coupled to the Gauss-Bonnet invariant (1), and α > 0 is the
coupling constant [20]. Since we are interested in BH
solutions, in the action above we have neglected matter
fields. We use geometric unitsG ¼ c ¼ 1: with this choice,
the scalar field Φ is dimensionless, and α has the dimen-
sions of a length squared.
The field equations of EDGB gravity are found by

varying the action (2) with respect to gμν and Φ:

Gμ
ν ¼

1

2
∂μΦ∂νΦ −

1

4
gμν∂αΦ∂αΦ − αKμ

ν; ð3Þ

S ≡ 1
ffiffiffiffiffiffi−gp ∂μð

ffiffiffiffiffiffi−gp ∂μΦÞ þ α
4
eΦR2

GB ¼ 0; ð4Þ

where Gμν ¼ Rμν − 1
2 gμνR is the Einstein tensor,

Kμν ¼
1

8
ðgμρgνλ þ gμλgνρÞϵkλαβ∇γðϵργμνRμναβ∂keΦÞ; ð5Þ

and ϵμναβ is the Levi-Civita tensor, with ϵ0123 ¼ −ð−gÞ−1=2.
Note that—by virtue of the GB combination entering the
action (2)—the equations are of second differential order,
and, therefore, this theory is free from the Ostrogradsky
instability [13]. Indeed, EDGB gravity is a particular case
[36] of Horndeski gravity—the most general scalar-tensor
theory with second-order field equations [37]. This special
subcase is the only one known to date in which regular,
stationary, asymptotically flat, hairy BH solutions other
than GR ones are found [38]. Furthermore, EDGB gravity
can be obtained from the low-energy expansion of the
bosonic sector of heterotic string theory [12,21]; in such
case, the coupling α is related to the string tension.
In order to simplify our notation, in the next sections we

shall introduce the modified Einstein tensor ~Gμ
ν ¼ Gμ

ν−
Tμ

ν, where

Tμ
ν ¼

1

2
∂μΦ∂νΦ −

1

4
gμν∂αΦ∂αΦ − αKμ

ν ð6Þ

is the effective stress-energy tensor for the dilaton.

B. Static BH solutions

Since the EDGB coupling constant has the dimensions of
the inverse of the curvature tensor, it is natural to expect that
in this theory the strongest deviations from GR will come
from physical systems involving high curvature, such as
BHs, neutron stars, and the early Universe. We focus here
on BH solutions and, in particular, on rotating BH
geometries that are obtained through a slow-rotation
expansion around a static background solution.

The exact BH background solution (first derived in [20])
is described by the static, spherically symmetric line
element

ds2 ¼ −eΓðrÞdt2 þ e−ΛðrÞdr2 þ r2dΩ2; ð7Þ

and by a spherically symmetric scalar field, Φ ¼ ϕðrÞ. The
field equations (3) and (4) supplied by the metric ansatz (7)
reduce to a set of differential equations for the scalar field
and for the functions Γ and Λ. Indeed, Eq. (4) yields

ϕ00 þ ϕ0
$
Γ0 − Λ0

2
þ 2

r

%
¼ αeϕ

2r2

$
Γ0Λ0e−Λ þ ð1 − e−ΛÞ

×
"
Γ00 þ Γ0

2
ðΓ0 − Λ0Þ

#%
; ð8Þ

while the t − t, r − r, and θ − θ components of ~Gμ
ν ¼ 0

reduce to
"
1þ αeϕ

2r
ϕ0ð1 − 3e−ΛÞ

#
Λ0

¼ ϕ02r
4

þ 1 − eΛ

r
þ αeϕ

r
ð1 − e−ΛÞðϕ00 þ ϕ02Þ; ð9Þ

"
1þ αeϕ

2r
ϕ0ð1 − 3e−ΛÞ

#
Γ0 ¼ ϕ02r

4
þ eΛ − 1

r
; ð10Þ

Γ00 þ
$
Γ0

2
þ 1

r

%
ðΓ0 − Λ0Þ

¼ −
ϕ02

2
þ αeϕ−Λ

r
×
"
ϕ0Γ00 þ Γ0ðϕ00 þ ϕ02Þ

þ Γ0ϕ0

2
ðϕ0 − 3Λ0Þ

#
: ð11Þ

Note that Eqs. (9)–(11) are not all independent and that the
r − r component can be solved analytically, yielding

eΛ ¼ −β þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 4γ

p

2
; ð12Þ

where

β ¼ ϕ02r2

4
− 1 − Γ0

$
rþ eϕϕ0

2

%
; γ ¼ 3

2
Γ0ϕ0eϕ: ð13Þ

The remaining two independent equations can be written as

ϕ00 ¼ −
d1
d
; Γ00 ¼ −

d2
d
; ð14Þ

where the radial functions d, d1, and d2 are given in
Appendix A of [20]. The Arnowitt-Deser-Misner mass M
and the dilatonic charge D can be read off the asymptotic
behavior of the metric and of the dilaton field,
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We shall consider a member of this family of modified-
gravity theories, Einstein-dilaton-Gauss-Bonnet (EDGB)
theory, in which a scalar field (the dilaton) is coupled to the
Gauss-Bonnet invariant [12,20]

R2
GB ¼ RαβγδRαβγδ − 4RαβRαβ þ R2 ð1Þ

in the action. EDGB gravity is one of the best motivated
alternatives to GR. Indeed, it is the only theory of gravity
with quadratic curvature terms in the action, whose field
equations are of second differential order for any coupling
and not just in the weak-coupling limit which is assumed in
the effective-field-theory approach [4]. As a consequence,
EDGB gravity is ghost-free; i.e., it avoids the Ostrogradsky
instability [13]. Furthermore, as mentioned above, the
higher-curvature coupling—which modifies the strong-
curvature regime of gravity—violates the hypothesis of
the BH no-hair theorems so that BH solutions in EDGB
gravity are different from those predicted by GR and
provide the ideal arena for genuine strong-field tests of
the Kerr hypothesis. Finally, the EDGB term naturally
arises in low-energy effective string theories [21].
In this work, we construct an analytical, perturbative

solution of EDGB theory, which describes a slowly rotating
BH endowed with a scalar field. To this aim, we extend the
formalism developed in [22,23] up to fifth order in the BH
(dimensionless) spin parameter χ ¼ J=M2, where J and M
are the angular momentum and the Arnowitt-Deser-Misner
mass of the solution, respectively.
Analytical BH solutions of EDGB theory in the small-

coupling limit have been investigated in [24,25], where
stationary, spherically symmetric configurations where
found. Approximate, stationary, and axisymmetric solutions
to linear and quadratic order in the BH spin were obtained in
[26] and [27], respectively. Both of theseworks considered a
weak-field expansion of the coupling between the scalar
field and the Gauss-Bonnet invariant R2

GB in terms of a
dimensionful coupling constant α. Exact numerical solu-
tions were constructed to zeroth [20] and first order [28] in
the spin and also for arbitrary values of the angular
momentum [29,30]. Although exact in α, such solutions
are of limited practical use (for instance, for Monte Carlo
data analysis) because they require a numerical integration
for each set of parameters. On the other hand, numerical
solutions are necessary in regimes where the slow-spin
expansion does not converge and are, therefore, comple-
mentary to our analysis.
Our results extend the study carried out so far. In

particular, we go beyond the analysis of Ref. [27], where
a BH solution was obtained to second order both in the spin
and in the coupling parameter. Indeed, we compute the
metric tensor and the scalar field up to Oðζ7; χ5Þ, where
ζ ≡ α=M2, and α is the EDGB coupling constant. We use
this expansion to derive the main features of the solution,
such as the geometry of the event horizon and of the

ergoregion. Furthermore, we study the geodesic structure of
this solution by computing the ISCO and the epicyclic
frequencies (see, e.g., Refs. [31–33]) consistent with our
approximation scheme. We compare these quantities with
those obtained in [34], where a numerical solution was
derived, which is exact in the coupling parameter (i.e.,
with no perturbative expansion in ζ) and approximate to
linear order in the BH spin. We find relative errors at most
of the order of 1% for the maximum value of ζ allowed by
theoretical constraints for the existence of BH solutions
ζ ≲ 0.691 [20] and much smaller for less extreme
couplings.
The results of this paper can be useful to devise tests of

GR in the strong-field regime through astrophysical obser-
vations of BHs. For instance, we have shown [34] that
observations of quasiperiodic oscillations of accreting BHs,
with the sensitivity of recently proposed large-area x-ray
space telescopes (e.g., [6,7]), allow us to set constraints on
the parameter space of EDGB theory, thus, probing the
strong-field regime of gravity (see, also, Ref. [35] for a
recent study). However, since BH solutions in EDGB
theory (for finite α) were only known at first order1 in
the spin parameter χ, in [34] we only considered BHs with a
very slow-rotation rate, for which the deviations from GR
are expected to be small.
This paper is organized as follows. In Sec. II we derive

our solution of the EDGB field equations, describing
rotating BHs up to Oðζ7; χ5Þ. In Sec. III we study this
solution, computing its geometrical properties, the location
of the ISCO, and the azimuthal and epicyclic frequencies.
We also estimate the accuracy of our approximation in the
determination of these quantities and how our results
improve on the existing literature. In particular, we discuss
how the spin correction to the azimuthal and epicyclic
frequencies can affect possible tests of GR based on
observations of accreting BHs, such as those discussed
in [34]. Finally, in Sec. IV we draw our conclusions.

II. SPINNING BLACK HOLES IN
EINSTEIN-DILATON-GAUSS-BONNET THEORY

In this section, we derive the spacetime metric and scalar
field describing rotating BHs in EDGB theory, up
to Oðζ7; χ5Þ.

A. EDGB gravity

Einstein-dilaton-Gauss-Bonnet theory is defined by the
following action [12,20]:

1As mentioned above, a solution for finite spin and coupling is
only known in numerical form [29,30], and it is impractical for
extensive studies of geodesic properties. However, numerical
solutions are necessary to explore the high-spin regime, espe-
cially because EDGB BHs can violate the Kerr bound and can
have χ > 1 [29].
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 1)  How does gravity behave in the strong-field regime?

One can follow either a bottom-up or a top-down approach.

PPE (parametrized post-Einstenian) expansion ( Yunes & Pretorius ‘09 )
    GW compact binary waveform  is directly parametrized: 

h(f) = A

GR

(f)(1 + ↵x

a)ei GR(f)+i�xb

PPF (parametrized post-Friedmannian) expansion ( Hu & Sawitcki ‘07 )
    cosmological quantities & equations are parametrized

ppE paramters: 
      α,β (=0 inGR): amplitude of modification;   

      a,b: PN order     x=(2#Mf)2/3

mapping:   (α,β,a,b) <=> specific theories
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FIG. 4. (Color online) 90%-confidence constraints on the ppE
parameter |�| at nth PN order. The green crosses represent
the bounds reported in [5, 19] through a Bayesian analysis
of event GW150914, mapped to constraints on �. The red
(magenta) dots and line represent bounds from GW150914
(GW151226) estimated with a Fisher analysis, using the IM-
RPhenom waveform (without spin precession) and a fit to the
aLIGO spectral noise density. The constraints obtained with
a Fisher analysis agree very well with the Bayesian constraint
reported in [5, 19]. The blue dotted line shows projected
constraints predicted in 2011 by [142] for a system similar
to GW151226. The dashed black line is a rough estimate
on the constraints that the double binary pulsar PSR J0737-
3039 [127–129] can place on the ppE � parameter [188], while
the cyan star refers to the bound on � at 1PN from the per-
ihelion precession of Mercury [150]. Binary pulsar observa-
tions can constrain negative PN order deviations better than
aLIGO, while aLIGO does better than binary pulsar obser-
vations at higher PN order, as first calculated in [188]. How-
ever, note also that binary pulsar and Solar System bounds
cannot be directly compared to GW ones as the binary pul-
sar (Solar System) one corresponds to the extreme case of no
conservative (no dissipative) corrections. Moreover, stronger
constraints on � for these latter tests do not necessarily mean
stronger constraints on modifications to GR for BH merg-
ers, as � depends not only on theoretical coupling parameters
but also on system parameters, and in certain theories (like
EdGB gravity), non-GR corrections are suppressed in stars
compared to BHs.

Figure 4 shows that GW151226 places stronger con-
straints on � than GW150914 [2, 5] especially at neg-
ative PN orders. This is because GW151226 consists
of a BH binary with lower total mass than GW150914,
and thus, (i) the velocity of the binary constituents at a
fixed frequency (e.g. f ⇠ 50Hz) is smaller and (ii) the
observed frequency range is larger than for GW150914.
The first fact makes the negative-PN-order, ppE correc-
tion terms in the phase and the total number of GW
cycles in band larger than for GW150914. This, to-
gether with the second point above, make � less degen-
erate with other binary parameters, leading to stronger
constraints. Regarding corrections at high positive PN

orders, point (i) results in a deterioration of the con-
straints, while point (ii) strengthens them compared to
GW150914 [2, 5]. Taken together then these oppos-
ing e↵ects lead to similar bounds at positive PN or-
ders for GW150914 and GW151226. We also calculated
the bounds on � by combining those of GW150914 and
GW151226 using Eq. (4.12d) in [76] and found that such
a combined bound is almost indistinguishable from that
of GW151226 alone (the improvement reaches at most
⇠ 30% at n ⇠ 0PN). This finding is consistent with a
similar analysis performed by the LVC [5].
Our analysis and the study of the LVC in [5, 19] di↵er

in many ways, and yet, the two yield similar constraints
on �. The main di↵erences between these studies are
that the former (latter) uses

(i) a Fisher (Bayesian) analysis,

(ii) non-precessing (precessing) waveform templates,

(iii) a fit for the noise curve (the real data),

(iv) a simulated waveform injection compatible with the
real signal (the real signal), and

(v) includes only statistical (both statistical and sys-
tematic) errors.

Probably, di↵erences (i)–(iii) do not have a large impact
on the � constraints for the following reasons. The dif-
ference in statistical errors between Fisher and Bayesian
studies scales as O(1/SNR2) [185, 196], which is only
⇠ O(0.2%) (O(0.6%)) given the SNR of GW150914
(GW151226). Precession for both events was too small
to be measurable by the LVC [2, 4, 5, 136]. The real noise
spectral density contains many spikes, but these are very
thin, and thus, for the same SNR, they a↵ect constraints
on � by only a few percent (see Appendix C)16. We do
not include any specific noise realization in our Fisher
analysis, since (i) such a noise realization only shifts the
posterior distribution without a↵ecting its spread [137],
and (ii) the uncertainties in parameters averaged over
di↵erent noise realizations are the same as those with
zero noise injection [198]. On the other hand, di↵erences
(iv) and (v) are probably more important. For exam-
ple, in our Fisher analysis we set the spin magnitudes
of the injection to zero, but the posteriors found by the
LVC [4] are quite wide, and a di↵erent choice of spin mag-
nitude can a↵ect our Fisher estimates by a factor of ⇠ 2.
Even using the Bayesian analysis of [4], the mapping be-
tween ��i and � [see Eqs. (10) and (11)] depends on the
posterior distribution of other parameters, and di↵erent
choices can also a↵ect constraints on � at high PN or-
der by a factor of ⇠ 2. As another example, consider
the systematic errors on the GW150914 measurement of
��i (or �) reported in [5, 19], i.e. the distance from the
peak of the posterior to zero; these systematic errors are

16 See the related work by [197], which shows that the e↵ect of non-
Gaussianity in the noise on parameter estimation is negligible.

(Yunes et al., PRD ‘16)

Testing GR with GWs & with astrophysical observations      (e.g. Berti et al. CQG ’15 arXiv:1501.7274 )

Bottom-up approach: 

• choose the phenomenology to be studied, and the quantities most appropriate to describe it

• devise a parametrization of these quantities 

• typically, each parameter is associated to the violation/modification of some GR property

• compute observables in terms of the parameters

• perform observations/experiments, setting bounds to the parameters

bounds from LIGO-Virgo
detections:

For instance, PPE formalism, parametrizes the gravitational waveform from compact binary inspiral

(𝛼,β,a,b)   ⇔    specific theories

h(⌫) = hGR(⌫)(1 + ↵(⇡M⌫)a)ei�(⇡M⌫)b
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2.Test the gravitational interaction, looking for general relativity deviations in the strong-field regime

 Bottom-up approach:  parametrize observable quantities, set bounds to parameters using observations

 Top-down approach: consider specific GR-modified theories, possibly 
inspired by fundamental physics considerations, work out observable 
consequences, and look for them in the GW data

Most of the modifications can be reformulated as extra scalar fields
e.g. scalar-tensor gravity, Gauss-Bonnet gravity, Galileon theories, etc.

•  We derived the GW stochastic 
background in PPE parametrization

3

FIG. 1: The spectral energy density ⌦GW(f) is plotted as a
function of frequency. ⌦GW(f) is computed in GR and in
modified theories with PPE parameter � = 2, and � = 1, and
di↵erent values of ↵. The power-law integrated sensitivity
curve for 1 year of integration with AdLIGO is also shown.

ground, which, for certain values, is significantly di↵er-
ent from that predicted by GR. As an example, a gravity
theory with � = 2, which yields a 1 PN correction to
the amplitude of the waveform, and ↵ ⇠ 6, would pro-
duce a background three times larger than the fiducial.
A similar behaviour is shown for GWBs with � = 1. As
expected by the PN character of the PPE approach, for
a fixed ↵, smaller values of the exponent � yields larger
deviations.

When ↵ < 0 the amplitude of the GWB decreases,
limiting the possibility to detect these backgrounds with
advanced detectors. However, they are potentially ob-
servable by a third generation of ground based interfer-
ometers. The left panel of Fig. 2 shows the GWB for
some values of ↵ < 0 and � = (2, 1.5, 1), compared to
the power-law integrated sensitivity curve of ET, assum-
ing 1 year of observation.
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FIG. 2: (Left) Same as Fig. (1), for values of negative ↵ and
di↵erent values of �, compared to the ET sensitivity curve
for one year of observation. (Right) The SNR with which
AdLIGO would detect a PPE background is plotted for some
of the gravity theories considered in Sec. IV versus the inte-
gration time.

In the right panel of Fig. 2 we show how the SNR
changes as a function of the integration time, for AdLIGO
and di↵erent PPE models. For some of the considered
configurations the SNR increases to a factor & 10 after

24 months. The fiducial GR background would require
⇠30 years to reach the same value.

FIG. 3: Contour lines corresponding to di↵erent SNR, for
gravity theories with PPE parameters ↵ > 0 and � 2 [0.2, 2]
assuming 1 and 3 years of integration with AdLIGO. The
shaded region identifies the parameter space where the PPE
parameters satisfy the bound |↵u� | < 1, while the long-
dashed curves correspond to the pulsar constraint [23]. The
allowed parameter space is the colored region on the right side
of the pulsar constraint.

In Fig. 3 we extend our analysis, showing the contour
lines for detection thresholds SNR= (3, 5, 8), computed
for AdLIGO with 1 and 3 years of integration, for theo-
ries with ↵ > 0 and � 2 [0.2, 2]. The long-dashed curve
identifies the region where the parameters ↵ and � are
constrained by binary pulsar observations, as computed
in [23]: the allowed region is on the right of this curve.
The shaded region defines the range where ↵ and � sat-
isfy the condition |↵u� | < 1. After 1 year of integration,
AdLIGO would be able to identify GWBs with SNR =
5, produced by modified theories with � & 0.9 and val-
ues of ↵ lying on the red dashed curve. Three years of
observation would be needed to detect the same signals
with 8 . SNR . 10.
In Table I we show the SNR computed for the ad-

vanced and third generation interferometers, for di↵erent
integration times, for the GWB computed using the PPE
waveforms with � = 2. Large SNRs are expected for ET,
(We note that such SNRs may be biased since Eq. (5)
is defined in the small signal approximation, whereas ET
should be able to detect these backgrounds directly.) but
for some values of ↵ and � the GWB could be poten-
tially detectable also by AdLIGO. The analysis presented
above shows that a region of the PPE parameter space
does exist, where the spectral energy density ⌦GW(f)
of the GWB produced by binary black hole coalescence
could be detected by AdLIGO. To further clarify this
point, we assess the ability of current interferometers to
distinguish these GWB from the GR counterpart, and
to extract physical information. We follow the strategy
adopted in [28], where it has recently been pointed out
that second generation detectors may not be able to dis-
tinguish between a BBH GWB and a generic power-law
background. This would strongly a↵ect our ability to

Maselli et al.,
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Example:  Einstein-dilaton Gauss-Bonnet (EdGB) gravity

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi−gp
"
R −

1

2
∂μΦ∂μΦþ αeΦ

4
R2

GB

#
; ð2Þ

where g < 0 is the metric determinant, Φ is a scalar field
coupled to the Gauss-Bonnet invariant (1), and α > 0 is the
coupling constant [20]. Since we are interested in BH
solutions, in the action above we have neglected matter
fields. We use geometric unitsG ¼ c ¼ 1: with this choice,
the scalar field Φ is dimensionless, and α has the dimen-
sions of a length squared.
The field equations of EDGB gravity are found by

varying the action (2) with respect to gμν and Φ:

Gμ
ν ¼

1

2
∂μΦ∂νΦ −

1

4
gμν∂αΦ∂αΦ − αKμ

ν; ð3Þ

S ≡ 1
ffiffiffiffiffiffi−gp ∂μð

ffiffiffiffiffiffi−gp ∂μΦÞ þ α
4
eΦR2

GB ¼ 0; ð4Þ

where Gμν ¼ Rμν − 1
2 gμνR is the Einstein tensor,

Kμν ¼
1

8
ðgμρgνλ þ gμλgνρÞϵkλαβ∇γðϵργμνRμναβ∂keΦÞ; ð5Þ

and ϵμναβ is the Levi-Civita tensor, with ϵ0123 ¼ −ð−gÞ−1=2.
Note that—by virtue of the GB combination entering the
action (2)—the equations are of second differential order,
and, therefore, this theory is free from the Ostrogradsky
instability [13]. Indeed, EDGB gravity is a particular case
[36] of Horndeski gravity—the most general scalar-tensor
theory with second-order field equations [37]. This special
subcase is the only one known to date in which regular,
stationary, asymptotically flat, hairy BH solutions other
than GR ones are found [38]. Furthermore, EDGB gravity
can be obtained from the low-energy expansion of the
bosonic sector of heterotic string theory [12,21]; in such
case, the coupling α is related to the string tension.
In order to simplify our notation, in the next sections we

shall introduce the modified Einstein tensor ~Gμ
ν ¼ Gμ

ν−
Tμ

ν, where

Tμ
ν ¼

1

2
∂μΦ∂νΦ −

1

4
gμν∂αΦ∂αΦ − αKμ

ν ð6Þ

is the effective stress-energy tensor for the dilaton.

B. Static BH solutions

Since the EDGB coupling constant has the dimensions of
the inverse of the curvature tensor, it is natural to expect that
in this theory the strongest deviations from GR will come
from physical systems involving high curvature, such as
BHs, neutron stars, and the early Universe. We focus here
on BH solutions and, in particular, on rotating BH
geometries that are obtained through a slow-rotation
expansion around a static background solution.

The exact BH background solution (first derived in [20])
is described by the static, spherically symmetric line
element

ds2 ¼ −eΓðrÞdt2 þ e−ΛðrÞdr2 þ r2dΩ2; ð7Þ

and by a spherically symmetric scalar field, Φ ¼ ϕðrÞ. The
field equations (3) and (4) supplied by the metric ansatz (7)
reduce to a set of differential equations for the scalar field
and for the functions Γ and Λ. Indeed, Eq. (4) yields

ϕ00 þ ϕ0
$
Γ0 − Λ0

2
þ 2

r

%
¼ αeϕ

2r2

$
Γ0Λ0e−Λ þ ð1 − e−ΛÞ

×
"
Γ00 þ Γ0

2
ðΓ0 − Λ0Þ

#%
; ð8Þ

while the t − t, r − r, and θ − θ components of ~Gμ
ν ¼ 0

reduce to
"
1þ αeϕ

2r
ϕ0ð1 − 3e−ΛÞ

#
Λ0

¼ ϕ02r
4

þ 1 − eΛ

r
þ αeϕ

r
ð1 − e−ΛÞðϕ00 þ ϕ02Þ; ð9Þ

"
1þ αeϕ

2r
ϕ0ð1 − 3e−ΛÞ

#
Γ0 ¼ ϕ02r

4
þ eΛ − 1

r
; ð10Þ

Γ00 þ
$
Γ0

2
þ 1

r

%
ðΓ0 − Λ0Þ

¼ −
ϕ02

2
þ αeϕ−Λ

r
×
"
ϕ0Γ00 þ Γ0ðϕ00 þ ϕ02Þ

þ Γ0ϕ0

2
ðϕ0 − 3Λ0Þ

#
: ð11Þ

Note that Eqs. (9)–(11) are not all independent and that the
r − r component can be solved analytically, yielding

eΛ ¼ −β þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 4γ

p

2
; ð12Þ

where

β ¼ ϕ02r2

4
− 1 − Γ0

$
rþ eϕϕ0

2

%
; γ ¼ 3

2
Γ0ϕ0eϕ: ð13Þ

The remaining two independent equations can be written as

ϕ00 ¼ −
d1
d
; Γ00 ¼ −

d2
d
; ð14Þ

where the radial functions d, d1, and d2 are given in
Appendix A of [20]. The Arnowitt-Deser-Misner mass M
and the dilatonic charge D can be read off the asymptotic
behavior of the metric and of the dilaton field,
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We shall consider a member of this family of modified-
gravity theories, Einstein-dilaton-Gauss-Bonnet (EDGB)
theory, in which a scalar field (the dilaton) is coupled to the
Gauss-Bonnet invariant [12,20]

R2
GB ¼ RαβγδRαβγδ − 4RαβRαβ þ R2 ð1Þ

in the action. EDGB gravity is one of the best motivated
alternatives to GR. Indeed, it is the only theory of gravity
with quadratic curvature terms in the action, whose field
equations are of second differential order for any coupling
and not just in the weak-coupling limit which is assumed in
the effective-field-theory approach [4]. As a consequence,
EDGB gravity is ghost-free; i.e., it avoids the Ostrogradsky
instability [13]. Furthermore, as mentioned above, the
higher-curvature coupling—which modifies the strong-
curvature regime of gravity—violates the hypothesis of
the BH no-hair theorems so that BH solutions in EDGB
gravity are different from those predicted by GR and
provide the ideal arena for genuine strong-field tests of
the Kerr hypothesis. Finally, the EDGB term naturally
arises in low-energy effective string theories [21].
In this work, we construct an analytical, perturbative

solution of EDGB theory, which describes a slowly rotating
BH endowed with a scalar field. To this aim, we extend the
formalism developed in [22,23] up to fifth order in the BH
(dimensionless) spin parameter χ ¼ J=M2, where J and M
are the angular momentum and the Arnowitt-Deser-Misner
mass of the solution, respectively.
Analytical BH solutions of EDGB theory in the small-

coupling limit have been investigated in [24,25], where
stationary, spherically symmetric configurations where
found. Approximate, stationary, and axisymmetric solutions
to linear and quadratic order in the BH spin were obtained in
[26] and [27], respectively. Both of theseworks considered a
weak-field expansion of the coupling between the scalar
field and the Gauss-Bonnet invariant R2

GB in terms of a
dimensionful coupling constant α. Exact numerical solu-
tions were constructed to zeroth [20] and first order [28] in
the spin and also for arbitrary values of the angular
momentum [29,30]. Although exact in α, such solutions
are of limited practical use (for instance, for Monte Carlo
data analysis) because they require a numerical integration
for each set of parameters. On the other hand, numerical
solutions are necessary in regimes where the slow-spin
expansion does not converge and are, therefore, comple-
mentary to our analysis.
Our results extend the study carried out so far. In

particular, we go beyond the analysis of Ref. [27], where
a BH solution was obtained to second order both in the spin
and in the coupling parameter. Indeed, we compute the
metric tensor and the scalar field up to Oðζ7; χ5Þ, where
ζ ≡ α=M2, and α is the EDGB coupling constant. We use
this expansion to derive the main features of the solution,
such as the geometry of the event horizon and of the

ergoregion. Furthermore, we study the geodesic structure of
this solution by computing the ISCO and the epicyclic
frequencies (see, e.g., Refs. [31–33]) consistent with our
approximation scheme. We compare these quantities with
those obtained in [34], where a numerical solution was
derived, which is exact in the coupling parameter (i.e.,
with no perturbative expansion in ζ) and approximate to
linear order in the BH spin. We find relative errors at most
of the order of 1% for the maximum value of ζ allowed by
theoretical constraints for the existence of BH solutions
ζ ≲ 0.691 [20] and much smaller for less extreme
couplings.
The results of this paper can be useful to devise tests of

GR in the strong-field regime through astrophysical obser-
vations of BHs. For instance, we have shown [34] that
observations of quasiperiodic oscillations of accreting BHs,
with the sensitivity of recently proposed large-area x-ray
space telescopes (e.g., [6,7]), allow us to set constraints on
the parameter space of EDGB theory, thus, probing the
strong-field regime of gravity (see, also, Ref. [35] for a
recent study). However, since BH solutions in EDGB
theory (for finite α) were only known at first order1 in
the spin parameter χ, in [34] we only considered BHs with a
very slow-rotation rate, for which the deviations from GR
are expected to be small.
This paper is organized as follows. In Sec. II we derive

our solution of the EDGB field equations, describing
rotating BHs up to Oðζ7; χ5Þ. In Sec. III we study this
solution, computing its geometrical properties, the location
of the ISCO, and the azimuthal and epicyclic frequencies.
We also estimate the accuracy of our approximation in the
determination of these quantities and how our results
improve on the existing literature. In particular, we discuss
how the spin correction to the azimuthal and epicyclic
frequencies can affect possible tests of GR based on
observations of accreting BHs, such as those discussed
in [34]. Finally, in Sec. IV we draw our conclusions.

II. SPINNING BLACK HOLES IN
EINSTEIN-DILATON-GAUSS-BONNET THEORY

In this section, we derive the spacetime metric and scalar
field describing rotating BHs in EDGB theory, up
to Oðζ7; χ5Þ.

A. EDGB gravity

Einstein-dilaton-Gauss-Bonnet theory is defined by the
following action [12,20]:

1As mentioned above, a solution for finite spin and coupling is
only known in numerical form [29,30], and it is impractical for
extensive studies of geodesic properties. However, numerical
solutions are necessary to explore the high-spin regime, espe-
cially because EDGB BHs can violate the Kerr bound and can
have χ > 1 [29].
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(a) q = 1/2 (b) q = 1/4

FIG. 7. (Color online) Same as Fig. 6 but for q = 1/2 (left panels) and q = 1/4 (right panels). In this case also the l = m = 1, 3
multipoles are emitted. As before we compare the numerical data (solid lines) with the PN prediction (dashed lines).

FIG. 8. (Color online) Same as Figs. 6, 7, for the l = m = 0
scalar mode. The smallest mass ratio yields the largest pre-
merger profile. The final BHs have comparable masses and
spin, and therefore similar scalar charge.

and likewise for the second-order flux transported by
the scalar field. We estimate the extrapolation error by
comparing to E/M = E

1

+ B/Rex + C/R2
ex and find

�EGW
1

/EGW
1

. 0.8% and �E(2)
1

/E(2)
1

. 7%. The re-
sults are summarized in Table III.

In Fig. 9 we present the fluxes for all three configura-
tions. The background, i.e., GW flux (black solid lines)
follows the common pattern: it increases monotonically
in amplitude as the BHs circle around each other for the
last few orbits, culminates in a peak during their merger,

and decays exponentially as the newly born BH rings
down to a Kerr BH. We also show the second-order en-
ergy flux carried by the scalar waves (56) (blue dashed
lines) together with the canonical scalar field energy flux
Ė(�) (red dot-dashed lines), rescaled by the appropriate
power ✏2 of the expansion parameter. Exemplarily, we set
✏ = 0.01. We observe that the second-order scalar flux is
dominated by the contribution of the scalar stress-energy
tensor.

The morphology of the signal is determined by the or-
bital dynamics and monotonically increases during the
inspiral of the background BHs. The canonical scalar
field flux also exhibits a peak during the merger that is
predominantly determined by the monopole mode, as is
illustrated by the green dot-dashed lines in Fig. 9. This is
because the system changes rapidly from two nonrotating
BHs, each with its own scalar hair determined by (63) to
a single rotating BH with a new scalar configuration of
this form but with larger mass and, hence, smaller scalar
charge.

The ratio between scalar and gravitational radiation
dramatically increases as the mass ratio decreases. This
is because the scalar charge is determined by the smallest
mass scale in the system yielding the largest curvatures,
and then undergoes a transition to the final BH mass. So
while this characteristic scale changes at most by a factor
of two in the equal-mass case, it can be vastly di↵erent as
we decrease the mass ratio. Whether and how this trend
continues for higher mass ratios is beyond the scope of the
paper and will be presented in a more detailed parameter
study elsewhere.

• We applied Numerical Relativity
to black hole merger in EdGB:
current LIGO-Virgo observations
provide the strongest bounds!

Witek et al., PRD’19
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 1)  How does gravity behave in the strong-field regime?

One can follow either a bottom-up or a top-down approach.

PPE (parametrized post-Einstenian) expansion ( Yunes & Pretorius ‘09 )
    GW compact binary waveform  is directly parametrized: 

h(f) = A

GR

(f)(1 + ↵x

a)ei GR(f)+i�xb

PPF (parametrized post-Friedmannian) expansion ( Hu & Sawitcki ‘07 )
    cosmological quantities & equations are parametrized

ppE paramters: 
      α,β (=0 inGR): amplitude of modification;   

      a,b: PN order     x=(2#Mf)2/3

mapping:   (α,β,a,b) <=> specific theories
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FIG. 4. (Color online) 90%-confidence constraints on the ppE
parameter |�| at nth PN order. The green crosses represent
the bounds reported in [5, 19] through a Bayesian analysis
of event GW150914, mapped to constraints on �. The red
(magenta) dots and line represent bounds from GW150914
(GW151226) estimated with a Fisher analysis, using the IM-
RPhenom waveform (without spin precession) and a fit to the
aLIGO spectral noise density. The constraints obtained with
a Fisher analysis agree very well with the Bayesian constraint
reported in [5, 19]. The blue dotted line shows projected
constraints predicted in 2011 by [142] for a system similar
to GW151226. The dashed black line is a rough estimate
on the constraints that the double binary pulsar PSR J0737-
3039 [127–129] can place on the ppE � parameter [188], while
the cyan star refers to the bound on � at 1PN from the per-
ihelion precession of Mercury [150]. Binary pulsar observa-
tions can constrain negative PN order deviations better than
aLIGO, while aLIGO does better than binary pulsar obser-
vations at higher PN order, as first calculated in [188]. How-
ever, note also that binary pulsar and Solar System bounds
cannot be directly compared to GW ones as the binary pul-
sar (Solar System) one corresponds to the extreme case of no
conservative (no dissipative) corrections. Moreover, stronger
constraints on � for these latter tests do not necessarily mean
stronger constraints on modifications to GR for BH merg-
ers, as � depends not only on theoretical coupling parameters
but also on system parameters, and in certain theories (like
EdGB gravity), non-GR corrections are suppressed in stars
compared to BHs.

Figure 4 shows that GW151226 places stronger con-
straints on � than GW150914 [2, 5] especially at neg-
ative PN orders. This is because GW151226 consists
of a BH binary with lower total mass than GW150914,
and thus, (i) the velocity of the binary constituents at a
fixed frequency (e.g. f ⇠ 50Hz) is smaller and (ii) the
observed frequency range is larger than for GW150914.
The first fact makes the negative-PN-order, ppE correc-
tion terms in the phase and the total number of GW
cycles in band larger than for GW150914. This, to-
gether with the second point above, make � less degen-
erate with other binary parameters, leading to stronger
constraints. Regarding corrections at high positive PN

orders, point (i) results in a deterioration of the con-
straints, while point (ii) strengthens them compared to
GW150914 [2, 5]. Taken together then these oppos-
ing e↵ects lead to similar bounds at positive PN or-
ders for GW150914 and GW151226. We also calculated
the bounds on � by combining those of GW150914 and
GW151226 using Eq. (4.12d) in [76] and found that such
a combined bound is almost indistinguishable from that
of GW151226 alone (the improvement reaches at most
⇠ 30% at n ⇠ 0PN). This finding is consistent with a
similar analysis performed by the LVC [5].
Our analysis and the study of the LVC in [5, 19] di↵er

in many ways, and yet, the two yield similar constraints
on �. The main di↵erences between these studies are
that the former (latter) uses

(i) a Fisher (Bayesian) analysis,

(ii) non-precessing (precessing) waveform templates,

(iii) a fit for the noise curve (the real data),

(iv) a simulated waveform injection compatible with the
real signal (the real signal), and

(v) includes only statistical (both statistical and sys-
tematic) errors.

Probably, di↵erences (i)–(iii) do not have a large impact
on the � constraints for the following reasons. The dif-
ference in statistical errors between Fisher and Bayesian
studies scales as O(1/SNR2) [185, 196], which is only
⇠ O(0.2%) (O(0.6%)) given the SNR of GW150914
(GW151226). Precession for both events was too small
to be measurable by the LVC [2, 4, 5, 136]. The real noise
spectral density contains many spikes, but these are very
thin, and thus, for the same SNR, they a↵ect constraints
on � by only a few percent (see Appendix C)16. We do
not include any specific noise realization in our Fisher
analysis, since (i) such a noise realization only shifts the
posterior distribution without a↵ecting its spread [137],
and (ii) the uncertainties in parameters averaged over
di↵erent noise realizations are the same as those with
zero noise injection [198]. On the other hand, di↵erences
(iv) and (v) are probably more important. For exam-
ple, in our Fisher analysis we set the spin magnitudes
of the injection to zero, but the posteriors found by the
LVC [4] are quite wide, and a di↵erent choice of spin mag-
nitude can a↵ect our Fisher estimates by a factor of ⇠ 2.
Even using the Bayesian analysis of [4], the mapping be-
tween ��i and � [see Eqs. (10) and (11)] depends on the
posterior distribution of other parameters, and di↵erent
choices can also a↵ect constraints on � at high PN or-
der by a factor of ⇠ 2. As another example, consider
the systematic errors on the GW150914 measurement of
��i (or �) reported in [5, 19], i.e. the distance from the
peak of the posterior to zero; these systematic errors are

16 See the related work by [197], which shows that the e↵ect of non-
Gaussianity in the noise on parameter estimation is negligible.

(Yunes et al., PRD ‘16)

Testing GR with GWs & with astrophysical observations      (e.g. Berti et al. CQG ’15 arXiv:1501.7274 )

Bottom-up approach: 

• choose the phenomenology to be studied, and the quantities most appropriate to describe it

• devise a parametrization of these quantities 

• typically, each parameter is associated to the violation/modification of some GR property

• compute observables in terms of the parameters

• perform observations/experiments, setting bounds to the parameters

bounds from LIGO-Virgo
detections:

For instance, PPE formalism, parametrizes the gravitational waveform from compact binary inspiral

(𝛼,β,a,b)   ⇔    specific theories

h(⌫) = hGR(⌫)(1 + ↵(⇡M⌫)a)ei�(⇡M⌫)b
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2.Test the gravitational interaction, looking for general relativity deviations in the strong-field regime

 Bottom-up approach:  parametrize observable quantities, set bounds to parameters using observations

 Top-down approach: consider specific GR-modified theories, possibly 
inspired by fundamental physics considerations, work out observable 
consequences, and look for them in the GW data

Most of the modifications can be reformulated as extra scalar fields
e.g. scalar-tensor gravity, Gauss-Bonnet gravity, Galileon theories, etc.

See also the review  “Testing GR with astrophysical observations”, Berti, Barausse, Cardoso, Gualtieri, Pani et al., CQG ‘15

•  We derived the GW stochastic 
background in PPE parametrization

3

FIG. 1: The spectral energy density ⌦GW(f) is plotted as a
function of frequency. ⌦GW(f) is computed in GR and in
modified theories with PPE parameter � = 2, and � = 1, and
di↵erent values of ↵. The power-law integrated sensitivity
curve for 1 year of integration with AdLIGO is also shown.

ground, which, for certain values, is significantly di↵er-
ent from that predicted by GR. As an example, a gravity
theory with � = 2, which yields a 1 PN correction to
the amplitude of the waveform, and ↵ ⇠ 6, would pro-
duce a background three times larger than the fiducial.
A similar behaviour is shown for GWBs with � = 1. As
expected by the PN character of the PPE approach, for
a fixed ↵, smaller values of the exponent � yields larger
deviations.

When ↵ < 0 the amplitude of the GWB decreases,
limiting the possibility to detect these backgrounds with
advanced detectors. However, they are potentially ob-
servable by a third generation of ground based interfer-
ometers. The left panel of Fig. 2 shows the GWB for
some values of ↵ < 0 and � = (2, 1.5, 1), compared to
the power-law integrated sensitivity curve of ET, assum-
ing 1 year of observation.
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FIG. 2: (Left) Same as Fig. (1), for values of negative ↵ and
di↵erent values of �, compared to the ET sensitivity curve
for one year of observation. (Right) The SNR with which
AdLIGO would detect a PPE background is plotted for some
of the gravity theories considered in Sec. IV versus the inte-
gration time.

In the right panel of Fig. 2 we show how the SNR
changes as a function of the integration time, for AdLIGO
and di↵erent PPE models. For some of the considered
configurations the SNR increases to a factor & 10 after

24 months. The fiducial GR background would require
⇠30 years to reach the same value.

FIG. 3: Contour lines corresponding to di↵erent SNR, for
gravity theories with PPE parameters ↵ > 0 and � 2 [0.2, 2]
assuming 1 and 3 years of integration with AdLIGO. The
shaded region identifies the parameter space where the PPE
parameters satisfy the bound |↵u� | < 1, while the long-
dashed curves correspond to the pulsar constraint [23]. The
allowed parameter space is the colored region on the right side
of the pulsar constraint.

In Fig. 3 we extend our analysis, showing the contour
lines for detection thresholds SNR= (3, 5, 8), computed
for AdLIGO with 1 and 3 years of integration, for theo-
ries with ↵ > 0 and � 2 [0.2, 2]. The long-dashed curve
identifies the region where the parameters ↵ and � are
constrained by binary pulsar observations, as computed
in [23]: the allowed region is on the right of this curve.
The shaded region defines the range where ↵ and � sat-
isfy the condition |↵u� | < 1. After 1 year of integration,
AdLIGO would be able to identify GWBs with SNR =
5, produced by modified theories with � & 0.9 and val-
ues of ↵ lying on the red dashed curve. Three years of
observation would be needed to detect the same signals
with 8 . SNR . 10.
In Table I we show the SNR computed for the ad-

vanced and third generation interferometers, for di↵erent
integration times, for the GWB computed using the PPE
waveforms with � = 2. Large SNRs are expected for ET,
(We note that such SNRs may be biased since Eq. (5)
is defined in the small signal approximation, whereas ET
should be able to detect these backgrounds directly.) but
for some values of ↵ and � the GWB could be poten-
tially detectable also by AdLIGO. The analysis presented
above shows that a region of the PPE parameter space
does exist, where the spectral energy density ⌦GW(f)
of the GWB produced by binary black hole coalescence
could be detected by AdLIGO. To further clarify this
point, we assess the ability of current interferometers to
distinguish these GWB from the GR counterpart, and
to extract physical information. We follow the strategy
adopted in [28], where it has recently been pointed out
that second generation detectors may not be able to dis-
tinguish between a BBH GWB and a generic power-law
background. This would strongly a↵ect our ability to

Maselli et al.,
 PRL’16

Example:  Einstein-dilaton Gauss-Bonnet (EdGB) gravity

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi−gp
"
R −

1

2
∂μΦ∂μΦþ αeΦ

4
R2

GB

#
; ð2Þ

where g < 0 is the metric determinant, Φ is a scalar field
coupled to the Gauss-Bonnet invariant (1), and α > 0 is the
coupling constant [20]. Since we are interested in BH
solutions, in the action above we have neglected matter
fields. We use geometric unitsG ¼ c ¼ 1: with this choice,
the scalar field Φ is dimensionless, and α has the dimen-
sions of a length squared.
The field equations of EDGB gravity are found by

varying the action (2) with respect to gμν and Φ:

Gμ
ν ¼

1

2
∂μΦ∂νΦ −

1

4
gμν∂αΦ∂αΦ − αKμ

ν; ð3Þ

S ≡ 1
ffiffiffiffiffiffi−gp ∂μð

ffiffiffiffiffiffi−gp ∂μΦÞ þ α
4
eΦR2

GB ¼ 0; ð4Þ

where Gμν ¼ Rμν − 1
2 gμνR is the Einstein tensor,

Kμν ¼
1

8
ðgμρgνλ þ gμλgνρÞϵkλαβ∇γðϵργμνRμναβ∂keΦÞ; ð5Þ

and ϵμναβ is the Levi-Civita tensor, with ϵ0123 ¼ −ð−gÞ−1=2.
Note that—by virtue of the GB combination entering the
action (2)—the equations are of second differential order,
and, therefore, this theory is free from the Ostrogradsky
instability [13]. Indeed, EDGB gravity is a particular case
[36] of Horndeski gravity—the most general scalar-tensor
theory with second-order field equations [37]. This special
subcase is the only one known to date in which regular,
stationary, asymptotically flat, hairy BH solutions other
than GR ones are found [38]. Furthermore, EDGB gravity
can be obtained from the low-energy expansion of the
bosonic sector of heterotic string theory [12,21]; in such
case, the coupling α is related to the string tension.
In order to simplify our notation, in the next sections we

shall introduce the modified Einstein tensor ~Gμ
ν ¼ Gμ

ν−
Tμ

ν, where

Tμ
ν ¼

1

2
∂μΦ∂νΦ −

1

4
gμν∂αΦ∂αΦ − αKμ

ν ð6Þ

is the effective stress-energy tensor for the dilaton.

B. Static BH solutions

Since the EDGB coupling constant has the dimensions of
the inverse of the curvature tensor, it is natural to expect that
in this theory the strongest deviations from GR will come
from physical systems involving high curvature, such as
BHs, neutron stars, and the early Universe. We focus here
on BH solutions and, in particular, on rotating BH
geometries that are obtained through a slow-rotation
expansion around a static background solution.

The exact BH background solution (first derived in [20])
is described by the static, spherically symmetric line
element

ds2 ¼ −eΓðrÞdt2 þ e−ΛðrÞdr2 þ r2dΩ2; ð7Þ

and by a spherically symmetric scalar field, Φ ¼ ϕðrÞ. The
field equations (3) and (4) supplied by the metric ansatz (7)
reduce to a set of differential equations for the scalar field
and for the functions Γ and Λ. Indeed, Eq. (4) yields

ϕ00 þ ϕ0
$
Γ0 − Λ0

2
þ 2

r

%
¼ αeϕ

2r2

$
Γ0Λ0e−Λ þ ð1 − e−ΛÞ

×
"
Γ00 þ Γ0

2
ðΓ0 − Λ0Þ

#%
; ð8Þ

while the t − t, r − r, and θ − θ components of ~Gμ
ν ¼ 0

reduce to
"
1þ αeϕ

2r
ϕ0ð1 − 3e−ΛÞ

#
Λ0

¼ ϕ02r
4

þ 1 − eΛ

r
þ αeϕ

r
ð1 − e−ΛÞðϕ00 þ ϕ02Þ; ð9Þ

"
1þ αeϕ

2r
ϕ0ð1 − 3e−ΛÞ

#
Γ0 ¼ ϕ02r

4
þ eΛ − 1

r
; ð10Þ

Γ00 þ
$
Γ0

2
þ 1

r

%
ðΓ0 − Λ0Þ

¼ −
ϕ02

2
þ αeϕ−Λ

r
×
"
ϕ0Γ00 þ Γ0ðϕ00 þ ϕ02Þ

þ Γ0ϕ0

2
ðϕ0 − 3Λ0Þ

#
: ð11Þ

Note that Eqs. (9)–(11) are not all independent and that the
r − r component can be solved analytically, yielding

eΛ ¼ −β þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 4γ

p

2
; ð12Þ

where

β ¼ ϕ02r2

4
− 1 − Γ0

$
rþ eϕϕ0

2

%
; γ ¼ 3

2
Γ0ϕ0eϕ: ð13Þ

The remaining two independent equations can be written as

ϕ00 ¼ −
d1
d
; Γ00 ¼ −

d2
d
; ð14Þ

where the radial functions d, d1, and d2 are given in
Appendix A of [20]. The Arnowitt-Deser-Misner mass M
and the dilatonic charge D can be read off the asymptotic
behavior of the metric and of the dilaton field,
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We shall consider a member of this family of modified-
gravity theories, Einstein-dilaton-Gauss-Bonnet (EDGB)
theory, in which a scalar field (the dilaton) is coupled to the
Gauss-Bonnet invariant [12,20]

R2
GB ¼ RαβγδRαβγδ − 4RαβRαβ þ R2 ð1Þ

in the action. EDGB gravity is one of the best motivated
alternatives to GR. Indeed, it is the only theory of gravity
with quadratic curvature terms in the action, whose field
equations are of second differential order for any coupling
and not just in the weak-coupling limit which is assumed in
the effective-field-theory approach [4]. As a consequence,
EDGB gravity is ghost-free; i.e., it avoids the Ostrogradsky
instability [13]. Furthermore, as mentioned above, the
higher-curvature coupling—which modifies the strong-
curvature regime of gravity—violates the hypothesis of
the BH no-hair theorems so that BH solutions in EDGB
gravity are different from those predicted by GR and
provide the ideal arena for genuine strong-field tests of
the Kerr hypothesis. Finally, the EDGB term naturally
arises in low-energy effective string theories [21].
In this work, we construct an analytical, perturbative

solution of EDGB theory, which describes a slowly rotating
BH endowed with a scalar field. To this aim, we extend the
formalism developed in [22,23] up to fifth order in the BH
(dimensionless) spin parameter χ ¼ J=M2, where J and M
are the angular momentum and the Arnowitt-Deser-Misner
mass of the solution, respectively.
Analytical BH solutions of EDGB theory in the small-

coupling limit have been investigated in [24,25], where
stationary, spherically symmetric configurations where
found. Approximate, stationary, and axisymmetric solutions
to linear and quadratic order in the BH spin were obtained in
[26] and [27], respectively. Both of theseworks considered a
weak-field expansion of the coupling between the scalar
field and the Gauss-Bonnet invariant R2

GB in terms of a
dimensionful coupling constant α. Exact numerical solu-
tions were constructed to zeroth [20] and first order [28] in
the spin and also for arbitrary values of the angular
momentum [29,30]. Although exact in α, such solutions
are of limited practical use (for instance, for Monte Carlo
data analysis) because they require a numerical integration
for each set of parameters. On the other hand, numerical
solutions are necessary in regimes where the slow-spin
expansion does not converge and are, therefore, comple-
mentary to our analysis.
Our results extend the study carried out so far. In

particular, we go beyond the analysis of Ref. [27], where
a BH solution was obtained to second order both in the spin
and in the coupling parameter. Indeed, we compute the
metric tensor and the scalar field up to Oðζ7; χ5Þ, where
ζ ≡ α=M2, and α is the EDGB coupling constant. We use
this expansion to derive the main features of the solution,
such as the geometry of the event horizon and of the

ergoregion. Furthermore, we study the geodesic structure of
this solution by computing the ISCO and the epicyclic
frequencies (see, e.g., Refs. [31–33]) consistent with our
approximation scheme. We compare these quantities with
those obtained in [34], where a numerical solution was
derived, which is exact in the coupling parameter (i.e.,
with no perturbative expansion in ζ) and approximate to
linear order in the BH spin. We find relative errors at most
of the order of 1% for the maximum value of ζ allowed by
theoretical constraints for the existence of BH solutions
ζ ≲ 0.691 [20] and much smaller for less extreme
couplings.
The results of this paper can be useful to devise tests of

GR in the strong-field regime through astrophysical obser-
vations of BHs. For instance, we have shown [34] that
observations of quasiperiodic oscillations of accreting BHs,
with the sensitivity of recently proposed large-area x-ray
space telescopes (e.g., [6,7]), allow us to set constraints on
the parameter space of EDGB theory, thus, probing the
strong-field regime of gravity (see, also, Ref. [35] for a
recent study). However, since BH solutions in EDGB
theory (for finite α) were only known at first order1 in
the spin parameter χ, in [34] we only considered BHs with a
very slow-rotation rate, for which the deviations from GR
are expected to be small.
This paper is organized as follows. In Sec. II we derive

our solution of the EDGB field equations, describing
rotating BHs up to Oðζ7; χ5Þ. In Sec. III we study this
solution, computing its geometrical properties, the location
of the ISCO, and the azimuthal and epicyclic frequencies.
We also estimate the accuracy of our approximation in the
determination of these quantities and how our results
improve on the existing literature. In particular, we discuss
how the spin correction to the azimuthal and epicyclic
frequencies can affect possible tests of GR based on
observations of accreting BHs, such as those discussed
in [34]. Finally, in Sec. IV we draw our conclusions.

II. SPINNING BLACK HOLES IN
EINSTEIN-DILATON-GAUSS-BONNET THEORY

In this section, we derive the spacetime metric and scalar
field describing rotating BHs in EDGB theory, up
to Oðζ7; χ5Þ.

A. EDGB gravity

Einstein-dilaton-Gauss-Bonnet theory is defined by the
following action [12,20]:

1As mentioned above, a solution for finite spin and coupling is
only known in numerical form [29,30], and it is impractical for
extensive studies of geodesic properties. However, numerical
solutions are necessary to explore the high-spin regime, espe-
cially because EDGB BHs can violate the Kerr bound and can
have χ > 1 [29].
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(a) q = 1/2 (b) q = 1/4

FIG. 7. (Color online) Same as Fig. 6 but for q = 1/2 (left panels) and q = 1/4 (right panels). In this case also the l = m = 1, 3
multipoles are emitted. As before we compare the numerical data (solid lines) with the PN prediction (dashed lines).

FIG. 8. (Color online) Same as Figs. 6, 7, for the l = m = 0
scalar mode. The smallest mass ratio yields the largest pre-
merger profile. The final BHs have comparable masses and
spin, and therefore similar scalar charge.

and likewise for the second-order flux transported by
the scalar field. We estimate the extrapolation error by
comparing to E/M = E

1

+ B/Rex + C/R2
ex and find

�EGW
1

/EGW
1

. 0.8% and �E(2)
1

/E(2)
1

. 7%. The re-
sults are summarized in Table III.

In Fig. 9 we present the fluxes for all three configura-
tions. The background, i.e., GW flux (black solid lines)
follows the common pattern: it increases monotonically
in amplitude as the BHs circle around each other for the
last few orbits, culminates in a peak during their merger,

and decays exponentially as the newly born BH rings
down to a Kerr BH. We also show the second-order en-
ergy flux carried by the scalar waves (56) (blue dashed
lines) together with the canonical scalar field energy flux
Ė(�) (red dot-dashed lines), rescaled by the appropriate
power ✏2 of the expansion parameter. Exemplarily, we set
✏ = 0.01. We observe that the second-order scalar flux is
dominated by the contribution of the scalar stress-energy
tensor.

The morphology of the signal is determined by the or-
bital dynamics and monotonically increases during the
inspiral of the background BHs. The canonical scalar
field flux also exhibits a peak during the merger that is
predominantly determined by the monopole mode, as is
illustrated by the green dot-dashed lines in Fig. 9. This is
because the system changes rapidly from two nonrotating
BHs, each with its own scalar hair determined by (63) to
a single rotating BH with a new scalar configuration of
this form but with larger mass and, hence, smaller scalar
charge.

The ratio between scalar and gravitational radiation
dramatically increases as the mass ratio decreases. This
is because the scalar charge is determined by the smallest
mass scale in the system yielding the largest curvatures,
and then undergoes a transition to the final BH mass. So
while this characteristic scale changes at most by a factor
of two in the equal-mass case, it can be vastly di↵erent as
we decrease the mass ratio. Whether and how this trend
continues for higher mass ratios is beyond the scope of the
paper and will be presented in a more detailed parameter
study elsewhere.

• We applied Numerical Relativity
to black hole merger in EdGB:
current LIGO-Virgo observations
provide the strongest bounds!

Witek et al., PRD’19
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 1)  How does gravity behave in the strong-field regime?

One can follow either a bottom-up or a top-down approach.

PPE (parametrized post-Einstenian) expansion ( Yunes & Pretorius ‘09 )
    GW compact binary waveform  is directly parametrized: 

h(f) = A

GR

(f)(1 + ↵x

a)ei GR(f)+i�xb

PPF (parametrized post-Friedmannian) expansion ( Hu & Sawitcki ‘07 )
    cosmological quantities & equations are parametrized

ppE paramters: 
      α,β (=0 inGR): amplitude of modification;   

      a,b: PN order     x=(2#Mf)2/3

mapping:   (α,β,a,b) <=> specific theories
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FIG. 4. (Color online) 90%-confidence constraints on the ppE
parameter |�| at nth PN order. The green crosses represent
the bounds reported in [5, 19] through a Bayesian analysis
of event GW150914, mapped to constraints on �. The red
(magenta) dots and line represent bounds from GW150914
(GW151226) estimated with a Fisher analysis, using the IM-
RPhenom waveform (without spin precession) and a fit to the
aLIGO spectral noise density. The constraints obtained with
a Fisher analysis agree very well with the Bayesian constraint
reported in [5, 19]. The blue dotted line shows projected
constraints predicted in 2011 by [142] for a system similar
to GW151226. The dashed black line is a rough estimate
on the constraints that the double binary pulsar PSR J0737-
3039 [127–129] can place on the ppE � parameter [188], while
the cyan star refers to the bound on � at 1PN from the per-
ihelion precession of Mercury [150]. Binary pulsar observa-
tions can constrain negative PN order deviations better than
aLIGO, while aLIGO does better than binary pulsar obser-
vations at higher PN order, as first calculated in [188]. How-
ever, note also that binary pulsar and Solar System bounds
cannot be directly compared to GW ones as the binary pul-
sar (Solar System) one corresponds to the extreme case of no
conservative (no dissipative) corrections. Moreover, stronger
constraints on � for these latter tests do not necessarily mean
stronger constraints on modifications to GR for BH merg-
ers, as � depends not only on theoretical coupling parameters
but also on system parameters, and in certain theories (like
EdGB gravity), non-GR corrections are suppressed in stars
compared to BHs.

Figure 4 shows that GW151226 places stronger con-
straints on � than GW150914 [2, 5] especially at neg-
ative PN orders. This is because GW151226 consists
of a BH binary with lower total mass than GW150914,
and thus, (i) the velocity of the binary constituents at a
fixed frequency (e.g. f ⇠ 50Hz) is smaller and (ii) the
observed frequency range is larger than for GW150914.
The first fact makes the negative-PN-order, ppE correc-
tion terms in the phase and the total number of GW
cycles in band larger than for GW150914. This, to-
gether with the second point above, make � less degen-
erate with other binary parameters, leading to stronger
constraints. Regarding corrections at high positive PN

orders, point (i) results in a deterioration of the con-
straints, while point (ii) strengthens them compared to
GW150914 [2, 5]. Taken together then these oppos-
ing e↵ects lead to similar bounds at positive PN or-
ders for GW150914 and GW151226. We also calculated
the bounds on � by combining those of GW150914 and
GW151226 using Eq. (4.12d) in [76] and found that such
a combined bound is almost indistinguishable from that
of GW151226 alone (the improvement reaches at most
⇠ 30% at n ⇠ 0PN). This finding is consistent with a
similar analysis performed by the LVC [5].
Our analysis and the study of the LVC in [5, 19] di↵er

in many ways, and yet, the two yield similar constraints
on �. The main di↵erences between these studies are
that the former (latter) uses

(i) a Fisher (Bayesian) analysis,

(ii) non-precessing (precessing) waveform templates,

(iii) a fit for the noise curve (the real data),

(iv) a simulated waveform injection compatible with the
real signal (the real signal), and

(v) includes only statistical (both statistical and sys-
tematic) errors.

Probably, di↵erences (i)–(iii) do not have a large impact
on the � constraints for the following reasons. The dif-
ference in statistical errors between Fisher and Bayesian
studies scales as O(1/SNR2) [185, 196], which is only
⇠ O(0.2%) (O(0.6%)) given the SNR of GW150914
(GW151226). Precession for both events was too small
to be measurable by the LVC [2, 4, 5, 136]. The real noise
spectral density contains many spikes, but these are very
thin, and thus, for the same SNR, they a↵ect constraints
on � by only a few percent (see Appendix C)16. We do
not include any specific noise realization in our Fisher
analysis, since (i) such a noise realization only shifts the
posterior distribution without a↵ecting its spread [137],
and (ii) the uncertainties in parameters averaged over
di↵erent noise realizations are the same as those with
zero noise injection [198]. On the other hand, di↵erences
(iv) and (v) are probably more important. For exam-
ple, in our Fisher analysis we set the spin magnitudes
of the injection to zero, but the posteriors found by the
LVC [4] are quite wide, and a di↵erent choice of spin mag-
nitude can a↵ect our Fisher estimates by a factor of ⇠ 2.
Even using the Bayesian analysis of [4], the mapping be-
tween ��i and � [see Eqs. (10) and (11)] depends on the
posterior distribution of other parameters, and di↵erent
choices can also a↵ect constraints on � at high PN or-
der by a factor of ⇠ 2. As another example, consider
the systematic errors on the GW150914 measurement of
��i (or �) reported in [5, 19], i.e. the distance from the
peak of the posterior to zero; these systematic errors are

16 See the related work by [197], which shows that the e↵ect of non-
Gaussianity in the noise on parameter estimation is negligible.

(Yunes et al., PRD ‘16)

Testing GR with GWs & with astrophysical observations      (e.g. Berti et al. CQG ’15 arXiv:1501.7274 )

Bottom-up approach: 

• choose the phenomenology to be studied, and the quantities most appropriate to describe it

• devise a parametrization of these quantities 

• typically, each parameter is associated to the violation/modification of some GR property

• compute observables in terms of the parameters

• perform observations/experiments, setting bounds to the parameters

bounds from LIGO-Virgo
detections:

For instance, PPE formalism, parametrizes the gravitational waveform from compact binary inspiral

(𝛼,β,a,b)   ⇔    specific theories

h(⌫) = hGR(⌫)(1 + ↵(⇡M⌫)a)ei�(⇡M⌫)b

<latexit sha1_base64="l5h2T+tpI7tGVWbq6KGNPwD04UY=">AAACKXicdZBLSwMxFIUzvq2vUZdugkWoCGWmCrpQKLjQjVDFaqFTy530thPMZIYkI5Shf8eNf8WNgqJu/SNOH4LPA4HDd+4lyfFjwbVxnFdrbHxicmp6ZjY3N7+wuGQvr1zoKFEMqywSkar5oFFwiVXDjcBarBBCX+Clf33Yzy9vUGkeyXPTjbERQkfyNmdgMtS0y0HBk8nmQdBMj856A19wtzwQcQC04MWcnvTZFWziVco9H8037Peadt4tOgNR55f5jPJkpErTfvRaEUtClIYJ0LruOrFppKAMZwJ7OS/RGAO7hg7WMyshRN1IBz/t0Y2MtGg7UtmRhg7o140UQq27oZ9NhmAC/TPrw7+yemLae42UyzgxKNnwonYiqIlovzba4gqZEd3MAFM8eytlAShgJis397WE/81FqehuF0unO/ny/qiOGbJG1kmBuGSXlMkxqZAqYeSW3JMn8mzdWQ/Wi/U2HB2zRjur5Jus9w/j/KSV</latexit>



 INFN Roma1 Retreat                                                        Leonardo Gualtieri                                                 Assisi,  16-18 June 2019

1.Modelling  sources of Gravitational Waves

2.Test the gravitational interaction, looking for general relativity deviations in the strong-field regime

3.Determine the equation of state of nuclear matter in the inner core of neutron stars

4.Test the nature of compact objects

5.Search for dark matter candidates looking at its strong gravity interaction with compact objects
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3.Determine the equation of state of nuclear matter in the inner core of neutron stars
Ferrari et al. PRD’09, PRD ’10, Ferrari CQG ’10, Burgio et al. PRD’11, Ferrari et al. PRD’12, Maselli et al. PRD’12, PRD’13a,b, Gusakov et al. MNRAS’13, Martinon et al. PRD’14, 
Gualtieri et al. PRD’14, Pani et al. PRD’15a,b,  Camelio et al. PRD’17, Abdelsalhin et al. PRD’18a,b,  Jimenez-Forteza et al. ’18, Pani et al. PRD’18, Fasano et al. PRD’19 to appear
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3.Determine the equation of state of nuclear matter in the inner core of neutron stars

How does nuclear matter behave in the inner core of neutron stars?

Ferrari et al. PRD’09, PRD ’10, Ferrari CQG ’10, Burgio et al. PRD’11, Ferrari et al. PRD’12, Maselli et al. PRD’12, PRD’13a,b, Gusakov et al. MNRAS’13, Martinon et al. PRD’14, 
Gualtieri et al. PRD’14, Pani et al. PRD’15a,b,  Camelio et al. PRD’17, Abdelsalhin et al. PRD’18a,b,  Jimenez-Forteza et al. ’18, Pani et al. PRD’18, Fasano et al. PRD’19 to appear



Extreme conditions (ε≳1015 g/cm3, ν~1kHz, B~1010-15G)
• can not be reproduced in the lab
• are a challenge for the theory of non-perturbative QCD
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How does nuclear matter behave in the inner core of neutron stars?

Equation of State (EoS) ?
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3.Determine the equation of state of nuclear matter in the inner core of neutron stars

How does nuclear matter behave in the inner core of neutron stars?

Equation of State (EoS) ?
The proposed EoSs are different in physical assumptions,  

particle content and computational approaches

normal matter

quark matter

exotic matter

Ferrari et al. PRD’09, PRD ’10, Ferrari CQG ’10, Burgio et al. PRD’11, Ferrari et al. PRD’12, Maselli et al. PRD’12, PRD’13a,b, Gusakov et al. MNRAS’13, Martinon et al. PRD’14, 
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3.Determine the equation of state of nuclear matter in the inner core of neutron stars

How does nuclear matter behave in the inner core of neutron stars?

Equation of State (EoS) ?
The proposed EoSs are different in physical assumptions,  

particle content and computational approaches

normal matter

quark matter

exotic matter

Ferrari et al. PRD’09, PRD ’10, Ferrari CQG ’10, Burgio et al. PRD’11, Ferrari et al. PRD’12, Maselli et al. PRD’12, PRD’13a,b, Gusakov et al. MNRAS’13, Martinon et al. PRD’14, 
Gualtieri et al. PRD’14, Pani et al. PRD’15a,b,  Camelio et al. PRD’17, Abdelsalhin et al. PRD’18a,b,  Jimenez-Forteza et al. ’18, Pani et al. PRD’18, Fasano et al. PRD’19 to appear

The most promising probe of the NS EoS is the tidal deformability, measured through GWs!
Qab = l Gab

quadrupole tensor
induced by the tidal field tidal tensortidal deformability

(“Love number”)
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3.Determine the equation of state of nuclear matter in the inner core of neutron stars
During the late inspiral and merger of a neutron star binary, 
the stars are tidally deformed and the emitted gravitational wave 
explicitly depends on l!
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Observing and measuring the neutron-star equation-of-state 9
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Figure 1. Parameters characterizing the properties of neutron stars for different equation-of-
state models. The solid, colored curves are the results from the two fiducial models SLy (red)
and MS1b (blue). The black curves show alternative equation-of-state models. Top left: mass-
radius relation, top right: dimensionless spin-quadrupole parameter, bottom: dimensionless
tidal deformability.

the “ISCO”-criterion but instead a fit from numerical relativity simulations for the merger
frequency to terminate the inspiral signal [35].

3. A brief recap of binary-neutron star data analysis techniques

In this section we provide a brief recap of a number of the data analysis techniques that we
will use in later sections in this work. For a more complete introduction to these topics we
refer the reader to [65, 66]. Consider a stretch of data s(t), recorded by a gravitational-wave
observatory. This data is assumed to consist of colored, Gaussian noise n(t) with the possible
presence of a gravitational-wave signal h(t). The noise is described by the one-sided noise
power-spectral density S

n

(f), defined by

1

2
�(f � f 0)S

n

(f) = E[ñ(f)ñ⇤(f 0)], (18)

(Harry & Hinderer, ’18)
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the “ISCO”-criterion but instead a fit from numerical relativity simulations for the merger
frequency to terminate the inspiral signal [35].

3. A brief recap of binary-neutron star data analysis techniques

In this section we provide a brief recap of a number of the data analysis techniques that we
will use in later sections in this work. For a more complete introduction to these topics we
refer the reader to [65, 66]. Consider a stretch of data s(t), recorded by a gravitational-wave
observatory. This data is assumed to consist of colored, Gaussian noise n(t) with the possible
presence of a gravitational-wave signal h(t). The noise is described by the one-sided noise
power-spectral density S

n

(f), defined by

1

2
�(f � f 0)S

n

(f) = E[ñ(f)ñ⇤(f 0)], (18)

(Harry & Hinderer, ’18)

Tidal deformability has been measured with GW170817
thus constraining the EoS and estimating the NS radius

LIGO-Virgo collaboration, ‘18
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the posterior for ⇤̃, goes to zero in the limit ⇤̃ ! 0. To
avoid the misinterpretation that there is no evidence for
⇤̃ = 0, we reweight the posterior for ⇤̃ by dividing by the
prior used, e↵ectively imposing a flat prior in ⇤̃. In prac-
tice, this is done by dividing a histogram of the posterior
by a histogram of the prior. The resulting histogram is
then resampled and smoothed with kernel density esti-
mation. We have verified the validity of the reweighting
procedure by comparing the results to runs where we fix
⇤

2

= 0 and use a flat prior in ⇤̃. This di↵ers from the
reweighting procedure only in the small, next-to-leading-
order tidal e↵ect.

After reweighting there is still some support at ⇤̃ = 0.
For the high-spin prior, we can only place a 90% upper
limit on the tidal parameter, shown in Fig. 11 and listed
in Tables II and IV. For the TaylorF2 model, this 90% up-
per limit can be directly compared to the value reported
in [3]. We note, however, that due to a bookkeeping error
the value reported in [3] should have been 800 instead of
700. Our improved value of 730 is ⇠ 10% less than this
corrected value. As with the ⇤

1

–⇤
2

posterior (Fig. 10),
the three models with the NRTidal prescription predict
90% upper limits that are consistent with each other and
less than the TaylorF2 results by ⇠ 10%. For the low-
spin prior, we can now place a two-sided 90% highest
posterior density (HPD) credible interval on ⇤̃ that does
not contain ⇤̃ = 0. This 90% HPD interval is the smallest
interval that contains 90% of the probability.

The PDFs for the NRTidal waveform models are bi-
modal. The secondary peak’s origin is the subject of
further investigation, but it may result from a specific
noise realization, as similar results have been seen with
injected waveforms with simulated Gaussian noise (see
Fig. 4 of [135]).

In Fig. 11 we also show posteriors of ⇤̃ (gray PDFs)
predicted by the same EOSs as in Fig. 10, evaluated us-
ing the masses m

1

and m
2

sampled from the posterior.
The sharp cuto↵ to the right of each EOS posterior cor-
responds to the equal mass ratio boundary. Again, as in
Fig. 10, the EOSs MS1, MS1b, and H4 lie outside the
90% credible upper limit, and are therefore disfavored.

The di↵erences between the high-spin prior and low-
spin prior can be better understood from the joint pos-
terior for ⇤̃ and the mass ratio q. Figure 12 shows these
posteriors for the PhenomPNRT model without reweight-
ing by the prior. For mass ratios near q = 1, the two
posteriors are similar. However, the high-spin prior al-
lows for a larger range of mass ratios, and for smaller
values of q there is more support for small values of ⇤̃.
If we restrict the mass ratio to q >⇠ 0.5, or equivalently
m

2

>⇠ 1 M�, we find that there is less support for small
values of ⇤̃, and the two posteriors for ⇤̃ are nearly iden-
tical.

To verify that we have reliably measured the tidal
parameters, we supplement the four waveforms used in
this paper with two time-domain EOB waveform models:
SEOBNRv4T [75, 136] and TEOBResumS [74]. SEOB-
NRv4T includes dynamical tides and the e↵ects of the
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FIG. 11. PDFs of the combined tidal parameter ⇤̃ for the
high-spin (top) and low-spin (bottom) priors. Unlike in Fig. 6,
the PDFs have been reweighted by dividing by the origi-
nal prior for ⇤̃ (also shown). The 90% HPD credible in-
tervals are represented by vertical lines for each of the four
waveform models: TaylorF2, PhenomDNRT, SEOBNRT, and
PhenomPNRT. For the high-spin prior, the lower limit on
the credible interval is ⇤̃ = 0. The seven gray PDFs are
those for the seven representative EOSs using the masses es-
timated with the PhenomPNRT model. Their normalization
constants have been rescaled to fit in the figure. For these
EOSs, a 1.36M� NS has a radius of 10.4 km (WFF1), 11.3 km
(APR4), 11.7 km (SLy), 12.4 km (MPA1), 14.0 km (H4),
14.5 km (MS1b), and 14.9 km (MS1).

spin-induced quadrupole moment. TEOBResumS incor-
porates a gravitational-self-force re-summed tidal poten-
tial and the spin-induced quadrupole moment. Both
models are compatible with state-of-the-art BNS numer-
ical simulations up to merger [77, 137].

Unfortunately, these waveform models are too expen-
sive to be used for parameter estimation with LALIn-
ference. We therefore use the parallelized, but less
validated parameter estimation code RapidPE [78, 79].
This code uses a di↵erent procedure from the standard
LALInference code for generating posterior samples
and allows for parameter estimation with significantly
more expensive waveform models. For each point in the
intrinsic parameter space, RapidPE marginalizes over
the extrinsic parameters with Monte Carlo integration.
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ence [63] arrives at a similar conclusion using our ⇤̃ < 800
constraint [5] (though see [52] for an amended ⇤̃ bound)
and the observation that ⇤̃ is almost insensitive to the bi-
nary mass ratio [99]. Our improved estimate of ⇤1.4 =
190+390

�120, and R1 = 10.8+2.0
�1.7 km and R2 = 10.7+2.1

�1.5 km
for the EOS-insensitive-relation analysis is roughly consis-
tent with these estimates (see for example Fig. 1 of [62]
and [58]). If we additionally enforce the heaviest ob-
served pulsar to be supported by placing direct constraints
on the EOS parameter space, we get further improvement
in the radius measurement, with R1 = 11.9+1.4

�1.4 km and
R2 = 11.9+1.4

�1.4 km.

A recent analysis of the GW170817 data was performed
in De et al. [53] using the TaylorF2 model, imposing that
the two NSs have the same radii which, under the addi-
tional assumption that ⇤ / C�6 (an alternative to the ⇤–
C relation used here [104]), directly relates the two tidal
deformabilities as ⇤1 = q6⇤2. De et al. constrain the
common NS radius to a 90% credible interval 8.7 km <
R̂ < 14.1 km, corresponding to a width of 5.4 km, which
is wider than the uncertainties on radii presented in this pa-
per by a factor of about two. There are differences in sev-
eral details of the set-up of the two analyses (most notably,
frequency range, data calibration, the noise PSD estima-
tion, waveform model, parameter priors, assumed relations
between radii and ⇤s and treatment of corresponding un-
certainties), each of which may be responsible for part of

the observed discrepancies. The analysis of De et al. re-
produces the initial tidal deformability results of Abbott
et al. [5], but improvements detailed in [52] and used in this
work improved our tidal constraints by ⇠ 10-20%. Here,
in contrast to De et al, we found that enforcing a common
EOS additionally restricts the recovered tidal parameters,
as shown in Fig 1. We note, however, that while our re-
sulting posteriors for the two NS radii are similar to each
other, a fraction of the posterior samples gives pairs with
significantly different NS radii, up to |R1 � R2| ⇠ 2 km.
Therefore, the De et al. analysis makes considerably dif-
ferent assumptions when enforcing a common EOS than
us.

Our results, and specifically the lower radius limit,
do not constitute observational proof of tidal effects in
GW170817, as our analysis has explicitly assumed that the
coalescing bodies were NSs both in terms of their spins
and tidal deformabilities. In particular, the spins are re-
stricted to small values typical for galactic NSs in binaries,
and the tidal deformabilites are calculated consistently as-
suming a common typical NS EoS. Moreover, the ⇤–C
map diverges as ⇤ approaches zero (BH), and therefore
the lower bounds obtained for the radii do not imply lower
bounds on the tidal deformabilities. Meanwhile, the analy-
sis of [52] assumes independent tidal parameters and finds
a lower bound on ⇤̃ only under the small-spin assumption
but not if spins larger than 0.05 are allowed.

The detection of GW170817 has opened new avenues in
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3.Determine the equation of state of nuclear matter in the inner core of neutron stars
During the late inspiral and merger of a neutron star binary, 
the stars are tidally deformed and the emitted gravitational wave 
explicitly depends on l!

This is a rough, preliminary
bound; in order to really constrain the EoS 
we need to extend and improve the theory 
of tidal deformations in compact binaries!
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Figure 1. Parameters characterizing the properties of neutron stars for different equation-of-
state models. The solid, colored curves are the results from the two fiducial models SLy (red)
and MS1b (blue). The black curves show alternative equation-of-state models. Top left: mass-
radius relation, top right: dimensionless spin-quadrupole parameter, bottom: dimensionless
tidal deformability.

the “ISCO”-criterion but instead a fit from numerical relativity simulations for the merger
frequency to terminate the inspiral signal [35].

3. A brief recap of binary-neutron star data analysis techniques

In this section we provide a brief recap of a number of the data analysis techniques that we
will use in later sections in this work. For a more complete introduction to these topics we
refer the reader to [65, 66]. Consider a stretch of data s(t), recorded by a gravitational-wave
observatory. This data is assumed to consist of colored, Gaussian noise n(t) with the possible
presence of a gravitational-wave signal h(t). The noise is described by the one-sided noise
power-spectral density S

n

(f), defined by

1

2
�(f � f 0)S

n

(f) = E[ñ(f)ñ⇤(f 0)], (18)

(Harry & Hinderer, ’18)

Tidal deformability has been measured with GW170817
thus constraining the EoS and estimating the NS radius

LIGO-Virgo collaboration, ‘18
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the posterior for ⇤̃, goes to zero in the limit ⇤̃ ! 0. To
avoid the misinterpretation that there is no evidence for
⇤̃ = 0, we reweight the posterior for ⇤̃ by dividing by the
prior used, e↵ectively imposing a flat prior in ⇤̃. In prac-
tice, this is done by dividing a histogram of the posterior
by a histogram of the prior. The resulting histogram is
then resampled and smoothed with kernel density esti-
mation. We have verified the validity of the reweighting
procedure by comparing the results to runs where we fix
⇤

2

= 0 and use a flat prior in ⇤̃. This di↵ers from the
reweighting procedure only in the small, next-to-leading-
order tidal e↵ect.

After reweighting there is still some support at ⇤̃ = 0.
For the high-spin prior, we can only place a 90% upper
limit on the tidal parameter, shown in Fig. 11 and listed
in Tables II and IV. For the TaylorF2 model, this 90% up-
per limit can be directly compared to the value reported
in [3]. We note, however, that due to a bookkeeping error
the value reported in [3] should have been 800 instead of
700. Our improved value of 730 is ⇠ 10% less than this
corrected value. As with the ⇤

1

–⇤
2

posterior (Fig. 10),
the three models with the NRTidal prescription predict
90% upper limits that are consistent with each other and
less than the TaylorF2 results by ⇠ 10%. For the low-
spin prior, we can now place a two-sided 90% highest
posterior density (HPD) credible interval on ⇤̃ that does
not contain ⇤̃ = 0. This 90% HPD interval is the smallest
interval that contains 90% of the probability.

The PDFs for the NRTidal waveform models are bi-
modal. The secondary peak’s origin is the subject of
further investigation, but it may result from a specific
noise realization, as similar results have been seen with
injected waveforms with simulated Gaussian noise (see
Fig. 4 of [135]).

In Fig. 11 we also show posteriors of ⇤̃ (gray PDFs)
predicted by the same EOSs as in Fig. 10, evaluated us-
ing the masses m

1

and m
2

sampled from the posterior.
The sharp cuto↵ to the right of each EOS posterior cor-
responds to the equal mass ratio boundary. Again, as in
Fig. 10, the EOSs MS1, MS1b, and H4 lie outside the
90% credible upper limit, and are therefore disfavored.

The di↵erences between the high-spin prior and low-
spin prior can be better understood from the joint pos-
terior for ⇤̃ and the mass ratio q. Figure 12 shows these
posteriors for the PhenomPNRT model without reweight-
ing by the prior. For mass ratios near q = 1, the two
posteriors are similar. However, the high-spin prior al-
lows for a larger range of mass ratios, and for smaller
values of q there is more support for small values of ⇤̃.
If we restrict the mass ratio to q >⇠ 0.5, or equivalently
m

2

>⇠ 1 M�, we find that there is less support for small
values of ⇤̃, and the two posteriors for ⇤̃ are nearly iden-
tical.

To verify that we have reliably measured the tidal
parameters, we supplement the four waveforms used in
this paper with two time-domain EOB waveform models:
SEOBNRv4T [75, 136] and TEOBResumS [74]. SEOB-
NRv4T includes dynamical tides and the e↵ects of the
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FIG. 11. PDFs of the combined tidal parameter ⇤̃ for the
high-spin (top) and low-spin (bottom) priors. Unlike in Fig. 6,
the PDFs have been reweighted by dividing by the origi-
nal prior for ⇤̃ (also shown). The 90% HPD credible in-
tervals are represented by vertical lines for each of the four
waveform models: TaylorF2, PhenomDNRT, SEOBNRT, and
PhenomPNRT. For the high-spin prior, the lower limit on
the credible interval is ⇤̃ = 0. The seven gray PDFs are
those for the seven representative EOSs using the masses es-
timated with the PhenomPNRT model. Their normalization
constants have been rescaled to fit in the figure. For these
EOSs, a 1.36M� NS has a radius of 10.4 km (WFF1), 11.3 km
(APR4), 11.7 km (SLy), 12.4 km (MPA1), 14.0 km (H4),
14.5 km (MS1b), and 14.9 km (MS1).

spin-induced quadrupole moment. TEOBResumS incor-
porates a gravitational-self-force re-summed tidal poten-
tial and the spin-induced quadrupole moment. Both
models are compatible with state-of-the-art BNS numer-
ical simulations up to merger [77, 137].

Unfortunately, these waveform models are too expen-
sive to be used for parameter estimation with LALIn-
ference. We therefore use the parallelized, but less
validated parameter estimation code RapidPE [78, 79].
This code uses a di↵erent procedure from the standard
LALInference code for generating posterior samples
and allows for parameter estimation with significantly
more expensive waveform models. For each point in the
intrinsic parameter space, RapidPE marginalizes over
the extrinsic parameters with Monte Carlo integration.
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FIG. 3. Marginalized posterior for the mass m and areal radius R of each binary component using EOS-insensitive relations (left panel)
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posterior corresponds to the heavier (lighter) NS. Example mass-radius curves for selected EOSs are overplotted in grey. The lines in
the top left denote the Schwarzschild BH (R = 2m) and Buchdahl (R = 9m/4) limits. In the one-dimensional plots, solid lines are
used for the posteriors, while dashed lines are used for the corresponding parameter priors. Dotted vertical lines are used for the bounds
of the 90% credible intervals.

ence [63] arrives at a similar conclusion using our ⇤̃ < 800
constraint [5] (though see [52] for an amended ⇤̃ bound)
and the observation that ⇤̃ is almost insensitive to the bi-
nary mass ratio [99]. Our improved estimate of ⇤1.4 =
190+390

�120, and R1 = 10.8+2.0
�1.7 km and R2 = 10.7+2.1

�1.5 km
for the EOS-insensitive-relation analysis is roughly consis-
tent with these estimates (see for example Fig. 1 of [62]
and [58]). If we additionally enforce the heaviest ob-
served pulsar to be supported by placing direct constraints
on the EOS parameter space, we get further improvement
in the radius measurement, with R1 = 11.9+1.4

�1.4 km and
R2 = 11.9+1.4

�1.4 km.

A recent analysis of the GW170817 data was performed
in De et al. [53] using the TaylorF2 model, imposing that
the two NSs have the same radii which, under the addi-
tional assumption that ⇤ / C�6 (an alternative to the ⇤–
C relation used here [104]), directly relates the two tidal
deformabilities as ⇤1 = q6⇤2. De et al. constrain the
common NS radius to a 90% credible interval 8.7 km <
R̂ < 14.1 km, corresponding to a width of 5.4 km, which
is wider than the uncertainties on radii presented in this pa-
per by a factor of about two. There are differences in sev-
eral details of the set-up of the two analyses (most notably,
frequency range, data calibration, the noise PSD estima-
tion, waveform model, parameter priors, assumed relations
between radii and ⇤s and treatment of corresponding un-
certainties), each of which may be responsible for part of

the observed discrepancies. The analysis of De et al. re-
produces the initial tidal deformability results of Abbott
et al. [5], but improvements detailed in [52] and used in this
work improved our tidal constraints by ⇠ 10-20%. Here,
in contrast to De et al, we found that enforcing a common
EOS additionally restricts the recovered tidal parameters,
as shown in Fig 1. We note, however, that while our re-
sulting posteriors for the two NS radii are similar to each
other, a fraction of the posterior samples gives pairs with
significantly different NS radii, up to |R1 � R2| ⇠ 2 km.
Therefore, the De et al. analysis makes considerably dif-
ferent assumptions when enforcing a common EOS than
us.

Our results, and specifically the lower radius limit,
do not constitute observational proof of tidal effects in
GW170817, as our analysis has explicitly assumed that the
coalescing bodies were NSs both in terms of their spins
and tidal deformabilities. In particular, the spins are re-
stricted to small values typical for galactic NSs in binaries,
and the tidal deformabilites are calculated consistently as-
suming a common typical NS EoS. Moreover, the ⇤–C
map diverges as ⇤ approaches zero (BH), and therefore
the lower bounds obtained for the radii do not imply lower
bounds on the tidal deformabilities. Meanwhile, the analy-
sis of [52] assumes independent tidal parameters and finds
a lower bound on ⇤̃ only under the small-spin assumption
but not if spins larger than 0.05 are allowed.

The detection of GW170817 has opened new avenues in
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3.Determine the equation of state of nuclear matter in the inner core of neutron stars
During the late inspiral and merger of a neutron star binary, 
the stars are tidally deformed and the emitted gravitational wave 
explicitly depends on l!

This is a rough, preliminary
bound; in order to really constrain the EoS 
we need to extend and improve the theory 
of tidal deformations in compact binaries!

• We extended the post-Newtonian description of tidal deformation to include the rotation of the star
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Figure 1. Parameters characterizing the properties of neutron stars for different equation-of-
state models. The solid, colored curves are the results from the two fiducial models SLy (red)
and MS1b (blue). The black curves show alternative equation-of-state models. Top left: mass-
radius relation, top right: dimensionless spin-quadrupole parameter, bottom: dimensionless
tidal deformability.

the “ISCO”-criterion but instead a fit from numerical relativity simulations for the merger
frequency to terminate the inspiral signal [35].

3. A brief recap of binary-neutron star data analysis techniques

In this section we provide a brief recap of a number of the data analysis techniques that we
will use in later sections in this work. For a more complete introduction to these topics we
refer the reader to [65, 66]. Consider a stretch of data s(t), recorded by a gravitational-wave
observatory. This data is assumed to consist of colored, Gaussian noise n(t) with the possible
presence of a gravitational-wave signal h(t). The noise is described by the one-sided noise
power-spectral density S

n

(f), defined by

1

2
�(f � f 0)S

n

(f) = E[ñ(f)ñ⇤(f 0)], (18)

(Harry & Hinderer, ’18)

Tidal deformability has been measured with GW170817
thus constraining the EoS and estimating the NS radius
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the posterior for ⇤̃, goes to zero in the limit ⇤̃ ! 0. To
avoid the misinterpretation that there is no evidence for
⇤̃ = 0, we reweight the posterior for ⇤̃ by dividing by the
prior used, e↵ectively imposing a flat prior in ⇤̃. In prac-
tice, this is done by dividing a histogram of the posterior
by a histogram of the prior. The resulting histogram is
then resampled and smoothed with kernel density esti-
mation. We have verified the validity of the reweighting
procedure by comparing the results to runs where we fix
⇤

2

= 0 and use a flat prior in ⇤̃. This di↵ers from the
reweighting procedure only in the small, next-to-leading-
order tidal e↵ect.

After reweighting there is still some support at ⇤̃ = 0.
For the high-spin prior, we can only place a 90% upper
limit on the tidal parameter, shown in Fig. 11 and listed
in Tables II and IV. For the TaylorF2 model, this 90% up-
per limit can be directly compared to the value reported
in [3]. We note, however, that due to a bookkeeping error
the value reported in [3] should have been 800 instead of
700. Our improved value of 730 is ⇠ 10% less than this
corrected value. As with the ⇤

1

–⇤
2

posterior (Fig. 10),
the three models with the NRTidal prescription predict
90% upper limits that are consistent with each other and
less than the TaylorF2 results by ⇠ 10%. For the low-
spin prior, we can now place a two-sided 90% highest
posterior density (HPD) credible interval on ⇤̃ that does
not contain ⇤̃ = 0. This 90% HPD interval is the smallest
interval that contains 90% of the probability.

The PDFs for the NRTidal waveform models are bi-
modal. The secondary peak’s origin is the subject of
further investigation, but it may result from a specific
noise realization, as similar results have been seen with
injected waveforms with simulated Gaussian noise (see
Fig. 4 of [135]).

In Fig. 11 we also show posteriors of ⇤̃ (gray PDFs)
predicted by the same EOSs as in Fig. 10, evaluated us-
ing the masses m

1

and m
2

sampled from the posterior.
The sharp cuto↵ to the right of each EOS posterior cor-
responds to the equal mass ratio boundary. Again, as in
Fig. 10, the EOSs MS1, MS1b, and H4 lie outside the
90% credible upper limit, and are therefore disfavored.

The di↵erences between the high-spin prior and low-
spin prior can be better understood from the joint pos-
terior for ⇤̃ and the mass ratio q. Figure 12 shows these
posteriors for the PhenomPNRT model without reweight-
ing by the prior. For mass ratios near q = 1, the two
posteriors are similar. However, the high-spin prior al-
lows for a larger range of mass ratios, and for smaller
values of q there is more support for small values of ⇤̃.
If we restrict the mass ratio to q >⇠ 0.5, or equivalently
m

2

>⇠ 1 M�, we find that there is less support for small
values of ⇤̃, and the two posteriors for ⇤̃ are nearly iden-
tical.

To verify that we have reliably measured the tidal
parameters, we supplement the four waveforms used in
this paper with two time-domain EOB waveform models:
SEOBNRv4T [75, 136] and TEOBResumS [74]. SEOB-
NRv4T includes dynamical tides and the e↵ects of the
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FIG. 11. PDFs of the combined tidal parameter ⇤̃ for the
high-spin (top) and low-spin (bottom) priors. Unlike in Fig. 6,
the PDFs have been reweighted by dividing by the origi-
nal prior for ⇤̃ (also shown). The 90% HPD credible in-
tervals are represented by vertical lines for each of the four
waveform models: TaylorF2, PhenomDNRT, SEOBNRT, and
PhenomPNRT. For the high-spin prior, the lower limit on
the credible interval is ⇤̃ = 0. The seven gray PDFs are
those for the seven representative EOSs using the masses es-
timated with the PhenomPNRT model. Their normalization
constants have been rescaled to fit in the figure. For these
EOSs, a 1.36M� NS has a radius of 10.4 km (WFF1), 11.3 km
(APR4), 11.7 km (SLy), 12.4 km (MPA1), 14.0 km (H4),
14.5 km (MS1b), and 14.9 km (MS1).

spin-induced quadrupole moment. TEOBResumS incor-
porates a gravitational-self-force re-summed tidal poten-
tial and the spin-induced quadrupole moment. Both
models are compatible with state-of-the-art BNS numer-
ical simulations up to merger [77, 137].

Unfortunately, these waveform models are too expen-
sive to be used for parameter estimation with LALIn-
ference. We therefore use the parallelized, but less
validated parameter estimation code RapidPE [78, 79].
This code uses a di↵erent procedure from the standard
LALInference code for generating posterior samples
and allows for parameter estimation with significantly
more expensive waveform models. For each point in the
intrinsic parameter space, RapidPE marginalizes over
the extrinsic parameters with Monte Carlo integration.
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FIG. 3. Marginalized posterior for the mass m and areal radius R of each binary component using EOS-insensitive relations (left panel)
and a parametrized EOS where we impose a lower limit on the maximum mass of 1.97M� (right panel). The top blue (bottom orange)
posterior corresponds to the heavier (lighter) NS. Example mass-radius curves for selected EOSs are overplotted in grey. The lines in
the top left denote the Schwarzschild BH (R = 2m) and Buchdahl (R = 9m/4) limits. In the one-dimensional plots, solid lines are
used for the posteriors, while dashed lines are used for the corresponding parameter priors. Dotted vertical lines are used for the bounds
of the 90% credible intervals.

ence [63] arrives at a similar conclusion using our ⇤̃ < 800
constraint [5] (though see [52] for an amended ⇤̃ bound)
and the observation that ⇤̃ is almost insensitive to the bi-
nary mass ratio [99]. Our improved estimate of ⇤1.4 =
190+390

�120, and R1 = 10.8+2.0
�1.7 km and R2 = 10.7+2.1

�1.5 km
for the EOS-insensitive-relation analysis is roughly consis-
tent with these estimates (see for example Fig. 1 of [62]
and [58]). If we additionally enforce the heaviest ob-
served pulsar to be supported by placing direct constraints
on the EOS parameter space, we get further improvement
in the radius measurement, with R1 = 11.9+1.4

�1.4 km and
R2 = 11.9+1.4

�1.4 km.

A recent analysis of the GW170817 data was performed
in De et al. [53] using the TaylorF2 model, imposing that
the two NSs have the same radii which, under the addi-
tional assumption that ⇤ / C�6 (an alternative to the ⇤–
C relation used here [104]), directly relates the two tidal
deformabilities as ⇤1 = q6⇤2. De et al. constrain the
common NS radius to a 90% credible interval 8.7 km <
R̂ < 14.1 km, corresponding to a width of 5.4 km, which
is wider than the uncertainties on radii presented in this pa-
per by a factor of about two. There are differences in sev-
eral details of the set-up of the two analyses (most notably,
frequency range, data calibration, the noise PSD estima-
tion, waveform model, parameter priors, assumed relations
between radii and ⇤s and treatment of corresponding un-
certainties), each of which may be responsible for part of

the observed discrepancies. The analysis of De et al. re-
produces the initial tidal deformability results of Abbott
et al. [5], but improvements detailed in [52] and used in this
work improved our tidal constraints by ⇠ 10-20%. Here,
in contrast to De et al, we found that enforcing a common
EOS additionally restricts the recovered tidal parameters,
as shown in Fig 1. We note, however, that while our re-
sulting posteriors for the two NS radii are similar to each
other, a fraction of the posterior samples gives pairs with
significantly different NS radii, up to |R1 � R2| ⇠ 2 km.
Therefore, the De et al. analysis makes considerably dif-
ferent assumptions when enforcing a common EOS than
us.

Our results, and specifically the lower radius limit,
do not constitute observational proof of tidal effects in
GW170817, as our analysis has explicitly assumed that the
coalescing bodies were NSs both in terms of their spins
and tidal deformabilities. In particular, the spins are re-
stricted to small values typical for galactic NSs in binaries,
and the tidal deformabilites are calculated consistently as-
suming a common typical NS EoS. Moreover, the ⇤–C
map diverges as ⇤ approaches zero (BH), and therefore
the lower bounds obtained for the radii do not imply lower
bounds on the tidal deformabilities. Meanwhile, the analy-
sis of [52] assumes independent tidal parameters and finds
a lower bound on ⇤̃ only under the small-spin assumption
but not if spins larger than 0.05 are allowed.

The detection of GW170817 has opened new avenues in
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3.Determine the equation of state of nuclear matter in the inner core of neutron stars
During the late inspiral and merger of a neutron star binary, 
the stars are tidally deformed and the emitted gravitational wave 
explicitly depends on l!

This is a rough, preliminary
bound; in order to really constrain the EoS 
we need to extend and improve the theory 
of tidal deformations in compact binaries!

• We extended the post-Newtonian description of tidal deformation to include the rotation of the star
The rotational contribution we have derived can be significant in the data 
analysis of the Einstein Telescope, for events as loud as GW170817
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FIG. 8. Probability distributions obtained for two BNS spinning at
� = 0.1 (dashed green line) and � = �0.1 (orange line), assuming ir-
rotational fluids, with the ET-D noise sensitivity curve but now con-
sidering the case of observing GW170817 with an optimal orienta-
tion and ⇤̃ = {300, 800} (top and bottom panels). The vertical dashed
lines define the best-likelihood values while the solid areas define the
90% credible intervals. The red dashed vertical line defines the in-
jected value ⇤̃0.

for the triplet � � ⇢ � ⇤̃0 (with �1 = �2 = �) required to dis-
tinguish the e↵ects of the spin-tidal terms for a GW170817-
like event detected with ET-D. To do so, we have computed
the match of a h0(⇤̃0, �) against h�(⇤̃0, �), for ⇤̃0 2 [0, 2000]
and � 2 [�0.79, 0.79]. The results of the match are trans-
lated to ⇢ through Eq. (21) for a D = 6 parameter space,
where we require one to estimate all the parameters at 90%
credible level, i.e., n = 1.64. The results of this analysis are
shown in Fig. 9. The contour lines represent the minimum
SNR needed to observe some characteristic combination of
⇤̃0 and �1 = �2 = �. The solid and dashed vertical grid lines
⇤̃0 = {300, 800} set the median and 90% upper limit provided
by [1, 8], respectively. Then, the intersection of ⇤̃0 = 800
with the ⇢ = {1500, 1750} contours shows that the minimum
spin required to distinguish the spin-tidal e↵ects from a h0
template at the 90% level is � ⇠ ±0.07, respectively. Notice
that the intersection of the ⇤̃0 = 800 line with the green con-
tour line (⇢ = 1750) corresponds to the particular case shown
in Fig. 8. Moreover, from Fig. 9, we see that larger spins
are required to attain the same SNR as ⇤̃0 decreases. In par-
ticular, for ⇤̃ = 300 and ⇢ = 1750 the intersection occurs at
� ⇠ ±0.15. Therefore, spin-tidal couplings are only expected
to a↵ect significantly the signal for putative optimally ori-
ented BNS events, observed with third-generation detectors,

FIG. 9. Estimation of the SNR required to distinguish the e↵ects
of the spin-tidal terms considering the ET-D noise sensitivity curve.
The vertical red grid lines fix the tidal deformabilities consistent with
the median and 90% upper limits provided by LIGO-Virgo [1, 8]
respectively. The blue and green contour lines correspond to the SNR
of our standard and optimistic scenarios.

and for moderately large spins. On the other hand, the cali-
bration of these e↵ects on current waveform templates would
have a non-negligible impact only if high-spin binaries (with
�i & 0.1) evolve and merge in our local universe.

Finally, we note that we have also estimated the one-
dimensional probability distributions on p(⇤̃) by running a
six-dimensional Markov chain Monte Carlo algorithm on
Eq. (15), where p(⇤̃) is obtained by marginalization. By doing
so, we did not observe any relevant di↵erences with respect to
the distributions p(⇤̃) obtained in this section, thus suggest-
ing that the correlations between the physical parameters do
not a↵ect our results in such high SNR scenarios.

VI. TRUNCATION EFFECTS ON HIGH-PN ORDER
TAYLORF2 TERMS

PN models approximate the orbital dynamics by a power-
series expansion of the equations in terms of the parameter
x = v2/c2 = (G!M)2/3/c2 ⌧ 1. However, in the high-
frequency regime the optimal truncation order may be limited
by the convergence properties of the PN series. This has been
extensively studied in the case of binary black holes, where
the expansion above 3PN order is shown to break down at rel-
atively low frequencies [80–83]. In this section we study the
properties of the tidal part of the PN series as an asymptotic
series [84]. Formally, a power series is said to be asymptotic
to a function f (x) as x! x0 if for each N

f (x) �
NX

n=0

an(x � x0)n ⌧ aN(x � x0)N . (23)

This equation states that, to satisfy the asymptotic condition
near some point x0, the di↵erence between a function and the
N-truncated sum of the series should be much smaller than

Jimenez-Forteza et al., PRD’18
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Figure 1. Parameters characterizing the properties of neutron stars for different equation-of-
state models. The solid, colored curves are the results from the two fiducial models SLy (red)
and MS1b (blue). The black curves show alternative equation-of-state models. Top left: mass-
radius relation, top right: dimensionless spin-quadrupole parameter, bottom: dimensionless
tidal deformability.

the “ISCO”-criterion but instead a fit from numerical relativity simulations for the merger
frequency to terminate the inspiral signal [35].

3. A brief recap of binary-neutron star data analysis techniques

In this section we provide a brief recap of a number of the data analysis techniques that we
will use in later sections in this work. For a more complete introduction to these topics we
refer the reader to [65, 66]. Consider a stretch of data s(t), recorded by a gravitational-wave
observatory. This data is assumed to consist of colored, Gaussian noise n(t) with the possible
presence of a gravitational-wave signal h(t). The noise is described by the one-sided noise
power-spectral density S

n

(f), defined by

1

2
�(f � f 0)S

n

(f) = E[ñ(f)ñ⇤(f 0)], (18)

(Harry & Hinderer, ’18)

Tidal deformability has been measured with GW170817
thus constraining the EoS and estimating the NS radius
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the posterior for ⇤̃, goes to zero in the limit ⇤̃ ! 0. To
avoid the misinterpretation that there is no evidence for
⇤̃ = 0, we reweight the posterior for ⇤̃ by dividing by the
prior used, e↵ectively imposing a flat prior in ⇤̃. In prac-
tice, this is done by dividing a histogram of the posterior
by a histogram of the prior. The resulting histogram is
then resampled and smoothed with kernel density esti-
mation. We have verified the validity of the reweighting
procedure by comparing the results to runs where we fix
⇤

2

= 0 and use a flat prior in ⇤̃. This di↵ers from the
reweighting procedure only in the small, next-to-leading-
order tidal e↵ect.

After reweighting there is still some support at ⇤̃ = 0.
For the high-spin prior, we can only place a 90% upper
limit on the tidal parameter, shown in Fig. 11 and listed
in Tables II and IV. For the TaylorF2 model, this 90% up-
per limit can be directly compared to the value reported
in [3]. We note, however, that due to a bookkeeping error
the value reported in [3] should have been 800 instead of
700. Our improved value of 730 is ⇠ 10% less than this
corrected value. As with the ⇤

1

–⇤
2

posterior (Fig. 10),
the three models with the NRTidal prescription predict
90% upper limits that are consistent with each other and
less than the TaylorF2 results by ⇠ 10%. For the low-
spin prior, we can now place a two-sided 90% highest
posterior density (HPD) credible interval on ⇤̃ that does
not contain ⇤̃ = 0. This 90% HPD interval is the smallest
interval that contains 90% of the probability.

The PDFs for the NRTidal waveform models are bi-
modal. The secondary peak’s origin is the subject of
further investigation, but it may result from a specific
noise realization, as similar results have been seen with
injected waveforms with simulated Gaussian noise (see
Fig. 4 of [135]).

In Fig. 11 we also show posteriors of ⇤̃ (gray PDFs)
predicted by the same EOSs as in Fig. 10, evaluated us-
ing the masses m

1

and m
2

sampled from the posterior.
The sharp cuto↵ to the right of each EOS posterior cor-
responds to the equal mass ratio boundary. Again, as in
Fig. 10, the EOSs MS1, MS1b, and H4 lie outside the
90% credible upper limit, and are therefore disfavored.

The di↵erences between the high-spin prior and low-
spin prior can be better understood from the joint pos-
terior for ⇤̃ and the mass ratio q. Figure 12 shows these
posteriors for the PhenomPNRT model without reweight-
ing by the prior. For mass ratios near q = 1, the two
posteriors are similar. However, the high-spin prior al-
lows for a larger range of mass ratios, and for smaller
values of q there is more support for small values of ⇤̃.
If we restrict the mass ratio to q >⇠ 0.5, or equivalently
m

2

>⇠ 1 M�, we find that there is less support for small
values of ⇤̃, and the two posteriors for ⇤̃ are nearly iden-
tical.

To verify that we have reliably measured the tidal
parameters, we supplement the four waveforms used in
this paper with two time-domain EOB waveform models:
SEOBNRv4T [75, 136] and TEOBResumS [74]. SEOB-
NRv4T includes dynamical tides and the e↵ects of the
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FIG. 11. PDFs of the combined tidal parameter ⇤̃ for the
high-spin (top) and low-spin (bottom) priors. Unlike in Fig. 6,
the PDFs have been reweighted by dividing by the origi-
nal prior for ⇤̃ (also shown). The 90% HPD credible in-
tervals are represented by vertical lines for each of the four
waveform models: TaylorF2, PhenomDNRT, SEOBNRT, and
PhenomPNRT. For the high-spin prior, the lower limit on
the credible interval is ⇤̃ = 0. The seven gray PDFs are
those for the seven representative EOSs using the masses es-
timated with the PhenomPNRT model. Their normalization
constants have been rescaled to fit in the figure. For these
EOSs, a 1.36M� NS has a radius of 10.4 km (WFF1), 11.3 km
(APR4), 11.7 km (SLy), 12.4 km (MPA1), 14.0 km (H4),
14.5 km (MS1b), and 14.9 km (MS1).

spin-induced quadrupole moment. TEOBResumS incor-
porates a gravitational-self-force re-summed tidal poten-
tial and the spin-induced quadrupole moment. Both
models are compatible with state-of-the-art BNS numer-
ical simulations up to merger [77, 137].

Unfortunately, these waveform models are too expen-
sive to be used for parameter estimation with LALIn-
ference. We therefore use the parallelized, but less
validated parameter estimation code RapidPE [78, 79].
This code uses a di↵erent procedure from the standard
LALInference code for generating posterior samples
and allows for parameter estimation with significantly
more expensive waveform models. For each point in the
intrinsic parameter space, RapidPE marginalizes over
the extrinsic parameters with Monte Carlo integration.
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FIG. 3. Marginalized posterior for the mass m and areal radius R of each binary component using EOS-insensitive relations (left panel)
and a parametrized EOS where we impose a lower limit on the maximum mass of 1.97M� (right panel). The top blue (bottom orange)
posterior corresponds to the heavier (lighter) NS. Example mass-radius curves for selected EOSs are overplotted in grey. The lines in
the top left denote the Schwarzschild BH (R = 2m) and Buchdahl (R = 9m/4) limits. In the one-dimensional plots, solid lines are
used for the posteriors, while dashed lines are used for the corresponding parameter priors. Dotted vertical lines are used for the bounds
of the 90% credible intervals.

ence [63] arrives at a similar conclusion using our ⇤̃ < 800
constraint [5] (though see [52] for an amended ⇤̃ bound)
and the observation that ⇤̃ is almost insensitive to the bi-
nary mass ratio [99]. Our improved estimate of ⇤1.4 =
190+390

�120, and R1 = 10.8+2.0
�1.7 km and R2 = 10.7+2.1

�1.5 km
for the EOS-insensitive-relation analysis is roughly consis-
tent with these estimates (see for example Fig. 1 of [62]
and [58]). If we additionally enforce the heaviest ob-
served pulsar to be supported by placing direct constraints
on the EOS parameter space, we get further improvement
in the radius measurement, with R1 = 11.9+1.4

�1.4 km and
R2 = 11.9+1.4

�1.4 km.

A recent analysis of the GW170817 data was performed
in De et al. [53] using the TaylorF2 model, imposing that
the two NSs have the same radii which, under the addi-
tional assumption that ⇤ / C�6 (an alternative to the ⇤–
C relation used here [104]), directly relates the two tidal
deformabilities as ⇤1 = q6⇤2. De et al. constrain the
common NS radius to a 90% credible interval 8.7 km <
R̂ < 14.1 km, corresponding to a width of 5.4 km, which
is wider than the uncertainties on radii presented in this pa-
per by a factor of about two. There are differences in sev-
eral details of the set-up of the two analyses (most notably,
frequency range, data calibration, the noise PSD estima-
tion, waveform model, parameter priors, assumed relations
between radii and ⇤s and treatment of corresponding un-
certainties), each of which may be responsible for part of

the observed discrepancies. The analysis of De et al. re-
produces the initial tidal deformability results of Abbott
et al. [5], but improvements detailed in [52] and used in this
work improved our tidal constraints by ⇠ 10-20%. Here,
in contrast to De et al, we found that enforcing a common
EOS additionally restricts the recovered tidal parameters,
as shown in Fig 1. We note, however, that while our re-
sulting posteriors for the two NS radii are similar to each
other, a fraction of the posterior samples gives pairs with
significantly different NS radii, up to |R1 � R2| ⇠ 2 km.
Therefore, the De et al. analysis makes considerably dif-
ferent assumptions when enforcing a common EOS than
us.

Our results, and specifically the lower radius limit,
do not constitute observational proof of tidal effects in
GW170817, as our analysis has explicitly assumed that the
coalescing bodies were NSs both in terms of their spins
and tidal deformabilities. In particular, the spins are re-
stricted to small values typical for galactic NSs in binaries,
and the tidal deformabilites are calculated consistently as-
suming a common typical NS EoS. Moreover, the ⇤–C
map diverges as ⇤ approaches zero (BH), and therefore
the lower bounds obtained for the radii do not imply lower
bounds on the tidal deformabilities. Meanwhile, the analy-
sis of [52] assumes independent tidal parameters and finds
a lower bound on ⇤̃ only under the small-spin assumption
but not if spins larger than 0.05 are allowed.

The detection of GW170817 has opened new avenues in
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3.Determine the equation of state of nuclear matter in the inner core of neutron stars
During the late inspiral and merger of a neutron star binary, 
the stars are tidally deformed and the emitted gravitational wave 
explicitly depends on l!

This is a rough, preliminary
bound; in order to really constrain the EoS 
we need to extend and improve the theory 
of tidal deformations in compact binaries!

• We extended the post-Newtonian description of tidal deformation to include the rotation of the star

• We developed a Bayesian approach 
to combine GW measurements of 
tidal deformability with 
astrophysical (X-ray) 
measurements of the neutron star 
radius, getting tighther bounds

The rotational contribution we have derived can be significant in the data 
analysis of the Einstein Telescope, for events as loud as GW170817
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FIG. 8. Probability distributions obtained for two BNS spinning at
� = 0.1 (dashed green line) and � = �0.1 (orange line), assuming ir-
rotational fluids, with the ET-D noise sensitivity curve but now con-
sidering the case of observing GW170817 with an optimal orienta-
tion and ⇤̃ = {300, 800} (top and bottom panels). The vertical dashed
lines define the best-likelihood values while the solid areas define the
90% credible intervals. The red dashed vertical line defines the in-
jected value ⇤̃0.

for the triplet � � ⇢ � ⇤̃0 (with �1 = �2 = �) required to dis-
tinguish the e↵ects of the spin-tidal terms for a GW170817-
like event detected with ET-D. To do so, we have computed
the match of a h0(⇤̃0, �) against h�(⇤̃0, �), for ⇤̃0 2 [0, 2000]
and � 2 [�0.79, 0.79]. The results of the match are trans-
lated to ⇢ through Eq. (21) for a D = 6 parameter space,
where we require one to estimate all the parameters at 90%
credible level, i.e., n = 1.64. The results of this analysis are
shown in Fig. 9. The contour lines represent the minimum
SNR needed to observe some characteristic combination of
⇤̃0 and �1 = �2 = �. The solid and dashed vertical grid lines
⇤̃0 = {300, 800} set the median and 90% upper limit provided
by [1, 8], respectively. Then, the intersection of ⇤̃0 = 800
with the ⇢ = {1500, 1750} contours shows that the minimum
spin required to distinguish the spin-tidal e↵ects from a h0
template at the 90% level is � ⇠ ±0.07, respectively. Notice
that the intersection of the ⇤̃0 = 800 line with the green con-
tour line (⇢ = 1750) corresponds to the particular case shown
in Fig. 8. Moreover, from Fig. 9, we see that larger spins
are required to attain the same SNR as ⇤̃0 decreases. In par-
ticular, for ⇤̃ = 300 and ⇢ = 1750 the intersection occurs at
� ⇠ ±0.15. Therefore, spin-tidal couplings are only expected
to a↵ect significantly the signal for putative optimally ori-
ented BNS events, observed with third-generation detectors,

FIG. 9. Estimation of the SNR required to distinguish the e↵ects
of the spin-tidal terms considering the ET-D noise sensitivity curve.
The vertical red grid lines fix the tidal deformabilities consistent with
the median and 90% upper limits provided by LIGO-Virgo [1, 8]
respectively. The blue and green contour lines correspond to the SNR
of our standard and optimistic scenarios.

and for moderately large spins. On the other hand, the cali-
bration of these e↵ects on current waveform templates would
have a non-negligible impact only if high-spin binaries (with
�i & 0.1) evolve and merge in our local universe.

Finally, we note that we have also estimated the one-
dimensional probability distributions on p(⇤̃) by running a
six-dimensional Markov chain Monte Carlo algorithm on
Eq. (15), where p(⇤̃) is obtained by marginalization. By doing
so, we did not observe any relevant di↵erences with respect to
the distributions p(⇤̃) obtained in this section, thus suggest-
ing that the correlations between the physical parameters do
not a↵ect our results in such high SNR scenarios.

VI. TRUNCATION EFFECTS ON HIGH-PN ORDER
TAYLORF2 TERMS

PN models approximate the orbital dynamics by a power-
series expansion of the equations in terms of the parameter
x = v2/c2 = (G!M)2/3/c2 ⌧ 1. However, in the high-
frequency regime the optimal truncation order may be limited
by the convergence properties of the PN series. This has been
extensively studied in the case of binary black holes, where
the expansion above 3PN order is shown to break down at rel-
atively low frequencies [80–83]. In this section we study the
properties of the tidal part of the PN series as an asymptotic
series [84]. Formally, a power series is said to be asymptotic
to a function f (x) as x! x0 if for each N

f (x) �
NX

n=0

an(x � x0)n ⌧ aN(x � x0)N . (23)

This equation states that, to satisfy the asymptotic condition
near some point x0, the di↵erence between a function and the
N-truncated sum of the series should be much smaller than
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Figure 1. Parameters characterizing the properties of neutron stars for different equation-of-
state models. The solid, colored curves are the results from the two fiducial models SLy (red)
and MS1b (blue). The black curves show alternative equation-of-state models. Top left: mass-
radius relation, top right: dimensionless spin-quadrupole parameter, bottom: dimensionless
tidal deformability.

the “ISCO”-criterion but instead a fit from numerical relativity simulations for the merger
frequency to terminate the inspiral signal [35].

3. A brief recap of binary-neutron star data analysis techniques

In this section we provide a brief recap of a number of the data analysis techniques that we
will use in later sections in this work. For a more complete introduction to these topics we
refer the reader to [65, 66]. Consider a stretch of data s(t), recorded by a gravitational-wave
observatory. This data is assumed to consist of colored, Gaussian noise n(t) with the possible
presence of a gravitational-wave signal h(t). The noise is described by the one-sided noise
power-spectral density S

n

(f), defined by

1

2
�(f � f 0)S

n

(f) = E[ñ(f)ñ⇤(f 0)], (18)

(Harry & Hinderer, ’18)

Tidal deformability has been measured with GW170817
thus constraining the EoS and estimating the NS radius
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the posterior for ⇤̃, goes to zero in the limit ⇤̃ ! 0. To
avoid the misinterpretation that there is no evidence for
⇤̃ = 0, we reweight the posterior for ⇤̃ by dividing by the
prior used, e↵ectively imposing a flat prior in ⇤̃. In prac-
tice, this is done by dividing a histogram of the posterior
by a histogram of the prior. The resulting histogram is
then resampled and smoothed with kernel density esti-
mation. We have verified the validity of the reweighting
procedure by comparing the results to runs where we fix
⇤

2

= 0 and use a flat prior in ⇤̃. This di↵ers from the
reweighting procedure only in the small, next-to-leading-
order tidal e↵ect.

After reweighting there is still some support at ⇤̃ = 0.
For the high-spin prior, we can only place a 90% upper
limit on the tidal parameter, shown in Fig. 11 and listed
in Tables II and IV. For the TaylorF2 model, this 90% up-
per limit can be directly compared to the value reported
in [3]. We note, however, that due to a bookkeeping error
the value reported in [3] should have been 800 instead of
700. Our improved value of 730 is ⇠ 10% less than this
corrected value. As with the ⇤

1

–⇤
2

posterior (Fig. 10),
the three models with the NRTidal prescription predict
90% upper limits that are consistent with each other and
less than the TaylorF2 results by ⇠ 10%. For the low-
spin prior, we can now place a two-sided 90% highest
posterior density (HPD) credible interval on ⇤̃ that does
not contain ⇤̃ = 0. This 90% HPD interval is the smallest
interval that contains 90% of the probability.

The PDFs for the NRTidal waveform models are bi-
modal. The secondary peak’s origin is the subject of
further investigation, but it may result from a specific
noise realization, as similar results have been seen with
injected waveforms with simulated Gaussian noise (see
Fig. 4 of [135]).

In Fig. 11 we also show posteriors of ⇤̃ (gray PDFs)
predicted by the same EOSs as in Fig. 10, evaluated us-
ing the masses m

1

and m
2

sampled from the posterior.
The sharp cuto↵ to the right of each EOS posterior cor-
responds to the equal mass ratio boundary. Again, as in
Fig. 10, the EOSs MS1, MS1b, and H4 lie outside the
90% credible upper limit, and are therefore disfavored.

The di↵erences between the high-spin prior and low-
spin prior can be better understood from the joint pos-
terior for ⇤̃ and the mass ratio q. Figure 12 shows these
posteriors for the PhenomPNRT model without reweight-
ing by the prior. For mass ratios near q = 1, the two
posteriors are similar. However, the high-spin prior al-
lows for a larger range of mass ratios, and for smaller
values of q there is more support for small values of ⇤̃.
If we restrict the mass ratio to q >⇠ 0.5, or equivalently
m

2

>⇠ 1 M�, we find that there is less support for small
values of ⇤̃, and the two posteriors for ⇤̃ are nearly iden-
tical.

To verify that we have reliably measured the tidal
parameters, we supplement the four waveforms used in
this paper with two time-domain EOB waveform models:
SEOBNRv4T [75, 136] and TEOBResumS [74]. SEOB-
NRv4T includes dynamical tides and the e↵ects of the
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FIG. 11. PDFs of the combined tidal parameter ⇤̃ for the
high-spin (top) and low-spin (bottom) priors. Unlike in Fig. 6,
the PDFs have been reweighted by dividing by the origi-
nal prior for ⇤̃ (also shown). The 90% HPD credible in-
tervals are represented by vertical lines for each of the four
waveform models: TaylorF2, PhenomDNRT, SEOBNRT, and
PhenomPNRT. For the high-spin prior, the lower limit on
the credible interval is ⇤̃ = 0. The seven gray PDFs are
those for the seven representative EOSs using the masses es-
timated with the PhenomPNRT model. Their normalization
constants have been rescaled to fit in the figure. For these
EOSs, a 1.36M� NS has a radius of 10.4 km (WFF1), 11.3 km
(APR4), 11.7 km (SLy), 12.4 km (MPA1), 14.0 km (H4),
14.5 km (MS1b), and 14.9 km (MS1).

spin-induced quadrupole moment. TEOBResumS incor-
porates a gravitational-self-force re-summed tidal poten-
tial and the spin-induced quadrupole moment. Both
models are compatible with state-of-the-art BNS numer-
ical simulations up to merger [77, 137].

Unfortunately, these waveform models are too expen-
sive to be used for parameter estimation with LALIn-
ference. We therefore use the parallelized, but less
validated parameter estimation code RapidPE [78, 79].
This code uses a di↵erent procedure from the standard
LALInference code for generating posterior samples
and allows for parameter estimation with significantly
more expensive waveform models. For each point in the
intrinsic parameter space, RapidPE marginalizes over
the extrinsic parameters with Monte Carlo integration.
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FIG. 3. Marginalized posterior for the mass m and areal radius R of each binary component using EOS-insensitive relations (left panel)
and a parametrized EOS where we impose a lower limit on the maximum mass of 1.97M� (right panel). The top blue (bottom orange)
posterior corresponds to the heavier (lighter) NS. Example mass-radius curves for selected EOSs are overplotted in grey. The lines in
the top left denote the Schwarzschild BH (R = 2m) and Buchdahl (R = 9m/4) limits. In the one-dimensional plots, solid lines are
used for the posteriors, while dashed lines are used for the corresponding parameter priors. Dotted vertical lines are used for the bounds
of the 90% credible intervals.

ence [63] arrives at a similar conclusion using our ⇤̃ < 800
constraint [5] (though see [52] for an amended ⇤̃ bound)
and the observation that ⇤̃ is almost insensitive to the bi-
nary mass ratio [99]. Our improved estimate of ⇤1.4 =
190+390

�120, and R1 = 10.8+2.0
�1.7 km and R2 = 10.7+2.1

�1.5 km
for the EOS-insensitive-relation analysis is roughly consis-
tent with these estimates (see for example Fig. 1 of [62]
and [58]). If we additionally enforce the heaviest ob-
served pulsar to be supported by placing direct constraints
on the EOS parameter space, we get further improvement
in the radius measurement, with R1 = 11.9+1.4

�1.4 km and
R2 = 11.9+1.4

�1.4 km.

A recent analysis of the GW170817 data was performed
in De et al. [53] using the TaylorF2 model, imposing that
the two NSs have the same radii which, under the addi-
tional assumption that ⇤ / C�6 (an alternative to the ⇤–
C relation used here [104]), directly relates the two tidal
deformabilities as ⇤1 = q6⇤2. De et al. constrain the
common NS radius to a 90% credible interval 8.7 km <
R̂ < 14.1 km, corresponding to a width of 5.4 km, which
is wider than the uncertainties on radii presented in this pa-
per by a factor of about two. There are differences in sev-
eral details of the set-up of the two analyses (most notably,
frequency range, data calibration, the noise PSD estima-
tion, waveform model, parameter priors, assumed relations
between radii and ⇤s and treatment of corresponding un-
certainties), each of which may be responsible for part of

the observed discrepancies. The analysis of De et al. re-
produces the initial tidal deformability results of Abbott
et al. [5], but improvements detailed in [52] and used in this
work improved our tidal constraints by ⇠ 10-20%. Here,
in contrast to De et al, we found that enforcing a common
EOS additionally restricts the recovered tidal parameters,
as shown in Fig 1. We note, however, that while our re-
sulting posteriors for the two NS radii are similar to each
other, a fraction of the posterior samples gives pairs with
significantly different NS radii, up to |R1 � R2| ⇠ 2 km.
Therefore, the De et al. analysis makes considerably dif-
ferent assumptions when enforcing a common EOS than
us.

Our results, and specifically the lower radius limit,
do not constitute observational proof of tidal effects in
GW170817, as our analysis has explicitly assumed that the
coalescing bodies were NSs both in terms of their spins
and tidal deformabilities. In particular, the spins are re-
stricted to small values typical for galactic NSs in binaries,
and the tidal deformabilites are calculated consistently as-
suming a common typical NS EoS. Moreover, the ⇤–C
map diverges as ⇤ approaches zero (BH), and therefore
the lower bounds obtained for the radii do not imply lower
bounds on the tidal deformabilities. Meanwhile, the analy-
sis of [52] assumes independent tidal parameters and finds
a lower bound on ⇤̃ only under the small-spin assumption
but not if spins larger than 0.05 are allowed.

The detection of GW170817 has opened new avenues in
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3.Determine the equation of state of nuclear matter in the inner core of neutron stars
During the late inspiral and merger of a neutron star binary, 
the stars are tidally deformed and the emitted gravitational wave 
explicitly depends on l!

This is a rough, preliminary
bound; in order to really constrain the EoS 
we need to extend and improve the theory 
of tidal deformations in compact binaries!

• We extended the post-Newtonian description of tidal deformation to include the rotation of the star

• We developed a Bayesian approach 
to combine GW measurements of 
tidal deformability with 
astrophysical (X-ray) 
measurements of the neutron star 
radius, getting tighther bounds

4

FIG. 1. Posterior distributions of the parameters of the piecewise polytropic (top panels) and of the spectral representations
(bottom row), derived through the multi-messenger analysis. Dashed vertical lines identify 90% confidence intervals, also shown
on top of each panel with the median.

FIG. 2. 90% confidence regions for the posterior distribu-
tion of mass M and radius R of the two neutron stars of
GW170817, built using the spectral (solid curves) and piece-
wise polytropic (dashed curves) EoS. Black curves identify the
mass-radius profiles for some theoretical EoS [74–77].

The dashed and the solid vertical lines identify the 90%
credible interval determined by LVC in [13], and by our
analysis, respectively. In both cases the spectral EoS has
been used. The analysis we perform, which combines
GW and EM observations, seems to prefer configurations
which are more compact than those inferred by the LVC
data alone, indicating a softer equation of state in the
core. This is a very interesting result: including in our
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FIG. 3. Posterior distributions for the radii of the two neu-
tron stars of GW170817, reconstructed through the spectral
representation. Red and green colors refer, respectively, to R2

and R1. Vertical lines correspond to intervals at 90% of prob-
ability derived by the LVC (dashed) and through our analysis
(solid).

analysis more massive stars, i.e. those with mass and
radius estimated through EM observations (Table I), we
are probing the EoS in a region where the energy density
is larger with respect to that probed by the LVC analysis.
Conclusions. Multi-wavelength observations of rela-
tivistic sources provide an arena where the joint e↵orts of
the astrophysics, high-energy and particle physics com-
munity convey to provide new insights on the fundamen-
tal laws of Nature. Neutron stars are among the primary
targets of this quest, as unique laboratories to investigate
the behaviour of matter at densities not reproducible in
experiments on Earth. The detection of the first coalesc-
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The rotational contribution we have derived can be significant in the data 
analysis of the Einstein Telescope, for events as loud as GW170817

9

χ=0.1

χ=-0.1

290 295 300 305 310
0.00

0.05

0.10

0.15

0.20

0.25

Λ
˜

p(
Λ˜ )

ET

ET

FIG. 8. Probability distributions obtained for two BNS spinning at
� = 0.1 (dashed green line) and � = �0.1 (orange line), assuming ir-
rotational fluids, with the ET-D noise sensitivity curve but now con-
sidering the case of observing GW170817 with an optimal orienta-
tion and ⇤̃ = {300, 800} (top and bottom panels). The vertical dashed
lines define the best-likelihood values while the solid areas define the
90% credible intervals. The red dashed vertical line defines the in-
jected value ⇤̃0.

for the triplet � � ⇢ � ⇤̃0 (with �1 = �2 = �) required to dis-
tinguish the e↵ects of the spin-tidal terms for a GW170817-
like event detected with ET-D. To do so, we have computed
the match of a h0(⇤̃0, �) against h�(⇤̃0, �), for ⇤̃0 2 [0, 2000]
and � 2 [�0.79, 0.79]. The results of the match are trans-
lated to ⇢ through Eq. (21) for a D = 6 parameter space,
where we require one to estimate all the parameters at 90%
credible level, i.e., n = 1.64. The results of this analysis are
shown in Fig. 9. The contour lines represent the minimum
SNR needed to observe some characteristic combination of
⇤̃0 and �1 = �2 = �. The solid and dashed vertical grid lines
⇤̃0 = {300, 800} set the median and 90% upper limit provided
by [1, 8], respectively. Then, the intersection of ⇤̃0 = 800
with the ⇢ = {1500, 1750} contours shows that the minimum
spin required to distinguish the spin-tidal e↵ects from a h0
template at the 90% level is � ⇠ ±0.07, respectively. Notice
that the intersection of the ⇤̃0 = 800 line with the green con-
tour line (⇢ = 1750) corresponds to the particular case shown
in Fig. 8. Moreover, from Fig. 9, we see that larger spins
are required to attain the same SNR as ⇤̃0 decreases. In par-
ticular, for ⇤̃ = 300 and ⇢ = 1750 the intersection occurs at
� ⇠ ±0.15. Therefore, spin-tidal couplings are only expected
to a↵ect significantly the signal for putative optimally ori-
ented BNS events, observed with third-generation detectors,

FIG. 9. Estimation of the SNR required to distinguish the e↵ects
of the spin-tidal terms considering the ET-D noise sensitivity curve.
The vertical red grid lines fix the tidal deformabilities consistent with
the median and 90% upper limits provided by LIGO-Virgo [1, 8]
respectively. The blue and green contour lines correspond to the SNR
of our standard and optimistic scenarios.

and for moderately large spins. On the other hand, the cali-
bration of these e↵ects on current waveform templates would
have a non-negligible impact only if high-spin binaries (with
�i & 0.1) evolve and merge in our local universe.

Finally, we note that we have also estimated the one-
dimensional probability distributions on p(⇤̃) by running a
six-dimensional Markov chain Monte Carlo algorithm on
Eq. (15), where p(⇤̃) is obtained by marginalization. By doing
so, we did not observe any relevant di↵erences with respect to
the distributions p(⇤̃) obtained in this section, thus suggest-
ing that the correlations between the physical parameters do
not a↵ect our results in such high SNR scenarios.

VI. TRUNCATION EFFECTS ON HIGH-PN ORDER
TAYLORF2 TERMS

PN models approximate the orbital dynamics by a power-
series expansion of the equations in terms of the parameter
x = v2/c2 = (G!M)2/3/c2 ⌧ 1. However, in the high-
frequency regime the optimal truncation order may be limited
by the convergence properties of the PN series. This has been
extensively studied in the case of binary black holes, where
the expansion above 3PN order is shown to break down at rel-
atively low frequencies [80–83]. In this section we study the
properties of the tidal part of the PN series as an asymptotic
series [84]. Formally, a power series is said to be asymptotic
to a function f (x) as x! x0 if for each N

f (x) �
NX

n=0

an(x � x0)n ⌧ aN(x � x0)N . (23)

This equation states that, to satisfy the asymptotic condition
near some point x0, the di↵erence between a function and the
N-truncated sum of the series should be much smaller than

Jimenez-Forteza et al., PRD’18

Observing and measuring the neutron-star equation-of-state 9

1.0 1.5 2.0 2.5
Mass (M�)

101

102

103

104

T
id

al
pa

ra
m

et
er

�

APR4

MS1b

SLy

H4

ALF2

Figure 1. Parameters characterizing the properties of neutron stars for different equation-of-
state models. The solid, colored curves are the results from the two fiducial models SLy (red)
and MS1b (blue). The black curves show alternative equation-of-state models. Top left: mass-
radius relation, top right: dimensionless spin-quadrupole parameter, bottom: dimensionless
tidal deformability.

the “ISCO”-criterion but instead a fit from numerical relativity simulations for the merger
frequency to terminate the inspiral signal [35].

3. A brief recap of binary-neutron star data analysis techniques

In this section we provide a brief recap of a number of the data analysis techniques that we
will use in later sections in this work. For a more complete introduction to these topics we
refer the reader to [65, 66]. Consider a stretch of data s(t), recorded by a gravitational-wave
observatory. This data is assumed to consist of colored, Gaussian noise n(t) with the possible
presence of a gravitational-wave signal h(t). The noise is described by the one-sided noise
power-spectral density S

n

(f), defined by

1

2
�(f � f 0)S

n

(f) = E[ñ(f)ñ⇤(f 0)], (18)

(Harry & Hinderer, ’18)

Tidal deformability has been measured with GW170817
thus constraining the EoS and estimating the NS radius

LIGO-Virgo collaboration, ‘18

12

the posterior for ⇤̃, goes to zero in the limit ⇤̃ ! 0. To
avoid the misinterpretation that there is no evidence for
⇤̃ = 0, we reweight the posterior for ⇤̃ by dividing by the
prior used, e↵ectively imposing a flat prior in ⇤̃. In prac-
tice, this is done by dividing a histogram of the posterior
by a histogram of the prior. The resulting histogram is
then resampled and smoothed with kernel density esti-
mation. We have verified the validity of the reweighting
procedure by comparing the results to runs where we fix
⇤

2

= 0 and use a flat prior in ⇤̃. This di↵ers from the
reweighting procedure only in the small, next-to-leading-
order tidal e↵ect.

After reweighting there is still some support at ⇤̃ = 0.
For the high-spin prior, we can only place a 90% upper
limit on the tidal parameter, shown in Fig. 11 and listed
in Tables II and IV. For the TaylorF2 model, this 90% up-
per limit can be directly compared to the value reported
in [3]. We note, however, that due to a bookkeeping error
the value reported in [3] should have been 800 instead of
700. Our improved value of 730 is ⇠ 10% less than this
corrected value. As with the ⇤

1

–⇤
2

posterior (Fig. 10),
the three models with the NRTidal prescription predict
90% upper limits that are consistent with each other and
less than the TaylorF2 results by ⇠ 10%. For the low-
spin prior, we can now place a two-sided 90% highest
posterior density (HPD) credible interval on ⇤̃ that does
not contain ⇤̃ = 0. This 90% HPD interval is the smallest
interval that contains 90% of the probability.

The PDFs for the NRTidal waveform models are bi-
modal. The secondary peak’s origin is the subject of
further investigation, but it may result from a specific
noise realization, as similar results have been seen with
injected waveforms with simulated Gaussian noise (see
Fig. 4 of [135]).

In Fig. 11 we also show posteriors of ⇤̃ (gray PDFs)
predicted by the same EOSs as in Fig. 10, evaluated us-
ing the masses m

1

and m
2

sampled from the posterior.
The sharp cuto↵ to the right of each EOS posterior cor-
responds to the equal mass ratio boundary. Again, as in
Fig. 10, the EOSs MS1, MS1b, and H4 lie outside the
90% credible upper limit, and are therefore disfavored.

The di↵erences between the high-spin prior and low-
spin prior can be better understood from the joint pos-
terior for ⇤̃ and the mass ratio q. Figure 12 shows these
posteriors for the PhenomPNRT model without reweight-
ing by the prior. For mass ratios near q = 1, the two
posteriors are similar. However, the high-spin prior al-
lows for a larger range of mass ratios, and for smaller
values of q there is more support for small values of ⇤̃.
If we restrict the mass ratio to q >⇠ 0.5, or equivalently
m

2

>⇠ 1 M�, we find that there is less support for small
values of ⇤̃, and the two posteriors for ⇤̃ are nearly iden-
tical.

To verify that we have reliably measured the tidal
parameters, we supplement the four waveforms used in
this paper with two time-domain EOB waveform models:
SEOBNRv4T [75, 136] and TEOBResumS [74]. SEOB-
NRv4T includes dynamical tides and the e↵ects of the
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FIG. 11. PDFs of the combined tidal parameter ⇤̃ for the
high-spin (top) and low-spin (bottom) priors. Unlike in Fig. 6,
the PDFs have been reweighted by dividing by the origi-
nal prior for ⇤̃ (also shown). The 90% HPD credible in-
tervals are represented by vertical lines for each of the four
waveform models: TaylorF2, PhenomDNRT, SEOBNRT, and
PhenomPNRT. For the high-spin prior, the lower limit on
the credible interval is ⇤̃ = 0. The seven gray PDFs are
those for the seven representative EOSs using the masses es-
timated with the PhenomPNRT model. Their normalization
constants have been rescaled to fit in the figure. For these
EOSs, a 1.36M� NS has a radius of 10.4 km (WFF1), 11.3 km
(APR4), 11.7 km (SLy), 12.4 km (MPA1), 14.0 km (H4),
14.5 km (MS1b), and 14.9 km (MS1).

spin-induced quadrupole moment. TEOBResumS incor-
porates a gravitational-self-force re-summed tidal poten-
tial and the spin-induced quadrupole moment. Both
models are compatible with state-of-the-art BNS numer-
ical simulations up to merger [77, 137].

Unfortunately, these waveform models are too expen-
sive to be used for parameter estimation with LALIn-
ference. We therefore use the parallelized, but less
validated parameter estimation code RapidPE [78, 79].
This code uses a di↵erent procedure from the standard
LALInference code for generating posterior samples
and allows for parameter estimation with significantly
more expensive waveform models. For each point in the
intrinsic parameter space, RapidPE marginalizes over
the extrinsic parameters with Monte Carlo integration.
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FIG. 3. Marginalized posterior for the mass m and areal radius R of each binary component using EOS-insensitive relations (left panel)
and a parametrized EOS where we impose a lower limit on the maximum mass of 1.97M� (right panel). The top blue (bottom orange)
posterior corresponds to the heavier (lighter) NS. Example mass-radius curves for selected EOSs are overplotted in grey. The lines in
the top left denote the Schwarzschild BH (R = 2m) and Buchdahl (R = 9m/4) limits. In the one-dimensional plots, solid lines are
used for the posteriors, while dashed lines are used for the corresponding parameter priors. Dotted vertical lines are used for the bounds
of the 90% credible intervals.

ence [63] arrives at a similar conclusion using our ⇤̃ < 800
constraint [5] (though see [52] for an amended ⇤̃ bound)
and the observation that ⇤̃ is almost insensitive to the bi-
nary mass ratio [99]. Our improved estimate of ⇤1.4 =
190+390

�120, and R1 = 10.8+2.0
�1.7 km and R2 = 10.7+2.1

�1.5 km
for the EOS-insensitive-relation analysis is roughly consis-
tent with these estimates (see for example Fig. 1 of [62]
and [58]). If we additionally enforce the heaviest ob-
served pulsar to be supported by placing direct constraints
on the EOS parameter space, we get further improvement
in the radius measurement, with R1 = 11.9+1.4

�1.4 km and
R2 = 11.9+1.4

�1.4 km.

A recent analysis of the GW170817 data was performed
in De et al. [53] using the TaylorF2 model, imposing that
the two NSs have the same radii which, under the addi-
tional assumption that ⇤ / C�6 (an alternative to the ⇤–
C relation used here [104]), directly relates the two tidal
deformabilities as ⇤1 = q6⇤2. De et al. constrain the
common NS radius to a 90% credible interval 8.7 km <
R̂ < 14.1 km, corresponding to a width of 5.4 km, which
is wider than the uncertainties on radii presented in this pa-
per by a factor of about two. There are differences in sev-
eral details of the set-up of the two analyses (most notably,
frequency range, data calibration, the noise PSD estima-
tion, waveform model, parameter priors, assumed relations
between radii and ⇤s and treatment of corresponding un-
certainties), each of which may be responsible for part of

the observed discrepancies. The analysis of De et al. re-
produces the initial tidal deformability results of Abbott
et al. [5], but improvements detailed in [52] and used in this
work improved our tidal constraints by ⇠ 10-20%. Here,
in contrast to De et al, we found that enforcing a common
EOS additionally restricts the recovered tidal parameters,
as shown in Fig 1. We note, however, that while our re-
sulting posteriors for the two NS radii are similar to each
other, a fraction of the posterior samples gives pairs with
significantly different NS radii, up to |R1 � R2| ⇠ 2 km.
Therefore, the De et al. analysis makes considerably dif-
ferent assumptions when enforcing a common EOS than
us.

Our results, and specifically the lower radius limit,
do not constitute observational proof of tidal effects in
GW170817, as our analysis has explicitly assumed that the
coalescing bodies were NSs both in terms of their spins
and tidal deformabilities. In particular, the spins are re-
stricted to small values typical for galactic NSs in binaries,
and the tidal deformabilites are calculated consistently as-
suming a common typical NS EoS. Moreover, the ⇤–C
map diverges as ⇤ approaches zero (BH), and therefore
the lower bounds obtained for the radii do not imply lower
bounds on the tidal deformabilities. Meanwhile, the analy-
sis of [52] assumes independent tidal parameters and finds
a lower bound on ⇤̃ only under the small-spin assumption
but not if spins larger than 0.05 are allowed.

The detection of GW170817 has opened new avenues in
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3.Determine the equation of state of nuclear matter in the inner core of neutron stars
During the late inspiral and merger of a neutron star binary, 
the stars are tidally deformed and the emitted gravitational wave 
explicitly depends on l!

This is a rough, preliminary
bound; in order to really constrain the EoS 
we need to extend and improve the theory 
of tidal deformations in compact binaries!

• We extended the post-Newtonian description of tidal deformation to include the rotation of the star

• We developed a Bayesian approach 
to combine GW measurements of 
tidal deformability with 
astrophysical (X-ray) 
measurements of the neutron star 
radius, getting tighther bounds

• Work in progress: phenomenological parametrization of the neutron star EoS based on microphysics 
quantities (e.g. symmetry energy) to set up an “inverse problem” from GW observables

4

FIG. 1. Posterior distributions of the parameters of the piecewise polytropic (top panels) and of the spectral representations
(bottom row), derived through the multi-messenger analysis. Dashed vertical lines identify 90% confidence intervals, also shown
on top of each panel with the median.

FIG. 2. 90% confidence regions for the posterior distribu-
tion of mass M and radius R of the two neutron stars of
GW170817, built using the spectral (solid curves) and piece-
wise polytropic (dashed curves) EoS. Black curves identify the
mass-radius profiles for some theoretical EoS [74–77].

The dashed and the solid vertical lines identify the 90%
credible interval determined by LVC in [13], and by our
analysis, respectively. In both cases the spectral EoS has
been used. The analysis we perform, which combines
GW and EM observations, seems to prefer configurations
which are more compact than those inferred by the LVC
data alone, indicating a softer equation of state in the
core. This is a very interesting result: including in our
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FIG. 3. Posterior distributions for the radii of the two neu-
tron stars of GW170817, reconstructed through the spectral
representation. Red and green colors refer, respectively, to R2

and R1. Vertical lines correspond to intervals at 90% of prob-
ability derived by the LVC (dashed) and through our analysis
(solid).

analysis more massive stars, i.e. those with mass and
radius estimated through EM observations (Table I), we
are probing the EoS in a region where the energy density
is larger with respect to that probed by the LVC analysis.
Conclusions. Multi-wavelength observations of rela-
tivistic sources provide an arena where the joint e↵orts of
the astrophysics, high-energy and particle physics com-
munity convey to provide new insights on the fundamen-
tal laws of Nature. Neutron stars are among the primary
targets of this quest, as unique laboratories to investigate
the behaviour of matter at densities not reproducible in
experiments on Earth. The detection of the first coalesc-
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FIG. 8. Probability distributions obtained for two BNS spinning at
� = 0.1 (dashed green line) and � = �0.1 (orange line), assuming ir-
rotational fluids, with the ET-D noise sensitivity curve but now con-
sidering the case of observing GW170817 with an optimal orienta-
tion and ⇤̃ = {300, 800} (top and bottom panels). The vertical dashed
lines define the best-likelihood values while the solid areas define the
90% credible intervals. The red dashed vertical line defines the in-
jected value ⇤̃0.

for the triplet � � ⇢ � ⇤̃0 (with �1 = �2 = �) required to dis-
tinguish the e↵ects of the spin-tidal terms for a GW170817-
like event detected with ET-D. To do so, we have computed
the match of a h0(⇤̃0, �) against h�(⇤̃0, �), for ⇤̃0 2 [0, 2000]
and � 2 [�0.79, 0.79]. The results of the match are trans-
lated to ⇢ through Eq. (21) for a D = 6 parameter space,
where we require one to estimate all the parameters at 90%
credible level, i.e., n = 1.64. The results of this analysis are
shown in Fig. 9. The contour lines represent the minimum
SNR needed to observe some characteristic combination of
⇤̃0 and �1 = �2 = �. The solid and dashed vertical grid lines
⇤̃0 = {300, 800} set the median and 90% upper limit provided
by [1, 8], respectively. Then, the intersection of ⇤̃0 = 800
with the ⇢ = {1500, 1750} contours shows that the minimum
spin required to distinguish the spin-tidal e↵ects from a h0
template at the 90% level is � ⇠ ±0.07, respectively. Notice
that the intersection of the ⇤̃0 = 800 line with the green con-
tour line (⇢ = 1750) corresponds to the particular case shown
in Fig. 8. Moreover, from Fig. 9, we see that larger spins
are required to attain the same SNR as ⇤̃0 decreases. In par-
ticular, for ⇤̃ = 300 and ⇢ = 1750 the intersection occurs at
� ⇠ ±0.15. Therefore, spin-tidal couplings are only expected
to a↵ect significantly the signal for putative optimally ori-
ented BNS events, observed with third-generation detectors,

FIG. 9. Estimation of the SNR required to distinguish the e↵ects
of the spin-tidal terms considering the ET-D noise sensitivity curve.
The vertical red grid lines fix the tidal deformabilities consistent with
the median and 90% upper limits provided by LIGO-Virgo [1, 8]
respectively. The blue and green contour lines correspond to the SNR
of our standard and optimistic scenarios.

and for moderately large spins. On the other hand, the cali-
bration of these e↵ects on current waveform templates would
have a non-negligible impact only if high-spin binaries (with
�i & 0.1) evolve and merge in our local universe.

Finally, we note that we have also estimated the one-
dimensional probability distributions on p(⇤̃) by running a
six-dimensional Markov chain Monte Carlo algorithm on
Eq. (15), where p(⇤̃) is obtained by marginalization. By doing
so, we did not observe any relevant di↵erences with respect to
the distributions p(⇤̃) obtained in this section, thus suggest-
ing that the correlations between the physical parameters do
not a↵ect our results in such high SNR scenarios.

VI. TRUNCATION EFFECTS ON HIGH-PN ORDER
TAYLORF2 TERMS

PN models approximate the orbital dynamics by a power-
series expansion of the equations in terms of the parameter
x = v2/c2 = (G!M)2/3/c2 ⌧ 1. However, in the high-
frequency regime the optimal truncation order may be limited
by the convergence properties of the PN series. This has been
extensively studied in the case of binary black holes, where
the expansion above 3PN order is shown to break down at rel-
atively low frequencies [80–83]. In this section we study the
properties of the tidal part of the PN series as an asymptotic
series [84]. Formally, a power series is said to be asymptotic
to a function f (x) as x! x0 if for each N

f (x) �
NX

n=0

an(x � x0)n ⌧ aN(x � x0)N . (23)

This equation states that, to satisfy the asymptotic condition
near some point x0, the di↵erence between a function and the
N-truncated sum of the series should be much smaller than
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Figure 1. Parameters characterizing the properties of neutron stars for different equation-of-
state models. The solid, colored curves are the results from the two fiducial models SLy (red)
and MS1b (blue). The black curves show alternative equation-of-state models. Top left: mass-
radius relation, top right: dimensionless spin-quadrupole parameter, bottom: dimensionless
tidal deformability.

the “ISCO”-criterion but instead a fit from numerical relativity simulations for the merger
frequency to terminate the inspiral signal [35].

3. A brief recap of binary-neutron star data analysis techniques

In this section we provide a brief recap of a number of the data analysis techniques that we
will use in later sections in this work. For a more complete introduction to these topics we
refer the reader to [65, 66]. Consider a stretch of data s(t), recorded by a gravitational-wave
observatory. This data is assumed to consist of colored, Gaussian noise n(t) with the possible
presence of a gravitational-wave signal h(t). The noise is described by the one-sided noise
power-spectral density S

n

(f), defined by

1

2
�(f � f 0)S

n

(f) = E[ñ(f)ñ⇤(f 0)], (18)

(Harry & Hinderer, ’18)

Tidal deformability has been measured with GW170817
thus constraining the EoS and estimating the NS radius
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the posterior for ⇤̃, goes to zero in the limit ⇤̃ ! 0. To
avoid the misinterpretation that there is no evidence for
⇤̃ = 0, we reweight the posterior for ⇤̃ by dividing by the
prior used, e↵ectively imposing a flat prior in ⇤̃. In prac-
tice, this is done by dividing a histogram of the posterior
by a histogram of the prior. The resulting histogram is
then resampled and smoothed with kernel density esti-
mation. We have verified the validity of the reweighting
procedure by comparing the results to runs where we fix
⇤

2

= 0 and use a flat prior in ⇤̃. This di↵ers from the
reweighting procedure only in the small, next-to-leading-
order tidal e↵ect.

After reweighting there is still some support at ⇤̃ = 0.
For the high-spin prior, we can only place a 90% upper
limit on the tidal parameter, shown in Fig. 11 and listed
in Tables II and IV. For the TaylorF2 model, this 90% up-
per limit can be directly compared to the value reported
in [3]. We note, however, that due to a bookkeeping error
the value reported in [3] should have been 800 instead of
700. Our improved value of 730 is ⇠ 10% less than this
corrected value. As with the ⇤

1

–⇤
2

posterior (Fig. 10),
the three models with the NRTidal prescription predict
90% upper limits that are consistent with each other and
less than the TaylorF2 results by ⇠ 10%. For the low-
spin prior, we can now place a two-sided 90% highest
posterior density (HPD) credible interval on ⇤̃ that does
not contain ⇤̃ = 0. This 90% HPD interval is the smallest
interval that contains 90% of the probability.

The PDFs for the NRTidal waveform models are bi-
modal. The secondary peak’s origin is the subject of
further investigation, but it may result from a specific
noise realization, as similar results have been seen with
injected waveforms with simulated Gaussian noise (see
Fig. 4 of [135]).

In Fig. 11 we also show posteriors of ⇤̃ (gray PDFs)
predicted by the same EOSs as in Fig. 10, evaluated us-
ing the masses m

1

and m
2

sampled from the posterior.
The sharp cuto↵ to the right of each EOS posterior cor-
responds to the equal mass ratio boundary. Again, as in
Fig. 10, the EOSs MS1, MS1b, and H4 lie outside the
90% credible upper limit, and are therefore disfavored.

The di↵erences between the high-spin prior and low-
spin prior can be better understood from the joint pos-
terior for ⇤̃ and the mass ratio q. Figure 12 shows these
posteriors for the PhenomPNRT model without reweight-
ing by the prior. For mass ratios near q = 1, the two
posteriors are similar. However, the high-spin prior al-
lows for a larger range of mass ratios, and for smaller
values of q there is more support for small values of ⇤̃.
If we restrict the mass ratio to q >⇠ 0.5, or equivalently
m

2

>⇠ 1 M�, we find that there is less support for small
values of ⇤̃, and the two posteriors for ⇤̃ are nearly iden-
tical.

To verify that we have reliably measured the tidal
parameters, we supplement the four waveforms used in
this paper with two time-domain EOB waveform models:
SEOBNRv4T [75, 136] and TEOBResumS [74]. SEOB-
NRv4T includes dynamical tides and the e↵ects of the

0 200 400 600 800 1000 1200 1400 1600
�̃

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

P
D

F

W
F
F
1

A
P

R
4

SL
y

M
P
A

1

H
4

M
S1

b

M
S1

PhenomPNRT PhenomDNRT SEOBNRT TaylorF2 Prior

FIG. 11. PDFs of the combined tidal parameter ⇤̃ for the
high-spin (top) and low-spin (bottom) priors. Unlike in Fig. 6,
the PDFs have been reweighted by dividing by the origi-
nal prior for ⇤̃ (also shown). The 90% HPD credible in-
tervals are represented by vertical lines for each of the four
waveform models: TaylorF2, PhenomDNRT, SEOBNRT, and
PhenomPNRT. For the high-spin prior, the lower limit on
the credible interval is ⇤̃ = 0. The seven gray PDFs are
those for the seven representative EOSs using the masses es-
timated with the PhenomPNRT model. Their normalization
constants have been rescaled to fit in the figure. For these
EOSs, a 1.36M� NS has a radius of 10.4 km (WFF1), 11.3 km
(APR4), 11.7 km (SLy), 12.4 km (MPA1), 14.0 km (H4),
14.5 km (MS1b), and 14.9 km (MS1).

spin-induced quadrupole moment. TEOBResumS incor-
porates a gravitational-self-force re-summed tidal poten-
tial and the spin-induced quadrupole moment. Both
models are compatible with state-of-the-art BNS numer-
ical simulations up to merger [77, 137].

Unfortunately, these waveform models are too expen-
sive to be used for parameter estimation with LALIn-
ference. We therefore use the parallelized, but less
validated parameter estimation code RapidPE [78, 79].
This code uses a di↵erent procedure from the standard
LALInference code for generating posterior samples
and allows for parameter estimation with significantly
more expensive waveform models. For each point in the
intrinsic parameter space, RapidPE marginalizes over
the extrinsic parameters with Monte Carlo integration.
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ence [63] arrives at a similar conclusion using our ⇤̃ < 800
constraint [5] (though see [52] for an amended ⇤̃ bound)
and the observation that ⇤̃ is almost insensitive to the bi-
nary mass ratio [99]. Our improved estimate of ⇤1.4 =
190+390

�120, and R1 = 10.8+2.0
�1.7 km and R2 = 10.7+2.1

�1.5 km
for the EOS-insensitive-relation analysis is roughly consis-
tent with these estimates (see for example Fig. 1 of [62]
and [58]). If we additionally enforce the heaviest ob-
served pulsar to be supported by placing direct constraints
on the EOS parameter space, we get further improvement
in the radius measurement, with R1 = 11.9+1.4

�1.4 km and
R2 = 11.9+1.4

�1.4 km.

A recent analysis of the GW170817 data was performed
in De et al. [53] using the TaylorF2 model, imposing that
the two NSs have the same radii which, under the addi-
tional assumption that ⇤ / C�6 (an alternative to the ⇤–
C relation used here [104]), directly relates the two tidal
deformabilities as ⇤1 = q6⇤2. De et al. constrain the
common NS radius to a 90% credible interval 8.7 km <
R̂ < 14.1 km, corresponding to a width of 5.4 km, which
is wider than the uncertainties on radii presented in this pa-
per by a factor of about two. There are differences in sev-
eral details of the set-up of the two analyses (most notably,
frequency range, data calibration, the noise PSD estima-
tion, waveform model, parameter priors, assumed relations
between radii and ⇤s and treatment of corresponding un-
certainties), each of which may be responsible for part of

the observed discrepancies. The analysis of De et al. re-
produces the initial tidal deformability results of Abbott
et al. [5], but improvements detailed in [52] and used in this
work improved our tidal constraints by ⇠ 10-20%. Here,
in contrast to De et al, we found that enforcing a common
EOS additionally restricts the recovered tidal parameters,
as shown in Fig 1. We note, however, that while our re-
sulting posteriors for the two NS radii are similar to each
other, a fraction of the posterior samples gives pairs with
significantly different NS radii, up to |R1 � R2| ⇠ 2 km.
Therefore, the De et al. analysis makes considerably dif-
ferent assumptions when enforcing a common EOS than
us.

Our results, and specifically the lower radius limit,
do not constitute observational proof of tidal effects in
GW170817, as our analysis has explicitly assumed that the
coalescing bodies were NSs both in terms of their spins
and tidal deformabilities. In particular, the spins are re-
stricted to small values typical for galactic NSs in binaries,
and the tidal deformabilites are calculated consistently as-
suming a common typical NS EoS. Moreover, the ⇤–C
map diverges as ⇤ approaches zero (BH), and therefore
the lower bounds obtained for the radii do not imply lower
bounds on the tidal deformabilities. Meanwhile, the analy-
sis of [52] assumes independent tidal parameters and finds
a lower bound on ⇤̃ only under the small-spin assumption
but not if spins larger than 0.05 are allowed.

The detection of GW170817 has opened new avenues in
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1.Modelling  sources of Gravitational Waves

2.Test the gravitational interaction, looking for general relativity deviations in the strong-field regime

3.Determine the equation of state of nuclear matter in the inner core of neutron stars

4.Test the nature of compact objects

5.Search for dark matter candidates looking at its strong gravity interaction with compact objects
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• ringdown signal would be followed by  echoes after t~2rhor/c ln(𝜀)

Ferrari & Kokkotas PRD’00)

3

FIG. 1. Schematic classification of dark compact objects. Their compactness is expressed as the di↵erence between the object
radius r0 and the Schwarzschild radius rg. Objects in the same category have similar dynamical properties on a timescale
⌧ ⇠ rg

c | log ✏|. The upper axis refers to the time, as measured by distant observers, that light from the photosphere takes to
reach the surface r0. Numbers refer to an object of 60M� and scale linearly with it mass.
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FIG. 2. Ringdown waveforms from black holes (black line)
and ClePhOs (red line). We consider objects of 60M�. For
ClePhOs, there is a reflective surface at r0 = rg(1 + ✏), ✏ =
10�11. The amplitude of the GW signal (proportional to the
relative strain of the interferometer’s arm induced by the GW)
is normalized to its peak value. The initial data describes a
quadrupolar Gaussian wavepacket of axial GWs. The inset
shows a zoom-in version of the waveform at late times. Note
that each subsequent echo has a smaller frequency content.

These are the (quasi)normal modes of the system. The
structure of GW signals at late times is therefore ex-
pected to be relatively simple. This is shown in Fig. 2,
which refers to the scattering of a Gaussian pulse o↵ a

BH. The pulse crosses the photosphere, and excites its
modes. The ringdown signal, a fraction of which trav-
els to outside observers, is to a very good level described
by its lowest modes, Eq. (4). The fraction of the GWs
that leaks from the barrier inwards travels down to the
horizon and that’s the last one hears of it.
Contrast the previous description with the dynamical

response of a ClePhO. The initial evolution of the pho-
tosphere modes still holds, by causality. Thus, up to
timescales of the order ⇠ rg

c | log ✏| (the roundtrip time of
radiation between the photosphere and the surface) the
signal is identical to that of BHs [10, 11]. At later times,
however, the pulse traveling inwards is bound to interact
with the object. This pulse is semi-trapped between the
object and the photosphere. Upon each interaction, a
fraction exits to outside observers, giving rise to a series
of echoes of ever-decreasing amplitude. Repeated reflec-
tions occur in a characteristic echo delay time [10, 11],

⌧
echo

⇠ 2rg
c

| log ✏| . (5)

This logarithmic dependence is crucial to make echoes
observable even with only Planckian corrections near the
horizon, when ✏ ⇠ 10�40. Although, at very late times,
the fundamental modes of a ClePhO have low frequen-
cies, the main burst is typically generated at the pho-
tosphere and has therefore a frequency content of the
same order as the BH modes (4). The initial signal is
of high frequency and a substantial component is able to
cross the potential barrier. Thus, observers see a series
of echoes whose amplitude is getting smaller and whose
frequency content is also going down (see Fig. 2).

(Cardoso & Pani 
Nature  Astr. ‘17)
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10�11. The amplitude of the GW signal (proportional to the
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is normalized to its peak value. The initial data describes a
quadrupolar Gaussian wavepacket of axial GWs. The inset
shows a zoom-in version of the waveform at late times. Note
that each subsequent echo has a smaller frequency content.

These are the (quasi)normal modes of the system. The
structure of GW signals at late times is therefore ex-
pected to be relatively simple. This is shown in Fig. 2,
which refers to the scattering of a Gaussian pulse o↵ a

BH. The pulse crosses the photosphere, and excites its
modes. The ringdown signal, a fraction of which trav-
els to outside observers, is to a very good level described
by its lowest modes, Eq. (4). The fraction of the GWs
that leaks from the barrier inwards travels down to the
horizon and that’s the last one hears of it.
Contrast the previous description with the dynamical

response of a ClePhO. The initial evolution of the pho-
tosphere modes still holds, by causality. Thus, up to
timescales of the order ⇠ rg

c | log ✏| (the roundtrip time of
radiation between the photosphere and the surface) the
signal is identical to that of BHs [10, 11]. At later times,
however, the pulse traveling inwards is bound to interact
with the object. This pulse is semi-trapped between the
object and the photosphere. Upon each interaction, a
fraction exits to outside observers, giving rise to a series
of echoes of ever-decreasing amplitude. Repeated reflec-
tions occur in a characteristic echo delay time [10, 11],

⌧
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This logarithmic dependence is crucial to make echoes
observable even with only Planckian corrections near the
horizon, when ✏ ⇠ 10�40. Although, at very late times,
the fundamental modes of a ClePhO have low frequen-
cies, the main burst is typically generated at the pho-
tosphere and has therefore a frequency content of the
same order as the BH modes (4). The initial signal is
of high frequency and a substantial component is able to
cross the potential barrier. Thus, observers see a series
of echoes whose amplitude is getting smaller and whose
frequency content is also going down (see Fig. 2).

(Cardoso & Pani 
Nature  Astr. ‘17)



 INFN Roma1 Retreat                                                        Leonardo Gualtieri                                                 Assisi,  16-18 June 2019

4.Test the nature of compact objects

Do horizonless Exotic Compact Objects (ECOs) exist?

If (partially) reflecting surface at                                           very close to the horizon,

enhanced modification in the GW emission ~ln(𝜀):

LIGO-Virgo observations did not probe directly the black hole horizon (neither Event Horizon Telescope did!)  

quantum gravity & string theory suggest the existence of Planck-scale deviations near the 
horizon (fuzzbals, firewalls, etc.), also [but not only] to solve information paradox

Pani et al. PRD’09,  PRD’10,  PRD’11, Macedo et al. PRD’13, Pani et al. PRD’15, Ucikata et al. PRD’16, Cardoso & Gualtieri CQG ’16, Cardoso et al. PRL’16, PRD’16, PRD’17,  
Cardoso & Pani Nature Astr. ’17, Palenzuela et al. PRD’17, Maggio et al. PRD’17, PRL’18, Barausse et al. CQG’18, Testa et al. PRD’18, Maggio et al. PRD’19, 
Raposo et al. PRD’19a,b, Pani & Ferrari CQG ’18, Cardoso & Pani Liv.Rev.Rel ’19 to appear

• inspiral chacterized by tidal effects, e.g. Love number  l ~ln(𝜀)

Our studies suggest that very small deviations (up to Planck scale)  
 would be potentially detectable by 3G-ET and by LISA!

• ringdown signal would be followed by  echoes after t~2rhor/c ln(𝜀)

Ferrari & Kokkotas PRD’00)

3

FIG. 1. Schematic classification of dark compact objects. Their compactness is expressed as the di↵erence between the object
radius r0 and the Schwarzschild radius rg. Objects in the same category have similar dynamical properties on a timescale
⌧ ⇠ rg

c | log ✏|. The upper axis refers to the time, as measured by distant observers, that light from the photosphere takes to
reach the surface r0. Numbers refer to an object of 60M� and scale linearly with it mass.

ClePhO
BH

0 50 100 150

-0.5

0.0

0.5

1.0

time [ms ]

G
W

str
ai

n

τecho ∼2 rg /c |log ϵ|

100 150 200 250
-0.10
-0.05
0.00
0.05
0.10

pr
om

pt
rin

gd
ow

n

FIG. 2. Ringdown waveforms from black holes (black line)
and ClePhOs (red line). We consider objects of 60M�. For
ClePhOs, there is a reflective surface at r0 = rg(1 + ✏), ✏ =
10�11. The amplitude of the GW signal (proportional to the
relative strain of the interferometer’s arm induced by the GW)
is normalized to its peak value. The initial data describes a
quadrupolar Gaussian wavepacket of axial GWs. The inset
shows a zoom-in version of the waveform at late times. Note
that each subsequent echo has a smaller frequency content.

These are the (quasi)normal modes of the system. The
structure of GW signals at late times is therefore ex-
pected to be relatively simple. This is shown in Fig. 2,
which refers to the scattering of a Gaussian pulse o↵ a

BH. The pulse crosses the photosphere, and excites its
modes. The ringdown signal, a fraction of which trav-
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• inspiral chacterized by tidal effects, e.g. Love number  l ~ln(𝜀)

Our studies suggest that very small deviations (up to Planck scale)  
 would be potentially detectable by 3G-ET and by LISA!

Catalogue echo waveforms:  https://www.darkgra.org/gw-echo-catalogue.html

• ringdown signal would be followed by  echoes after t~2rhor/c ln(𝜀)

Ferrari & Kokkotas PRD’00)
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FIG. 1. Schematic classification of dark compact objects. Their compactness is expressed as the di↵erence between the object
radius r0 and the Schwarzschild radius rg. Objects in the same category have similar dynamical properties on a timescale
⌧ ⇠ rg

c | log ✏|. The upper axis refers to the time, as measured by distant observers, that light from the photosphere takes to
reach the surface r0. Numbers refer to an object of 60M� and scale linearly with it mass.
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FIG. 2. Ringdown waveforms from black holes (black line)
and ClePhOs (red line). We consider objects of 60M�. For
ClePhOs, there is a reflective surface at r0 = rg(1 + ✏), ✏ =
10�11. The amplitude of the GW signal (proportional to the
relative strain of the interferometer’s arm induced by the GW)
is normalized to its peak value. The initial data describes a
quadrupolar Gaussian wavepacket of axial GWs. The inset
shows a zoom-in version of the waveform at late times. Note
that each subsequent echo has a smaller frequency content.

These are the (quasi)normal modes of the system. The
structure of GW signals at late times is therefore ex-
pected to be relatively simple. This is shown in Fig. 2,
which refers to the scattering of a Gaussian pulse o↵ a

BH. The pulse crosses the photosphere, and excites its
modes. The ringdown signal, a fraction of which trav-
els to outside observers, is to a very good level described
by its lowest modes, Eq. (4). The fraction of the GWs
that leaks from the barrier inwards travels down to the
horizon and that’s the last one hears of it.
Contrast the previous description with the dynamical

response of a ClePhO. The initial evolution of the pho-
tosphere modes still holds, by causality. Thus, up to
timescales of the order ⇠ rg

c | log ✏| (the roundtrip time of
radiation between the photosphere and the surface) the
signal is identical to that of BHs [10, 11]. At later times,
however, the pulse traveling inwards is bound to interact
with the object. This pulse is semi-trapped between the
object and the photosphere. Upon each interaction, a
fraction exits to outside observers, giving rise to a series
of echoes of ever-decreasing amplitude. Repeated reflec-
tions occur in a characteristic echo delay time [10, 11],

⌧
echo

⇠ 2rg
c

| log ✏| . (5)

This logarithmic dependence is crucial to make echoes
observable even with only Planckian corrections near the
horizon, when ✏ ⇠ 10�40. Although, at very late times,
the fundamental modes of a ClePhO have low frequen-
cies, the main burst is typically generated at the pho-
tosphere and has therefore a frequency content of the
same order as the BH modes (4). The initial signal is
of high frequency and a substantial component is able to
cross the potential barrier. Thus, observers see a series
of echoes whose amplitude is getting smaller and whose
frequency content is also going down (see Fig. 2).

(Cardoso & Pani 
Nature  Astr. ‘17)
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FIG. 2. Ringdown waveforms from black holes (black line)
and ClePhOs (red line). We consider objects of 60M�. For
ClePhOs, there is a reflective surface at r0 = rg(1 + ✏), ✏ =
10�11. The amplitude of the GW signal (proportional to the
relative strain of the interferometer’s arm induced by the GW)
is normalized to its peak value. The initial data describes a
quadrupolar Gaussian wavepacket of axial GWs. The inset
shows a zoom-in version of the waveform at late times. Note
that each subsequent echo has a smaller frequency content.

These are the (quasi)normal modes of the system. The
structure of GW signals at late times is therefore ex-
pected to be relatively simple. This is shown in Fig. 2,
which refers to the scattering of a Gaussian pulse o↵ a

BH. The pulse crosses the photosphere, and excites its
modes. The ringdown signal, a fraction of which trav-
els to outside observers, is to a very good level described
by its lowest modes, Eq. (4). The fraction of the GWs
that leaks from the barrier inwards travels down to the
horizon and that’s the last one hears of it.
Contrast the previous description with the dynamical

response of a ClePhO. The initial evolution of the pho-
tosphere modes still holds, by causality. Thus, up to
timescales of the order ⇠ rg

c | log ✏| (the roundtrip time of
radiation between the photosphere and the surface) the
signal is identical to that of BHs [10, 11]. At later times,
however, the pulse traveling inwards is bound to interact
with the object. This pulse is semi-trapped between the
object and the photosphere. Upon each interaction, a
fraction exits to outside observers, giving rise to a series
of echoes of ever-decreasing amplitude. Repeated reflec-
tions occur in a characteristic echo delay time [10, 11],

⌧
echo

⇠ 2rg
c

| log ✏| . (5)

This logarithmic dependence is crucial to make echoes
observable even with only Planckian corrections near the
horizon, when ✏ ⇠ 10�40. Although, at very late times,
the fundamental modes of a ClePhO have low frequen-
cies, the main burst is typically generated at the pho-
tosphere and has therefore a frequency content of the
same order as the BH modes (4). The initial signal is
of high frequency and a substantial component is able to
cross the potential barrier. Thus, observers see a series
of echoes whose amplitude is getting smaller and whose
frequency content is also going down (see Fig. 2).

(Cardoso & Pani 
Nature  Astr. ‘17)
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• inspiral chacterized by tidal effects, e.g. Love number  l ~ln(𝜀)

Our studies suggest that very small deviations (up to Planck scale)  
 would be potentially detectable by 3G-ET and by LISA!

(Palenzuela et al. 
PRD’17)

Example: boson stars i.e. self-gravitating scalar field configurations.
If the supermassive objects at the center of galaxies are boson stars, 
they would have a scalar field halo which could be an alternative to 
Dark Matter.

Catalogue echo waveforms:  https://www.darkgra.org/gw-echo-catalogue.html

• ringdown signal would be followed by  echoes after t~2rhor/c ln(𝜀)
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FIG. 2. Ringdown waveforms from black holes (black line)
and ClePhOs (red line). We consider objects of 60M�. For
ClePhOs, there is a reflective surface at r0 = rg(1 + ✏), ✏ =
10�11. The amplitude of the GW signal (proportional to the
relative strain of the interferometer’s arm induced by the GW)
is normalized to its peak value. The initial data describes a
quadrupolar Gaussian wavepacket of axial GWs. The inset
shows a zoom-in version of the waveform at late times. Note
that each subsequent echo has a smaller frequency content.

These are the (quasi)normal modes of the system. The
structure of GW signals at late times is therefore ex-
pected to be relatively simple. This is shown in Fig. 2,
which refers to the scattering of a Gaussian pulse o↵ a

BH. The pulse crosses the photosphere, and excites its
modes. The ringdown signal, a fraction of which trav-
els to outside observers, is to a very good level described
by its lowest modes, Eq. (4). The fraction of the GWs
that leaks from the barrier inwards travels down to the
horizon and that’s the last one hears of it.
Contrast the previous description with the dynamical

response of a ClePhO. The initial evolution of the pho-
tosphere modes still holds, by causality. Thus, up to
timescales of the order ⇠ rg

c | log ✏| (the roundtrip time of
radiation between the photosphere and the surface) the
signal is identical to that of BHs [10, 11]. At later times,
however, the pulse traveling inwards is bound to interact
with the object. This pulse is semi-trapped between the
object and the photosphere. Upon each interaction, a
fraction exits to outside observers, giving rise to a series
of echoes of ever-decreasing amplitude. Repeated reflec-
tions occur in a characteristic echo delay time [10, 11],

⌧
echo

⇠ 2rg
c

| log ✏| . (5)

This logarithmic dependence is crucial to make echoes
observable even with only Planckian corrections near the
horizon, when ✏ ⇠ 10�40. Although, at very late times,
the fundamental modes of a ClePhO have low frequen-
cies, the main burst is typically generated at the pho-
tosphere and has therefore a frequency content of the
same order as the BH modes (4). The initial signal is
of high frequency and a substantial component is able to
cross the potential barrier. Thus, observers see a series
of echoes whose amplitude is getting smaller and whose
frequency content is also going down (see Fig. 2).

(Cardoso & Pani 
Nature  Astr. ‘17)
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1.Modelling  sources of Gravitational Waves

2.Test the gravitational interaction, looking for general relativity deviations in the strong-field regime

3.Determine the equation of state of nuclear matter in the inner core of neutron stars

4.Test the nature of compact objects

5.Search for dark matter candidates looking at its strong gravity interaction with compact objects



 INFN Roma1 Retreat                                                        Leonardo Gualtieri                                                 Assisi,  16-18 June 2019

5. Search for dark matter candidates looking at its strong gravity interaction with compact objects
Cardoso et al. PRL’11, Pani et al. PRL’12, PRD’12,  Macedo et al.  ApJ’13, PRD’13, Cardoso & Pani CQG’13,  Cardoso et al. PRD’13,  Pani et al. PRD’13, Brito et al. PRD’13a,b, 
PRD’14,  Okawa et al. PRD’14, Pani et al. JCAP’14, Brito et al. CQG’15, Lect. Not. Phys.’15, Pani PRD’15, Cardoso et al. JCAP’16, Cardoso et al. PRD’17, Brito et al. PRL’17, PRD’17, 
Maselli et al. PRD’17, Cardoso et al. JCAP ’18, Ficarra et al. PRD’19 
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5. Search for dark matter candidates looking at its strong gravity interaction with compact objects

We do not know how (and if!) dark matter couples with standard model fields.
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The one thing we do know is that dark matter gravitates!
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5. Search for dark matter candidates looking at its strong gravity interaction with compact objects

We do not know how (and if!) dark matter couples with standard model fields.

Ultra-light boson fields with m≲10-11eV (Compton length ≳ 10 km): possible alternative to WIMPs
   which would couple with black holes of comparable size, giving rise to superradiant instabilities
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The one thing we do know is that dark matter gravitates!
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5. Search for dark matter candidates looking at its strong gravity interaction with compact objects

We do not know how (and if!) dark matter couples with standard model fields.

Ultra-light boson fields with m≲10-11eV (Compton length ≳ 10 km): possible alternative to WIMPs
   which would couple with black holes of comparable size, giving rise to superradiant instabilities
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Maselli et al. PRD’17, Cardoso et al. JCAP ’18, Ficarra et al. PRD’19 

(Brito et al. PRL’17)

Such fields could be either axion-like particles (ALP)
 or ultra-light vector fields (ULV) e.g. “dark photons”.

They would form quadrupolar clouds around rotating black holes,
emitting continuous GWs detectable by LIGO-Virgo or LISA 

(see Naticchioni & Palomba’s talks for searches)

The one thing we do know is that dark matter gravitates!
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5. Search for dark matter candidates looking at its strong gravity interaction with compact objects

We do not know how (and if!) dark matter couples with standard model fields.

Ultra-light boson fields with m≲10-11eV (Compton length ≳ 10 km): possible alternative to WIMPs
   which would couple with black holes of comparable size, giving rise to superradiant instabilities
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(Brito et al. PRL’17)

Such fields could be either axion-like particles (ALP)
 or ultra-light vector fields (ULV) e.g. “dark photons”.

They would form quadrupolar clouds around rotating black holes,
emitting continuous GWs detectable by LIGO-Virgo or LISA 

(see Naticchioni & Palomba’s talks for searches)
ALPs is populated uniformly down to the Hubble scale, mH ⇠ 10

�33
eV, so that ultralight

bosonic states are allowed. It has been recently recognized that ultralight boson fields with
masses of the order of 10�21

eV are a compelling candidate for cold dark matter [3]. A similar,
albeit much wider, phenomenology arises in models of ultralight vector fields (ULVs), such as
dark photons, also a generic prediction of string theory [11]. In this scenario, a “hidden U(1)”
sector is weakly coupled to the visible Maxwell field through a kinetic mixing term.
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Figure 1. Current experimental limits on ALPs (left) and ULVs (right) in their corresponding mass-
coupling plane (adapted from [12] and [13], respectively; courtesy of J. Redondo). The red dashed
areas denote the regions that can be probed through the superradiant instability of astrophysical
BHs [14–19] (cf. [20] for an overview), as discussed in this paper. These constraints do not require a
direct coupling between dark matter and ordinary particles, and are complementary to other bounds.

Constraints on ultralight bosons. Due to their tiny mass and weak coupling, direct
searches of ultralight bosons in the lab are extremely challenging, especially for masses ⌧
10

�10
eV. The current bounds and respective experiments/observations from which they

were derived are summarized in Fig. 1. Laboratory searches inevitably require the interaction
cross section of dark-matter particles with “ordinary” matter to be sufficiently large. For
vanishingly small couplings to the Standard Model, gravity is the only interaction able to
probe new fundamental fields.

There are at least two nontrivial effects of gravity on ALPs and ULVs. The first is
the formation of self-gravitating structures such as boson stars or oscillatons [21]. These
structures can become very compact, to the point of providing a compelling alternative to
supermassive dark objects [22–25]. The second, nonperturbative, effect is the triggering of
superradiant instabilities of spinning black holes (BHs) [20]. Superradiant instabilities spin
BHs down, and can affect the dynamics of astrophysical BHs in a dramatic fashion [14, 20],
providing a portal for astrophysical tests of bosonic dark matter in the poorly explored range
below 10

�10
eV.

Superradiant instabilities of Kerr BHs and strong-gravity constraints. The super-
radiant instability of ALPs and ULVs around spinning Kerr BHs is the focus of this work.
The precise evolution or end-state of the instability for minimally coupled bosons is not fully
understood [20, 26, 27], but recent numerical simulations [28, 29] support the conclusions of
previous perturbative studies [20, 30]: the instability proceeds in a two-step process. Dur-
ing the first stage, the geometry is well described by a (vacuum) Kerr BH. This geometry

– 2 –

(Cardoso et al. JCAP ’18)

GW searches for dark matter are complementary to 
“traditional" searches, since the mass range m≲10-11eV
 is poorly constrained from astroparticle experiments!

The one thing we do know is that dark matter gravitates!
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5. Search for dark matter candidates looking at its strong gravity interaction with compact objects

We do not know how (and if!) dark matter couples with standard model fields.
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(Brito et al. PRL’17)

Such fields could be either axion-like particles (ALP)
 or ultra-light vector fields (ULV) e.g. “dark photons”.

They would form quadrupolar clouds around rotating black holes,
emitting continuous GWs detectable by LIGO-Virgo or LISA 

(see Naticchioni & Palomba’s talks for searches)

Thise research line is also
supported by

ERC-2017-StG  DarkGRA (P.Pani)
“Unveiling the dark universe with GWs”

https://www.darkgra.org/

ALPs is populated uniformly down to the Hubble scale, mH ⇠ 10

�33
eV, so that ultralight

bosonic states are allowed. It has been recently recognized that ultralight boson fields with
masses of the order of 10�21

eV are a compelling candidate for cold dark matter [3]. A similar,
albeit much wider, phenomenology arises in models of ultralight vector fields (ULVs), such as
dark photons, also a generic prediction of string theory [11]. In this scenario, a “hidden U(1)”
sector is weakly coupled to the visible Maxwell field through a kinetic mixing term.
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Figure 1. Current experimental limits on ALPs (left) and ULVs (right) in their corresponding mass-
coupling plane (adapted from [12] and [13], respectively; courtesy of J. Redondo). The red dashed
areas denote the regions that can be probed through the superradiant instability of astrophysical
BHs [14–19] (cf. [20] for an overview), as discussed in this paper. These constraints do not require a
direct coupling between dark matter and ordinary particles, and are complementary to other bounds.

Constraints on ultralight bosons. Due to their tiny mass and weak coupling, direct
searches of ultralight bosons in the lab are extremely challenging, especially for masses ⌧
10

�10
eV. The current bounds and respective experiments/observations from which they

were derived are summarized in Fig. 1. Laboratory searches inevitably require the interaction
cross section of dark-matter particles with “ordinary” matter to be sufficiently large. For
vanishingly small couplings to the Standard Model, gravity is the only interaction able to
probe new fundamental fields.

There are at least two nontrivial effects of gravity on ALPs and ULVs. The first is
the formation of self-gravitating structures such as boson stars or oscillatons [21]. These
structures can become very compact, to the point of providing a compelling alternative to
supermassive dark objects [22–25]. The second, nonperturbative, effect is the triggering of
superradiant instabilities of spinning black holes (BHs) [20]. Superradiant instabilities spin
BHs down, and can affect the dynamics of astrophysical BHs in a dramatic fashion [14, 20],
providing a portal for astrophysical tests of bosonic dark matter in the poorly explored range
below 10

�10
eV.

Superradiant instabilities of Kerr BHs and strong-gravity constraints. The super-
radiant instability of ALPs and ULVs around spinning Kerr BHs is the focus of this work.
The precise evolution or end-state of the instability for minimally coupled bosons is not fully
understood [20, 26, 27], but recent numerical simulations [28, 29] support the conclusions of
previous perturbative studies [20, 30]: the instability proceeds in a two-step process. Dur-
ing the first stage, the geometry is well described by a (vacuum) Kerr BH. This geometry
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(Cardoso et al. JCAP ’18)

GW searches for dark matter are complementary to 
“traditional" searches, since the mass range m≲10-11eV
 is poorly constrained from astroparticle experiments!

The one thing we do know is that dark matter gravitates!
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Some of these studies have the aim of extracting more information from
present GW detectors:  Advanced LIGO & Virgo.



 INFN Roma1 Retreat                                                        Leonardo Gualtieri                                                 Assisi,  16-18 June 2019

Some of these studies have the aim of extracting more information from
present GW detectors:  Advanced LIGO & Virgo.

Others are developed for future, 3rd generation GW detectors:
3G (Einstein Telescope + its US conterpart) and the space-based mission LISA



 INFN Roma1 Retreat                                                        Leonardo Gualtieri                                                 Assisi,  16-18 June 2019

Some of these studies have the aim of extracting more information from
present GW detectors:  Advanced LIGO & Virgo.

Others are developed for future, 3rd generation GW detectors:
3G (Einstein Telescope + its US conterpart) and the space-based mission LISA

Indeed, the theoretical physics community is one of the key players in the shaping of 3G-ET and LISA.
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